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Shall we play a game?

Game Theory and Computer 
Science

Game Theory               15-451                   12/04/07
- Zero-sum games
- General-sum games

Plan for Today
• 2-Player Zero-Sum Games (matrix games)

– Minimax optimal strategies

– Minimax theorem                                                 
and proof

• General-Sum Games (bimatrix games)
– notion of Nash Equilibrium

• Proof of existence of Nash Equilibria
– using Brouwer’s fixed-point theorem

test material
not test material

2-player zero-sum 
game recap

Consider the following scenario…

• Shooter has a penalty shot.  Can choose to 
shoot left or shoot right.

• Goalie can choose to dive left or dive right.

• If goalie guesses correctly, (s)he saves the 
day.  If not, it’s a goooooaaaaall!

• Vice-versa for shooter.

2-Player Zero-Sum games
• Two players R and C.  Zero-sum means that what’s 

good for one is bad for the other.

• Game defined by matrix with a row for each of R’s 
options and a column for each of C’s options.  
Matrix tells who wins how much.

• an entry (x,y) means: x = payoff to row player, y = payoff to 
column player.  “Zero sum” means that y = -x.

• E.g., penalty shot:

(0,0)  (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

shooter

goalie

No goal

GOAALLL!!!

Minimax-optimal strategies
• Minimax optimal strategy is a (randomized) 

strategy that has the best guarantee on its 
expected gain, over choices of the opponent. 
[maximizes the minimum]

• I.e., the thing to play if your opponent knows 
you well.

(0,0)  (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

shooter

goalie

No goal

GOAALLL!!!
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Minimax-optimal strategies
• In class on Linear Programming, we saw how 

to solve for this using LP.
– polynomial time in size of matrix if use poly-time 

LP alg.

• I.e., the thing to play if your opponent knows 
you well.

(0,0)  (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

shooter

goalie

No goal

GOAALLL!!!

Minimax-optimal strategies
• What are the minimax optimal strategies for 

this game?

(0,0)  (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

shooter

goalie

No goal

GOAALLL!!!

Minimax optimal strategy for both players is 
50/50.  Gives expected gain of � for shooter 
(-� for goalie).  Any other is worse.

(�,-�) (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

Minimax-optimal strategies
• How about penalty shot with goalie who’s 

weaker on the left?

shooter

goalie

50/50

GOAALLL!!!

Minimax optimal for shooter is (2/3,1/3).
Guarantees expected gain at least 2/3. 
Minimax optimal for goalie is also (2/3,1/3).
Guarantees expected loss at most 2/3.

Minimax Theorem (von Neumann 1928)
• Every 2-player zero-sum game has a unique 

value V.

• Minimax optimal strategy for R guarantees 
R’s expected gain at least V.

• Minimax optimal strategy for C guarantees 
C’s expected loss at most V.

Counterintuitive: Means it doesn’t hurt to 
publish your strategy if both players are 
optimal.  (Borel had proved for symmetric 5x5 
but thought was false for larger games)

Matrix games and Algorithms
• Gives a useful way of thinking about guarantees 
on algorithms for a given problem.

• Think of rows as different algorithms,  columns 
as different possible inputs.

• M(i,j) = cost of algorithm i on input j.

• Algorithm design goal: good strategy for row 
player.  Lower bound: good strategy for adversary.

One way to think of upper-bounds/lower-bounds: on 
value of this game

E.g., sorting

Matrix games and Algorithms
• Gives a useful way of thinking about guarantees 
on algorithms for a given problem.

• Think of rows as different algorithms,  columns 
as different possible inputs.

• M(i,j) = cost of algorithm i on input j.

• Algorithm design goal: good strategy for row 
player.  Lower bound: good strategy for adversary.

Of course matrix may be HUGE. But helpful 
conceptually.

E.g., sorting
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Matrix games and Algs

•What is a deterministic alg with a                     
good worst-case guarantee?

• A row that does well against all columns.

•What is a lower bound for deterministic 
algorithms?

