15-451 Algorithms, Fall 2007

Homework \# 7
due: Thursday December 6, 2007
Please hand in each problem on a separate sheet and put your name and recitation (time or letter) at the top of each sheet. You will be handing each problem into a separate box, and we will then give homeworks back in recitation. Remember: written homeworks are to be done individually. Group work is only for the oral-presentation assignments.

Problems:

(26 pts) 1. [NP-completeness and approximation algorithms]
Let \mathcal{A} be the set of pairs (G, k) such that G is a graph with a vertex cover of size k or less. Let \mathcal{C} be the set of pairs (G, k) such that G has a vertex cover of size $k / 2$ or less. Notice that if $(G, k) \in \mathcal{C}$ then clearly $(G, k) \in \mathcal{A}$ also, so $\mathcal{A} \supseteq \mathcal{C}$. Determining whether a given input (G, k) belongs to \mathcal{A} is NP-Complete (this is the Vertex-Cover problem), and also determining whether a given input (G, k) belongs to \mathcal{C} is NP-complete (since this is really the same problem). Describe a set \mathcal{B} such that $\mathcal{A} \supseteq \mathcal{B} \supseteq \mathcal{C}$ but membership in \mathcal{B} can be decided in polynomial time. So this is just like the situation on Mini 5. Hint: think approximation algorithms.
(26 pts) 2. [Random-access ${ }^{1}$ long division].
Give a polynomial time algorithm to find the N th digit of the fraction A / B, where A, B and N are all given in binary.

Input: integers (A, B, N) in binary notation, where $A<B$.
Let $0 . d_{1} d_{2} d_{3} \cdots$ be the decimal expansion of the fraction $\frac{A}{B}$.
Output: d_{N}.
Note: the key thing here is that your algorithm's running time should be polynomial in $\log N$ (and $\log A$ and $\log B$). The standard way of doing long division would instead be polynomial in N. In particular, the standard long division would look like this:

$$
\begin{aligned}
& \text { for } i=1 \text { to } N \text { do: } \\
& \quad d_{i}=10 A \operatorname{div} B ; \\
& A=10 A \bmod B ;
\end{aligned}
$$

where "div" is integer division.
(48 pts) 3. [Review] Last year's final is attached to this assignment. We recommend that you complete the entire final for practice. For this homework, for 48 points, choose 4 problems out of $\{1,2,6,7,8,9\}$ and turn in solutions to them. For the purpose of this assignment, they will be graded at 12 points apiece. (Problems 3 and 5 (and portions of 4) have already appeared in previous minis, tests, or recitation notes).

[^0]
[^0]: 1 "Random access" as in random-access memory, i.e., as opposed to sequential-access. Not "random" as in probability.

