| Game Theory <br> - Zero--sum games <br> - General-sum games |
| :--- |
| Shall we play a game? |
| Game Theory and Computer |
| Science |



## 2-Player Zero-Sum games

- Two players R and $C$. Zero-sum means that what's good for one is bad for the other.
- Game defined by matrix with a row for each of R's options and a column for each of C's options.
Matrix tells who wins how much.
an entry ( $x, y$ ) means: $x=$ payoff to row player, $y=$ payoff to column player. "Zero sum" means that $y=-x$.
E.g., penalty shot:



## Plan for Today

- 2-Player Zero-Sum Games (matrix games)
- Minimax optimal strategies
- Minimax theorem test material and proof not test material
- General-Sum Games (bimatrix games)
- notion of Nash Equilibrium
- Proof of existence of Nash Equilibria
- using Brouwer's fixed-point theorem


## Consider the following scenario...

- Shooter has a penalty shot. Can choose to shoot left or shoot right.
- Goalie can choose to dive left or dive right.
- If goalie guesses correctly, (s)he saves the day. If not, it's a goooooaaaall!
- Vice-versa for shooter.


## Minimax-optimal strategies

Minimax optimal strategy is a (randomized) strategy that has the best guarantee on its expected gain, over choices of the opponent. [maximizes the minimum]
I.e., the thing to play if your opponent knows you well.



## Minimax-optimal strategies

- How about penalty shot with goalie who's weaker on the left?

Minimax optimal for shooter is $(2 / 3,1 / 3)$.
Guarantees expected gain at least $2 / 3$.
Minimax optimal for goalie is also (2/3,1/3). Guarantees expected loss at most $2 / 3$.


## Matrix games and Algorithms

- Gives a useful way of thinking about guarantees on algorithms for a given problem.
- Think of rows as different algorithms, columns as different possible inputs $\qquad$
- $M(i, j)=$ cost of algorithm i on input $j$.
- Algorithm design goal: good strategy for row player. Lower bound: good strategy for adversary.

One way to think of upper-bounds/lower-bounds: on value of this game

## Minimax-optimal strategies

What are the minimax optimal strategies for this game?

Minimax optimal strategy for both players is $50 / 50$. Gives expected gain of $\frac{1}{2}$ for shooter ( $-\frac{1}{2}$ for goalie). Any other is worse.


## Minimax Theorem (von Neumann 1928)

Every 2-player zero-sum game has a unique value V .
Minimax optimal strategy for $R$ guarantees R's expected gain at least V.
Minimax optimal strategy for $C$ guarantees C's expected loss at most V.
Counterintuitive: Means it doesn't hurt to publish your strategy if both players are optimal. (Borel had proved for symmetric $5 \times 5$ but thought was false for larger games)

## Matrix games and Algorithms

- Gives a useful way of thinking about guarantees on algorithms for a given problem.
- Think of rows as different algorithms, columns as different possible inputs. ${ }^{\square}$ - $M(i, j)=$ cost of algorithm i on input $j$.
- Algorithm design goal: good strategy for row player. Lower bound: good strategy for adversary.

Of course matrix may be HUGE. But helpful conceptually.

## Matrix games and Algs <br> Alg player <br> 

-What is a deterministic alg with a good worst-case guarantee?

- A row that does well against all columns.
-What is a lower bound for deterministic algorithms?
- Showing that for each row $i$ there exists a column $j$ such that $M(i, j)$ is bad.
- How to give lower bound for randomized algs?
- Give randomized strategy for adversary that is bad for all i. Must also be bad for all distributions over i.


## Nice proof of minimax thm (sketch)

- Suppose for contradiction it was false.
- This means some game $G$ has $V_{c}>V_{R}$ :
- If Column player commits first, there exists a row that gets the Row player at least $\mathrm{V}_{c}$.
- But if Row player has to commit first, the Column player can make him get only $V_{R}$.
- Scale matrix so payoffs to row are in $[-1,0]$. Say $V_{R}=V_{c}-\delta$.