• Showing that for each row i there exists a column j 
such that M(i,j) is bad.

•How to give lower bound for randomized 
algs?

• Give randomized strategy for adversary that is bad 
for all i. Must also be bad for all distributions over i.

Alg player

Adversary E.g., hashing
•Rows are different hash functions.
•Cols are different sets of n items to hash.
•M(i,j) = #collisions incurred by alg i on set j.  

We saw:
•For any row, can reverse-engineer a bad column 
(if universe of keys is large enough).

•Universal hashing is a randomized strategy for 
row player that has good behavior for every 
column.
– For any set of inputs, if you randomly construct hash 

function in this way, you won’t get many collisions in 
expectation.

Alg player

Adversary

Nice proof of minimax thm (sketch)
• Suppose for contradiction it was false.

• This means some game G has VC
> VR:

– If Column player commits first, there exists 
a row that gets the Row player at least VC.

– But if Row player has to commit first, the 
Column player can make him get only VR.

• Scale matrix so payoffs to row are         
in [-1,0].  Say VR = VC - δ.

VC

VR

We are now below the red line from slide 2

Proof sketch, contd
• Now, consider randomized weighted-majority 

alg from last lecture as Row, against Col who 
plays optimally against Row’s distrib.

• In T steps,
– Alg gets ≥ (1−ε/2)[best row in hindsight] – log(n)/ε
– BRiH ≥ T⋅VC [Best against opponent’s empirical 

distribution]

– Alg � T⋅VR [Each time, opponent knows your 
randomized strategy]

– Gap is δT. Contradicts assumption if use ε=δ, once 
T > 2log(n)/ε2.

How can we think of RWM as an alg for 
repeatedly playing a matrix game???

Proof sketch, contd
• Consider repeatedly playing game G against 

some opponent. [think of you as row player]
• Use exponential weighting alg from Nov 16 

lecture to do nearly as well as best fixed row 
in hindsight.
– Alg gets ≥ (1−ε/2)OPT – c*log(n)/ε  > (1−ε)OPT   [if play long enough]
– OPT ≥ VC [Best against opponent’s empirical 

distribution]
– Alg � VR [Each time, opponent knows your 

randomized strategy]
– Contradicts assumption.

General-Sum Games

• Zero-sum games are good formalism for 
design/analysis of algorithms.

• General-sum games are good models for 
systems with many participants whose 
behavior affects each other’s interests
– E.g., routing on the internet

– E.g., online auctions
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General-sum games

• In general-sum games, can get win-win 
and lose-lose situations.

• E.g., “what side of sidewalk to walk on?”:

(1,1)   (-1,-1)

(-1,-1)  (1,1)

Left

Right

Left   Right person 
walking 

towards you

you

General-sum games

• In general-sum games, can get win-win 
and lose-lose situations.

• E.g., “which movie should we go to?”:

(8,2)  (0,0)

(0,0)  (2,8)

Borat

Harry potter

Borat Harry potter

No longer a unique “value” to the game.

Nash Equilibrium
• A Nash Equilibrium is a stable pair of 

strategies  (could be randomized).
• Stable means that neither player has 

incentive to deviate on their own.
• E.g., “what side of sidewalk to walk on”:

(1,1)   (-1,-1)

(-1,-1)  (1,1)

Left

Right

Left   Right

NE are: both left, both right, or both 50/50.

Nash Equilibrium
• A Nash Equilibrium is a stable pair of 

strategies  (could be randomized).
• Stable means that neither player has 

incentive to deviate on their own.
• E.g., “which movie to go to”:

NE are: both B, both HP, or (80/20,20/80)

(8,2)  (0,0)

(0,0)  (2,8)

Borat

Harry potter

Borat Harry potter

Uses
• Economists use games and equilibria as 

models of interaction.
• E.g., pollution / prisoner’s dilemma:

– (imagine pollution controls cost $4 but improve 
everyone’s environment by $3)

(2,2)  (-1,3)

(3,-1)  (0,0)

don’t pollute

pollute

don’t pollute   pollute

Need to add extra incentives to get good overall behavior.

