15-451 Algorithms, Fall 2010

Homework # 3 Due: October 5, 2010

Please hand in each problem on a separate sheet and put your name your andrew id and
your recitation (time or letter) at the top of each page. You will be handing each problem
into a separate box in lecture, and we will then give homeworks back in recitation.
Remember: Homework is due at the begining of class. If you hand in your homework
after class has started you are late. Please cite any sources you use (google, course notes,
etc) as well any collaborators. As always each solution must be written in your own words.
You must fully understand any solution you write down. You are required to typeset your
homework.

Problems:

(25 pts) 1. Potentially Hopping Pennies. You are given an infinite 2 dimensional grid G. If
there is a penny on cell (i,7) then we write G[i][j] = 1, otherwise G[i][j] = 0 (Notice
that since the grid is infinite ¢ and/or j may be negative!) Bill Gates places and
infinite number of pennies on the grid such that initially G[i][j] = 1 whenever 7 < 0.
Pennies move by jumping (horizontally or vertically) over one other penny onto an
empty square. When this happens the other penny is removed. Formally, you are
allowed to make four types of moves:

(a) Horizontal Jump Right: If Gli][j] = G[i + 1][j] = 1 and G[i + 2|[j] = 0 then
we the penny at (i,7) can jump the penny at (i + 1,7) and move to (i + 2, j),
when we do this we also remove the penny at (i + 1, 7). The final configuration is
Gli][j] = Gli + 1][j] =0 and G[i + 2][j] = 1

(b) Horizontal Jump Left: If G[i][j] = G[i — 1][j] = 1 and G[i — 2][j] = 0 then the
penny at (i,j) can jump the penny at (i — 1,7) and move to (i — 2,j), when
we do this we also remove the penny at (¢ — 1,7). The final configuration is
Gli]lj] = Gli = 1][j] = 0 and G[i — 2][j] = 1

(c) Vertical Jump Up: If G[i][j] = G[i][j+1] = 1 and G[i][j+2] = 0 then the penny at
(1, 7) can jump the penny at (4, j+1) and move to (7, j+2), when we do this we also
remove the penny at (7, j + 1). The final configuration is G[i][j] = G[i|[j +1] =0
and G[i][j +2] =1

(d) Vertical Jump Down: If G[i][j] = Gli][j — 1] = 1 and G[i][j — 2] = 0 then the
penny at (i,j) can jump the penny at (i,j — 1) and move to (i,j — 2), when
we do this we also remove the penny at (¢ — 1,7). The final configuration is
Gli][j] = Gli][j —1] = 0 and Gli][j — 2] =1

These moves are perhaps most easily understood with pictures:

(Vertical Jump Up) (Vertical Jump Down)

...000... 010.. 010 ...000...

..010... => ...000... ...010... => ...000...
010 000 000 010



(25 pts) 2.

(Horizontal Jump Right) (Horizontal Jump Left)

..000. .. ...000... ...000... 000.
.110... => ...001... ...011... = .100.
000 000 000 000

Examples of Illegal Moves

(No Diagonal Jumps) (Must Jump into Empty Spot)
...000... ...100... ...0000 0000
..010... => ...000... ...0111.. = ...0100..
001 000 .0000 0000
(Can’t Jump Over Empty Square) (Can’t Jump Over Two Squares)
000 010 .0000 0000
000 => 000 ..0111 => 1000
010 000 .0000 0000

If a penny is at cell (7, j) we say that j is the height of the penny. Your goal will be to
provide upper and lower bound on the maximum height a penny can ever reach after
a finite number of moves.

(a) (20 pts) Using potential functions provide an upper bound on the maximum height
h that any penny can reach.

(b) (5 pts) Provide a matching lower bound (ie. a sequence of jumps resulting in a
penny at some cell of height h). Hint: Once you have the right upper bound it
should not be too hard to find a matching lower bound.

