
1

15-441 Computer Networking

Transport Layer

Lecture 14: 10-23-01 2

Functionality Split

• Network provides best-effort delivery
• End-systems implement many functions

• Reliability
• In-order delivery
• Demultiplexing
• Message boundaries
• Connection abstraction
• Congestion control
• …

Lecture 14: 10-23-01 3

Overview

• Transport introduction

• Error recovery

• TCP flow control

• TCP connection setup/data transfer

• TCP reliability

Lecture 14: 10-23-01 4

Transport Protocols

• UDP provides just integrity and demux
• TCP adds…

• Connection-oriented
• Reliable
• Ordered
• Point-to-point
• Byte-stream
• Full duplex
• Flow and congestion controlled

Lecture 14: 10-23-01 5

UDP: User Datagram Protocol [RFC 768]

• “No frills,” “bare bones”
Internet transport protocol

• “Best effort” service, UDP
segments may be:
• Lost
• Delivered out of order to

app
• Connectionless:

• No handshaking between
UDP sender, receiver

• Each UDP segment
handled independently of
others

Why is there a UDP?
• No connection

establishment (which
can add delay)

• Simple: no connection
state at sender, receiver

• Small segment header
• No congestion control:

UDP can blast away as
fast as desired

Lecture 14: 10-23-01 6

application
transport
network

M
P2

application
transport
network

Multiplexing & Demultiplexing

• Recall: segment - unit
of data exchanged
between transport layer
entities
• Aka TPDU: transport

protocol data unit Receiver

Ht
Hn

Demultiplexing: delivering
received segments to
correct app layer processes

segment

segment M

application
transport
network

P1
M

M M
P3 P4

segment
header

application-layer
data

2

Lecture 14: 10-23-01 7

Multiplexing & Demultiplexing

• Based on sender, receiver port
numbers, IP addresses
• Source, dest port #s in each

segment
• Recall: well-known port

numbers for specific
applications

Gathering data from multiple
app processes, enveloping
data with header (later used
for demultiplexing)

Source port # Dest port #

32 bits

Application
data

(message)

Other header fields

TCP/UDP segment format

Multiplexing:

Lecture 14: 10-23-01 8

UDP, cont.

• Often used for streaming
multimedia apps
• Loss tolerant
• Rate sensitive

• Other UDP uses
(why?):
• DNS
• SNMP

• Reliable transfer over UDP:
add reliability at application
layer
• Application-specific error

recover!

Source port # Dest port #

32 bits

Application
data

(message)

UDP segment format

Length Checksum
Length, in

bytes of UDP
segment,
including
header

Lecture 14: 10-23-01 9

UDP Checksum

Sender:
• Treat segment contents

as sequence of 16-bit
integers

• Checksum: addition (1’s
complement sum) of
segment contents

• Sender puts checksum
value into UDP
checksum field

Receiver:
• Compute checksum of

received segment
• Check if computed checksum

equals checksum field value:
• NO - error detected
• YES - no error detected.

But maybe errors
nonethless?

Goal: detect “errors” (e.g., flipped bits) in
transmitted segment

Lecture 14: 10-23-01 10

High-Level TCP Characteristics

• Protocol implemented entirely at the ends
• Fate sharing

• Protocol has evolved over time and will
continue to do so
• Nearly impossible to change the header
• Uses options to add information to the header
• Change processing at endpoints
• Backward compatibility is what makes it TCP

Lecture 14: 10-23-01 11

TCP Header

Source port Destination port

Sequence number

Acknowledgement

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
FIN
RESET
PUSH
URG
ACK

Lecture 14: 10-23-01 12

Evolution of TCP

1975 1980 1985 1990

1982
TCP & IP

RFC 793 & 791

1974
TCP described by

Vint Cerf and Bob Kahn
In IEEE Trans Comm

1983
BSD Unix 4.2

supports TCP/IP

1984
Nagel’s algorithm
to reduce overhead
of small packets;

predicts congestion
collapse

1987
Karn’s algorithm
to better estimate

round-trip time

1986
Congestion

collapse
observed

1988
Van Jacobson’s

algorithms
congestion avoidance
and congestion control
(most implemented in

4.3BSD Tahoe)