NE can do strange things
• Braess paradox:

– Road network, traffic going from s to t.

– travel time as function of fraction x of 
traffic on a given edge.

Fine.  NE is 50/50.  Travel time = 1.5

s
x

1

1

tx
travel time = 1, 
indep of traffic

travel time t ( x ) = x
. 
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NE can do strange things
• Braess paradox:

– Road network, traffic going from s to t.

– travel time as function of fraction x of 
traffic on a given edge.

Add new superhighway.  NE: everyone 
uses zig-zag path.  Travel time = 2.

s
x

1

1

tx
travel time = 1, 
indep of traffic

travel time t ( x ) = x
. 

0

Existence of NE
• Nash (1950) proved: any general-sum game 

must have at least one such equilibrium.
– Might require randomized strategies (called 

“mixed strategies”)

• This also yields minimax thm as a corollary.
– Pick some NE and let V = value to row player in 

that equilibrium. 
– Since it’s a NE, neither player can do better 

even knowing the (randomized)  strategy their 
opponent is playing.

– So, they’re each playing minimax optimal.

Existence of NE
• Proof will be non-constructive.
• Unlike case of zero-sum games, we do not 
know any polynomial-time algorithm for 
finding Nash Equilibria in n · n general-sum 
games. [known to be “PPAD-hard”]

• Notation:
– Assume an nxn matrix.
– Use (p1,...,pn) to denote mixed strategy for row 

player, and (q1,...,qn) to denote mixed strategy 
for column player.

Proof

• We’ll start with Brouwer’s fixed point 
theorem.
– Let S be a compact convex region in Rn and let 

f:S ջ S be a continuous function.

– Then there must exist x ∈ S such that f(x)=x.

– x is called a “fixed point” of f.

• Simple case: S is the interval [0,1].

• We will care about:
– S = {(p,q): p,q are legal probability distributions 

on 1,...,n}.   I.e.,  S =  simplexn · simplexn

Proof (cont)

• S = {(p,q): p,q are mixed strategies}.

• Want to define f(p,q) = (p’,q’) such that:
– f is continuous.  This means that changing p 

or q a little bit shouldn’t cause p’ or q’ to 
change a lot.

– Any fixed point of f is a Nash Equilibrium.

• Then Brouwer will imply existence of NE.

Try #1

• What about f(p,q) = (p’,q’) where p’ is best 
response to q, and q’ is best response to p?

• Problem: not necessarily well-defined:
– E.g., penalty shot: if p = (0.5,0.5) then q’ could 

be anything.

(0,0)  (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right



6

Try #1

• What about f(p,q) = (p’,q’) where p’ is best 
response to q, and q’ is best response to p?

• Problem: also not continuous:
– E.g., if p = (0.51, 0.49) then q’ = (1,0).  If p = 

(0.49,0.51) then q’ = (0,1).

(0,0)  (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

Instead we will use...

• f(p,q) = (p’,q’) such that:
– q’ maximizes [(expected gain wrt p) - ||q-q’||2]

– p’ maximizes [(expected gain wrt q) - ||p-p’||2]

p  p’

Note: quadratic + linear = quadratic.

Instead we will use...

• f(p,q) = (p’,q’) such that:
– q’ maximizes [(expected gain wrt p) - ||q-q’||2]

– p’ maximizes [(expected gain wrt q) - ||p-p’||2]

p

Note: quadratic + linear = quadratic.

p’

Instead we will use...

• f(p,q) = (p’,q’) such that:
– q’ maximizes [(expected gain wrt p) - ||q-q’||2]

– p’ maximizes [(expected gain wrt q) - ||p-p’||2]

• f is well-defined and continuous since 
quadratic has unique maximum and small 
change to p,q only moves this a little.

• Also fixed point = NE.  (even if tiny 
incentive to move, will move little bit).

• So, that’s it!


