
•1

15-441: Computer Networking

Lecture 23: HTTP

Lecture 24: 11-29-01 2

Overview

• HTTP Basics

• HTTP Fixes

• Web Caches

• Content Distribution Networks

Lecture 24: 11-29-01 3

HTTP Basics

• HTTP layered over bidirectional byte stream
• Almost always TCP

• Interaction
• Client sends request to server, followed by response

from server to client
• Requests/responses are encoded in text

• How to mark end of message?
• Size of message à Content-Length

• Must know size of transfer in advance
• Delimiter à MIME style Content-Type

• Server must “byte-stuff”

• Close connection
• Only server can do this

Lecture 24: 11-29-01 4

HTTP Request

• Request line
• Method

• GET – return URI
• HEAD – return headers only of GET response
• POST – send data to the server (forms, etc.)

• URI
• E.g. http://www.seshan.org/index.html with a proxy
• E.g. /index.html if no proxy

• HTTP version

Lecture 24: 11-29-01 5

HTTP Request

• Request headers
• Authorization – authentication info
• Acceptable document types/encodings
• From – user email
• If-Modified-Since
• Referrer – what caused this page to be

requested
• User-Agent – client software

• Blank-line
• Body

Lecture 24: 11-29-01 6

HTTP Request Example

GET / HTTP/1.1
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5;

Windows NT 5.0)
Host: www.seshan.org
Connection: Keep-Alive

•2

Lecture 24: 11-29-01 7

HTTP Response

• Status-line
• HTTP version
• 3 digit response code

• 1XX – informational
• 2XX – success
• 3XX – redirection
• 4XX – client error
• 5XX – server error

• Reason phrase

Lecture 24: 11-29-01 8

HTTP Response

• Headers
• Location – for redirection
• Server – server software
• WWW-Authenticate – request for authentication
• Allow – list of methods supported (get, head, etc)
• Content-Encoding – E.g x-gzip
• Content-Length
• Content-Type
• Expires
• Last-Modified

• Blank-line
• Body

Lecture 24: 11-29-01 9

HTTP Response Example

HTTP/1.1 200 OK
Date: Tue, 27 Mar 2001 03:49:38 GMT
Server: Apache/1.3.14 (Unix) (Red-Hat/Linux) mod_ssl/2.7.1

OpenSSL/0.9.5a DAV/1.0.2 PHP/4.0.1pl2 mod_perl/1.24
Last-Modified: Mon, 29 Jan 2001 17:54:18 GMT
ETag: "7a11f-10ed-3a75ae4a"
Accept-Ranges: bytes
Content-Length: 4333
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html
…..

Lecture 24: 11-29-01 10

Typical Workload

• Multiple (typically small) objects per page
• Request sizes

• In one measurement paper àmedian 1946 bytes,
mean 13767 bytes

• Why such a difference? Heavy-tailed distribution
• Pareto – p(x) = akax-(a+1)

• File sizes
• Why different than request sizes?
• Also heavy-tailed

• Pareto distribution for tail
• Lognormal for body of distribution

Lecture 24: 11-29-01 11

Typical Workload

• Popularity
• Zipf distribution (P = kr-1)
• Surprisingly common

• Embedded references
• Number of embedded objects = pareto

• Temporal locality
• Modeled as distance into push-down stack
• Lognormal distribution of stack distances

• Request interarrival
• Bursty request patterns

Lecture 24: 11-29-01 12

HTTP Caching

• Clients often cache documents
• Challenge: update of documents
• If-Modified-Since requests to check

• HTTP 0.9/1.0 used just date
• HTTP 1.1 has file signature as well

• When/how often should the original be checked
for changes?
• Check every time?
• Check each session? Day? Etc?
• Use Expires header

• If no Expires, often use Last-Modified as estimate

•3

Lecture 24: 11-29-01 13

Example Cache Check Request

GET / HTTP/1.1
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
If-Modified-Since: Mon, 29 Jan 2001 17:54:18 GMT
If-None-Match: "7a11f-10ed-3a75ae4a"
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5;

Windows NT 5.0)
Host: www.seshan.org
Connection: Keep-Alive

Lecture 24: 11-29-01 14

Example Cache Check Response

HTTP/1.1 304 Not Modified
Date: Tue, 27 Mar 2001 03:50:51 GMT
Server: Apache/1.3.14 (Unix) (Red-