Doing more with search trees. Often, by adding extra information to the nodes of
a binary search tree, it is possible to perform other operations you might be interested
in. In particular, suppose we want to be able to do the following operations efficiently:

e Given k, output the kth smallest element (let’s assume all keys are distinct).

e Given a key z, do a version of lookup(z) that tells us the rank of = (how many
keys are smaller than x).

Note that if we had a fixed set of data, this would be easy: we just make a sorted
array. If we are asked to produce the kth smallest element, we just output A[k]. To
get the rank of x, we just do binary search to find it, and then output which location
it’s in. How could we do this with binary search trees, if we want to do inserts too?
(Obviously, all basic BST properties have to be perserved.) In particular, describe a
piece of additional information you could store at each node of the binary search tree
such that:



(1) it allows us to perform the above operations in time O(depth of tree).
(2) the values can be maintained efficiently (time proportional to the depth
of the tree) when a new node is inserted.

For example, a bad way of solving the problem would be to have each node store the
rank of its key. This is bad because if you insert a new key that is smaller than
everything else, you may have to update everyone’s rank. So we don’t have property
(2). For this problem you should:

()
(b)

()

Describe the extra information you will store at each node of the tree.

Describe how you can use this to find the kth smallest element efficiently, and
how you can use this to find the rank of a given key efficiently.

Describe how the information can be updated efficiently when a new node is
inserted into the tree. (You can assume for this that we are doing simple binary
search tree insertion, though if you like you can also describe how it is updated
when rotations are performed).

(25 pts) 3. Super Thief

()

You are an amazing super thief. You have scoped out a circle of n, houses that
you would like to rob tonight. However, as the super thief that you are, you’ve
done your homework and realized that you want to avoid robbing two houses that
are adjacent to one another because this will minimize the chance that you get
caught. You’ve also scouted out the hood, so for every house ¢, you know that
the net worth you will gain from robbing that house is v;.

You want to try to maximize the amount of money that you can rob. Remember-
ing your former life as a student at Carnegie Mellon taking 15-451, you decide to
develop an algorithm that will output the maximum amount of money you can
steal.

(3 pts) Because you were a great student in 15451, you suspect that this problem
can be solved with dynamic programming. Explain why this problem is a good
candidate for a DP algorithm.

(15 pts) Give a dynamic programming algorithm that to find the maximum
amount of money that you can steal given that you never rob two houses that
are adjacent and state whether your are using the bottom up approach or the top
down approach.

(7 pts) Modify your algorithm so that it also returns the best set of houses to rob
instead of the maximum value you can steal.

(25 pts) 4. Let’s start playing with Graphs!

(a)

(13 pts) Suppose you have a directed graph that has mn nodes laid out in an m
(rows) X n (columns) grid (as shown below). There is a directed edge from node
i to node j if col(i) = col(j) — 1 and either row(i) = row(j) — 1, row(i) = row(j),
or row(i) = row(j) + 1. Nodes on the top and bottom edges of the grid will have
only two outgoing/incoming edges each. Nodes in the left-most column will have
only outgoing edges and nodes in the right-most column will have only incoming
edges. Every edge has a weight in R (real numbers greater than 0). Describe an

3



optimal algorithm (the worst-case asymptotic lower bound of the problem should
match the worst-case asymptotic upper bound of the algorithm) that finds the
maximum product of all the edges along any path from any node in the left-
most column to any node in the right-most column. Also, analyze the complexity
(asymptotic analysis is sufficient) of your algorithm and prove that it is optimal
(arguments on asymptotic complexities are sufficient).

n
A

=

(5 pts) Now suppose that, in the above part, you were asked to find the minimum
product (instead of the maximum). How would your algorithm change? How
would this affect the runtime?

(7 pts) Suppose you now have an undirected graph that has n nodes and has edge
weights in N* (the set of natural numbers, other than 0). Given a source node,
s, and a target node, t, describe an efficient algorithm to find a path from s to ¢
which has the minimum product of all the edges. (Hint: Look at the Bellman-Ford
Algorithm in Section 12.4 of the lecture notes.)