[^0]
## E.g., hashing

- Rows are different hash functions.
- Cols are different sets of $n$ items to hash.
- $M(i, j)=\#$ collisions incurred by alg $i$ on set $j$.

We saw:

- For any row, can reverse-engineer a bad column (if universe of keys is large enough).
- Universal hashing is a randomized strategy for row player that has good behavior for every column.
- For any set of inputs, if you randomly construct hash function in this way, you won't get many collisions in expectation.


## Proof sketch, contd

- Now, consider randomized weighted-majority alg from last lecture as Row, against Col who plays optimally against Row's distrib.
In T steps, $\quad \begin{aligned} & \text { How can we think of RWM as an alg for } \\ & \text { repeatedy playing a matrix game? }\end{aligned}$
- Alg gets $\geq(1-\varepsilon / 2)$ [bes $\dagger$ row in hindsight] - $\log (n) / \varepsilon$
- BRiH $\geq \mathrm{T} \cdot \mathrm{V}_{c}$ [Best against opponent's empirical distribution]
- Alg $\leq \mathrm{T} \cdot \mathrm{V}_{\mathrm{R}} \quad$ [Each time, opponent knows your randomized strategy]
- Gap is $\delta \mathrm{T}$. Contradicts assumption if use $\varepsilon=\delta$, once $T>2 \log (n) / \varepsilon^{2}$.


## General-Sum Games

- Zero-sum games are good formalism for design/analysis of algorithms.
- General-sum games are good models for systems with many participants whose behavior affects each other's interests
- E.g., routing on the internet
- E.g., online auctions


## General-sum games

- In general-sum games, can get win-win and lose-lose situations.
- E.g., "what side of sidewalk to walk on?":



## Nash Equilibrium

- A Nash Equilibrium is a stable pair of strategies (could be randomized).
- Stable means that neither player has incentive to deviate on their own.
- E.g., "what side of sidewalk to walk on":


NE are: both left, both right, or both 50/50.

## Uses

- Economists use games and equilibria as models of interaction.
- E.g., pollution / prisoner's dilemma:
- (imagine pollution controls cost \$4 but improve everyone's environment by \$3)


Need to add extra incentives to get good overall behavior.

## General-sum games

- In general-sum games, can get win-win and lose-lose situations.
- E.g., "which movie should we go to?":


No longer a unique "value" to the game.

## Nash Equilibrium

A Nash Equilibrium is a stable pair of strategies (could be randomized).
Stable means that neither player has incentive to deviate on their own.
E.g., "which movie to go to":

| Borat Harry po |  |  |
| ---: | ---: | ---: |
|  | $(0,2)$ | $(0,0)$ |
|  | $(0,8)$ |  |
|  |  |  |

NE are: both B, both HP, or $(80 / 20,20 / 80)$

## NE can do strange things

- Braess paradox:
- Road network, traffic going from s to t.
- travel time as function of fraction $x$ of traffic on a given edge.


Fine. $N E$ is $50 / 50$. Travel time $=1.5$

## NE can do strange things

- Braess paradox:
- Road network, traffic going from s to t.
- travel time as function of fraction $x$ of traffic on a given edge.


Add new superhighway. NE: everyone uses zig-zag path. Travel time $=2$.

## Existence of NE

- Proof will be non-constructive.
- Unlike case of zero-sum games, we do not know any polynomial-time algorithm for finding Nash Equilibria in $n \times n$ general-sum games. [known to be "PPAD-hard"]
- Notation:
- Assume an $n \times n$ matrix.
- Use $\left(p_{1}, \ldots, p_{n}\right)$ to denote mixed strategy for row player, and ( $q_{1}, \ldots, q_{n}$ ) to denote mixed strategy for column player.