Hat/Linux) mod_ssl/2.7.1 OpenSSL/0.9.5a
DAV/1.0.2 PHP/4.0.1pl2 mod_perl/1.24

Connection: Keep-Alive
Keep-Alive: timeout=15, max=100
ETag: "7a11f-10ed-3a75ae4a"

Lecture 24: 11-29-01 15

HTTP 0.9/1.0

• One request/response per TCP connection
• Simple to implement

• Disadvantages
• Multiple connection setups à three-way

handshake each time
• Several extra round trips added to transfer

• Multiple slow starts

Lecture 24: 11-29-01 16

Single Transfer Example

Client Server
SYN

SYN

SYN

SYN

ACK

ACK

ACK

ACK

ACK

DAT

DAT

DAT

DAT

FIN

ACK

0 RTT

1 RTT

2 RTT

3 RTT

4 RTT

Server reads from disk

FIN

Server reads from disk

Client opens TCP connection

Client sends HTTP request for HTML

Client parses HTML
Client opens TCP connection

Client sends HTTP request for image

Image begins to arrive

Lecture 24: 11-29-01 17

More Problems

• Short transfers are hard on TCP
• Stuck in slow start
• Loss recovery is poor when windows are small

• Lots of extra connections
• Increases server state/processing

• Server also forced to keep TIME_WAIT
connection state
• Why must server keep these?
• Tends to be an order of magnitude greater than

of active connections, why?
Lecture 24: 11-29-01 18

Overview

• HTTP Basics

• HTTP Fixes

• Web Caches

• Content Distribution Networks

•4

Lecture 24: 11-29-01 19

Netscape Solution

• Use multiple concurrent connections to
improve response time
• Different parts of Web page arrive

independently
• Can grab more of the network bandwidth than

other users

• Doesn’t necessarily improve response time
• TCP loss recovery ends up being timeout

dominated because windows are small

Lecture 24: 11-29-01 20

Persistent Connection Solution

• Multiplex multiple transfers onto one TCP
connection
• Serialize transfers à client makes next request only

after previous response
• How to demultiplex requests/responses

• Content-length and delimiter à same problems as
before

• Block-based transmission – send in multiple length
delimited blocks

• Store-and-forward – wait for entire response and then
use content-length

• PM95 solution – use existing methods and close
connection otherwise

Lecture 24: 11-29-01 21

Persistent Connection Example

Client Server

ACK

ACK

DAT

DAT

ACK

0 RTT

1 RTT

2 RTT

Server reads from disk
Client sends HTTP request for HTML

Client parses HTML
Client sends HTTP request for image

Image begins to arrive

DAT

Server reads from disk

DAT

Lecture 24: 11-29-01 22

Persistent Connection Solution

• Serialized requests do not improve interactive
response

• Pipelining requests
• Getall – request HTML document and all embeds

• Requires server to parse HTML files
• Doesn’t consider client cached documents

• Getlist – request a set of documents
• Implemented as a simple set of GETs

• Prefetching
• Must carefully balance impact of unused data transfers
• Not widely used due to poor hit rates

Lecture 24: 11-29-01 23

Persistent Connection
Performance

• Benefits greatest for small objects
• Up to 2x improvement in response time

• Server resource utilization reduce due to
fewer connection establishments and fewer
active connections

• TCP behavior improved
• Longer connections help adaptation to

available bandwidth
• Larger congestion window improves loss

recovery

Lecture 24: 11-29-01 24

Remaining Problems

• Application specific solution to transport protocol
problems

• Stall in transfer of one object prevents delivery of
others

• Serialized transmission
• Much of the useful information in first few bytes
• Can “packetize” transfer over TCP

• HTTP 1.1 recommends using range requests
• MUX protocol provides similar generic solution

• Solve the problem at the transport layer
• Fix TCP so it works well with multiple simultaneous

connections

•5

Lecture 24: 11-29-01 25

Overview

• HTTP Basics

• HTTP Fixes

• Web Caches

• Content Distribution Networks

Lecture 24: 11-29-01 26

Web Caching

• Why cache HTTP objects?
• Reduce client response time
• Reduce network bandwidth usage

• Wide area vs. local area use

• These two objectives are often in conflict
• May do exhaustive local search to avoid using wide

area bandwidth
• Prefetching uses extra bandwidth to reduce client

response time

Lecture 24: 11-29-01 27

Web Proxies

• Also used for security
• Proxy is only host that can access Internet
• Administrators makes sure that it is secure

• Performance
• How many clients can a single proxy handle?

• Caching
• Provides a centralized coordination point to share

information across clients
• How to index

• Early caches used file system to find file
• Metadata now kept in memory on most caches

Lecture 24: 11-29-01 28

Caching Proxies –
Sources for misses
• Capacity

• How large a cache is necessary or equivalent to infinite
• On disk vs. in memory à typically on disk

• Compulsory
• First time access to document
• Non-cacheable documents

• CGI-scripts
• Personalized documents (cookies, etc)
• Encrypted data (SSL)

• Consistency
• Document has been updated/expired before reuse

• Conflict à no such issue

Lecture 24: 11-29-01 29

Cache Hierarchies

• Use hierarchy to scale a proxy to more than
limited population
• Why?

• Larger population = higher hit rate
• Larger effective cache size

• Why is population for single proxy limited?
• Performance, administration, policy, etc.

• NLANR cache hierarchy
• Most popular
• 9 top level caches
• Internet Cache Protocol based (ICP)
• Squid/Harvest proxy

Lecture 24: 11-29-01 30

ICP

• Simple protocol to query another cache for
content

• Uses UDP – why?
• ICP message contents

• Type – query, hit, hit_obj, miss
• Other – identifier, URL, version, sender address (is this

needed?)
• Special message types used with UDP echo port

• Used to probe server or “dumb cache”

• Transfers between caches still done using HTTP

•6

Lecture 24: 11-29-01 31

Squid Cache ICP Use

• Upon query that is not in cache
• Sends ICP_Query to each peer (or ICP_Decho to echo

port of peer caches that do not speak ICP)
• May also send ICP_Secho to origin server’s echo port
• Sets time to short period (default 2 sec)

• Peer caches process queries and return either
ICP_Hit or ICP_Miss

• Proxy begins transfer upon reception of ICP_Hit,
ICP_Decho or ICP_Secho

• Upon timer expiration, proxy request object from
closest (RTT) parent proxy
• Would be better to direct to parent that is towards origin

server Lecture 24: 11-29-01 32

Squid

Client

Parent

Child Child Child

Web page
request

ICP
Query

ICP
Query

Lecture 24: 11-29-01 33

Squid

Client

Parent

Child Child Child
ICP
MISS

ICP
MISS

Lecture 24: 11-29-01 34

Squid

Client

Parent

Child Child Child

Web page
request

Lecture 24: 11-29-01 35

Squid

Client

Parent

Child Child Child

Web page
request

ICP
Query

ICP
Query

ICP
Query

Lecture 24: 11-29-01 36

Squid

Client

Parent

Child Child Child

Web page
request

ICP
MISS

ICP
HIT

ICP HIT

•7

Lecture 24: 11-29-01 37

Squid

Client

Parent

Child Child Child

Web page
request

Lecture 24: 11-29-01 38

ICP vs HTTP

• Why not just use HTTP to query other
caches?

• ICP is lightweight – positive and negative
• Makes it easy to process quickly
• Caches may process many more ICP requests

than HTTP requests
• HTTP has many functions that are not

supported by ICP
• ICP does not evolve with HTTP changes
• Adds extra RTT to any proxy-proxy transfer

Lecture 24: 11-29-01 39

Optimal Cache Mesh Behavior

• Minimize number of hops through mesh
• Each hop add significant latency

• ICP hops can cost a 2 sec timeout each!
• Strict hierarchies cost disk lookup, etc.

• Especially painful for misses

• Share across many users and scale to
many caches
• ICP does not scale to a large number of peers

• Cache and fetch data close to clients

Lecture 24: 11-29-01 40

Problems

• Over 50% of all HTTP objects are uncacheable –
why?

• Not easily solvable
• Dynamic data à stock prices, scores, web cams
• CGI scripts à results based on passed parameters

• Obvious fixes
• SSL à encrypted data is not cacheable

• Most web clients don’t handle mixed pages well àmany
generic objects transferred with SSL

• Cookies à results may be based on passed data
• Hit metering à owner wants to measure # of hits for

revenue, etc.
• What will be the end result?