## Existence of NE

- Nash (1950) proved: any general-sum game must have at least one such equilibrium.
- Might require randomized strategies (called "mixed strategies")
- This also yields minimax thm as a corollary.
- Pick some NE and let V = value to row player in that equilibrium.
- Since it's a NE, neither player can do better even knowing the (randomized) strategy their opponent is playing.
- So, they're each playing minimax optimal.


## Proof (cont)

- $S=\{(p, q): p, q$ are mixed strategies $\}$.
- Want to define $f(p, q)=\left(p^{\prime}, q^{\prime}\right)$ such that:
- $f$ is continuous. This means that changing $p$ or q a little bit shouldn't cause $p^{\prime}$ or $q^{\prime}$ to change a lot.
- Any fixed point of $f$ is a Nash Equilibrium.
- Then Brouwer will imply existence of NE.


## Try \#1

- What about $f(p, q)=\left(p^{\prime}, q^{\prime}\right)$ where $p^{\prime}$ is bes $\dagger$ response to $q$, and $q$ is best response to $p$ ?
- Problem: not necessarily well-defined:
- E.g., penalty shot: if $p=(0.5,0.5)$ then $q^{\prime}$ could be anything.



## Try \#1

- What about $f(p, q)=\left(p^{\prime}, q^{\prime}\right)$ where $p^{\prime}$ is bes $t$ response to $q$, and $q^{\prime}$ is best response to $p$ ?
- Problem: also not continuous:
- E.g., if $p=(0.51,0.49)$ then $q^{\prime}=(1,0)$. If $p=$ $(0.49,0.51)$ then $q^{\prime}=(0,1)$.

|  | Left | Right |
| :---: | :---: | :---: |
| Left | $(0,0)$ | $(1,-1)$ |
| Right | (1,-1) | $(0,0)$ |

## Instead we will use...

- $f(p, q)=\left(p^{\prime}, q^{\prime}\right)$ such that:
- $q^{\prime}$ maximizes [(expected gain wrt $\left.p\right)$ - $\left.\left\|q-q^{\prime}\right\|^{2}\right]$
- $p^{\prime}$ maximizes [(expected gain wrt q) - \|p-p $\left.\|^{2}\right]$


Note: quadratic + linear = quadratic.

## Instead we will use...

- $f(p, q)=\left(p^{\prime}, q^{\prime}\right)$ such that:
- $q^{\prime}$ maximizes [(expected gain wrt $\left.p\right)$ - $\left.\left\|q-q^{\prime}\right\|^{2}\right]$
- $\mathrm{p}^{\prime}$ maximizes $\left[(\right.$ expected gain wrt $\left.q)-\left\|p-p^{\prime}\right\|^{2}\right]$

p p'
Note: quadratic + linear = quadratic.


## Instead we will use...

- $f(p, q)=\left(p^{\prime}, q^{\prime}\right)$ such that:
- $q^{\prime}$ maximizes [(expected gain wrt $\left.p\right)$ - $\left.\left\|q-q^{\prime}\right\|^{2}\right]$
- $p^{\prime}$ maximizes $\left[(\right.$ expected gain wrt $\left.q)-\left\|p-p^{\prime}\right\|^{2}\right]$
- $f$ is well-defined and continuous since quadratic has unique maximum and small change to $p, q$ only moves this a little.
- Also fixed point = NE. (even if tiny incentive to move, will move little bit).
- So, that's it!


[^0]:    ## Proof sketch, contd

    - Consider repeatedly playing game $G$ against some opponent. [think of you as row player]
    - Use exponential weighting alg from Nov 16 lecture to do nearly as well as best fixed row in hindsight.
    - Alg gets $\geq(1-\varepsilon / 2)$ OPT - $c * \log (n) / \varepsilon$
    $>(1-\varepsilon)$ OPT [if play long enough]
    - OPT $\geq \mathrm{V}_{c}$ [Best against opponent's empirical distribution]
    - Alg $\leq V_{R}$ [Each time, opponent knows your randomized strategy]
    - Contradicts assumption.
    - Contradicts assumption.