Lecture 24: 11-29-01 41

Proxy Implementation Problems

• Aborted transfers
• Many proxies transfer entire document even though

client has stopped à eliminates saving of bandwidth
• Making objects cacheable

• Proxy’s apply heuristics à cookies don’t apply to some
objects, guesswork on expiration

• May not match client behavior/desires
• Client misconfiguration

• Many clients have either absurdly small caches or no
cache

• How much would hit rate drop if clients did the
same things as proxies

Lecture 24: 11-29-01 42

Questions – Population Size

• How does population size affect hit rate?
• Critical to understand usefulness of hierarchy or

placement of caches
• Issues: frequency of access vs. frequency of

change (ignore working set size à infinite cache)
• UW/Msoft measurement à hit rate rises quickly to

about 5000 people and very slowly beyond that
• Proxies/Hierarchies don’t make much sense for

populations > 5000
• Single proxies can easily handle such populations
• Hierarchies only make sense for policy/administrative

reasons

•8

Lecture 24: 11-29-01 43

Questions – Common Interests

• Do different communities have different interests?
• I.e. do CS and English majors access same pages? IBM and Pepsi

workers?

• Has some impact àUW departments have about 5%
higher hit rate than randomly chosen UW groups
• Many common interests remain

• Is this true in general? UW students have more in common
than IBM & Pepsi workers

• Some related observations
• Geographic caching – server traces have shown that there is

geographic locality to interest
• UW & MS hierarchy performance is bad – could be due to size or

interests?

Lecture 24: 11-29-01 44

Overview

• HTTP Basics

• HTTP Fixes

• Web Caches

• Content Distribution Networks

Lecture 24: 11-29-01 45

CDN

• Replicate content on many servers
• Challenges

• How to replicate content
• Where to replicate content
• How to find replicated content
• How to choose among know replicas
• How to direct clients towards replica

• Discussed in DNS/server selection lecture
• DNS, HTTP 304 response, anycast, etc.

• Akamai
Lecture 24: 11-29-01 46

How Akamai Works

• Clients fetch html document from primary server
• E.g. fetch index.html from cnn.com

• URLs for replicated content are replaced in html
• E.g. <imgsrc=“http://cnn.com/af/x.gif”> replaced with

• Client is forced to resolve aXYZ.g.akamaitech.net
hostname

Lecture 24: 11-29-01 47

How Akamai Works

• How is content replicated?
• Akamai only replicates static content
• Modified name contains original file
• Akamai server is asked for content

• First checks local cache
• If not in cache, requests file from primary server

and caches file

Lecture 24: 11-29-01 48

How Akamai Works

• Root server gives NS record for akamai.net
• Akamai.net name server returns NS record for

g.akamaitech.net
• Name server chosen to be in region of client’s name

server
• TTL is large

• G.akamaitech.net nameserver choses server in
region
• Should try to chose server that has file in cache - How

to choose?
• Uses aXYZ name and consistent hash
• TTL is small

•9

Lecture 24: 11-29-01 49

Consistent Hash

• “view” = subset of all hash buckets that are
visible

• Desired features
• Smoothness – little impact on hash bucket

contents when buckets are added/removed
• Spread – small set of hash buckets that may

hold an object regardless of views
• Load – across all views # of objects assigned to

hash bucket is small

Lecture 24: 11-29-01 50

Consistent Hash – Example

• Construction
• Assign each of C hash buckets to Klog(C) random

points on unit interval
• Map object to random position on unit interval
• Hash of object = closest bucket

• Monotone à addition of bucket does not cause
movement between existing buckets

• Spread & Load à small set of buckets that lie
near object

• Balance à no bucket is responsible for large
portion of unit interval

Lecture 24: 11-29-01 51

How Akamai Works

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 3

4

Akamai high-level
DNS server

Akamai low-level DNS
server

Closest Akamai server

11

6
7

8

9

10

Get
index.
html

Get /cnn.com/foo.jpg

12

Get foo.jpg

5

Lecture 24: 11-29-01 52

Akamai – Subsequent Requests

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 Akamai high-level
DNS server

Akamai low-level DNS
server

Closest Akamai server

7

8

9

10

Get
index.
html

Get
/cnn.com/foo.jpg