1990
4.3BSD Reno
fast retransmit
delayed ACK’s

1975
Three-way handshake

Raymond Tomlinson
In SIGCOMM 75

3

Lecture 14: 10-23-01 13

TCP Through the 1990s

1993 1994 1996

1994
ECN

(Floyd)
Explicit

Congestion
Notification

1993
TCP Vegas

(Brakmo et al)
real congestion

avoidance

1994
T/TCP

(Braden)
Transaction

TCP

1996
SACK TCP
(Floyd et al)

Selective
Acknowledgement

1996
Hoe

Improving TCP
startup

1996
FACK TCP

(Mathis et al)
extension to SACK

Lecture 14: 10-23-01 14

Overview

• Transport introduction

• Error recovery

• TCP flow control

• TCP connection setup/data transfer

• TCP reliability

Lecture 14: 10-23-01 15

Transport vs. Link Layers

• Logical link vs. physical link
• Must establish connection

• Variable RTT
• May vary within a connection

• Reordering
• How long can packets live ? max segment lifetime

• Can’t expect endpoints to exactly match link
• Buffer space availability

• Transmission rate
• Don’t directly know transmission rate

Lecture 14: 10-23-01 16

Error Recovery

• Two forms of error recovery
• Forward Error Correction (FEC)
• Automatic Repeat Request (ARQ)

• FEC
• Use error correcting codes to repair losses

• ARQ
• Receiver sends acknowledgement (ACK) when

it receives packet
• Sender waits for ACK and timeouts if it does

not arrive within some time period

Lecture 14: 10-23-01 17

Stop and Wait

Time

Packet

ACK

T
im

eo
ut

• Simplest ARQ
protocol

• Send a packet,
stop and wait until
acknowledgement
arrives

Sender Receiver

Lecture 14: 10-23-01 18

Recovering from Error

Packet

AC
K

T
im

eo
ut

Packet

ACK

T
im

eo
ut

Packet

T
im

eo
ut

Packet

ACK

T
im

eo
ut

Time

Packet

ACK

T
im

eo
ut

Packet

ACK

T
im

eo
ut

ACK lost Packet lost Early timeout

4

Lecture 14: 10-23-01 19

• How to recognize a duplicate
• Performance

• Can only send one packet per round trip

Problems with Stop and Wait

Lecture 14: 10-23-01 20

How to Recognize Resends?

• Use sequence numbers
• both packets and acks

• Sequence # in packet is
finite -- how big should it
be?
• For stop and wait?

• One bit – won’t send seq
#1 until received ACK for
seq #0

Pkt 0

ACK 0

Pkt 0

ACK 1

Pkt 1ACK 0

Lecture 14: 10-23-01 21

How to Keep the Pipe Full?

• Send multiple packets without
waiting for first to be acked
• Number of pkts in flight = window

• How large a window is needed
• Round trip delay * bandwidth =

capacity of pipe
• Reliable, unordered delivery

• Several parallel stop & waits
• Send new packet after each ack
• Sender keeps list of unack’ed

packets; resends after timeout
• Receiver same as stop&wait

Lecture 14: 10-23-01 22

Sliding Window

• Reliable, ordered delivery
• Receiver has to hold onto a packet until all

prior packets have arrived
• Sender must prevent buffer overflow at

receiver
• Circular buffer at sender and receiver

• Packets in transit ? buffer size
• Advance when sender and receiver agree

packets at beginning have been received

Lecture 14: 10-23-01 23

ReceiverReceiverSenderSender

Sender/Receiver State

… …

Sent & Acked Sent Not Acked

OK to Send Not Usable

… …

Max acceptable

Receiver window

Max ACK received Next seqnum

Received & Acked Acceptable Packet

Not Usable

Sender window

Next expected

Lecture 14: 10-23-01 24

Window Sliding – Common Case

• On reception of new ACK (i.e. ACK for something
that was not acked earlier)
• Increase sequence of max ACK received
• Send next packet

• On reception of new in-order data packet (next
expected)
• Hand packet to application
• Send cumulative ACK – acknowledges reception of all

packets up to sequence number
• Increase sequence of max acceptable packet

5

Lecture 14: 10-23-01 25

Loss Recovery

• On reception of out-of-order packet
• Send nothing (wait for source to timeout)
• Cumulative ACK (helps source identify loss)

• Timeout (Go-Back-N recovery)
• Set timer upon transmission of packet
• Retransmit all unacknowledged packets

• Performance during loss recovery
• No longer have an entire window in transit
• Can have much more clever loss recovery

Lecture 14: 10-23-01 26

Go-Back-N in Action

Lecture 14: 10-23-01 27

Selective Repeat

• Receiver individually acknowledges all
correctly received pkts
• Buffers packets, as needed, for eventual in-order

delivery to upper layer

• Sender only resends packets for which ACK
not received
• Sender timer for each unACKed packet

• Sender window
• N consecutive seq #’s
• Again limits seq #s of sent, unACKed packets

Lecture 14: 10-23-01 28

Selective Repeat: Sender, Receiver
Windows

Lecture 14: 10-23-01 29

Sequence Numbers

• How large do sequence numbers need to be?
• Must be able to detect wrap-around
• Depends on sender/receiver window size

• E.g.
• Max seq = 7, send win=recv win=7
• If pkts 0..6 are sent succesfully and all acks lost

• Receiver expects 7,0..5, sender retransmits old 0..6!!!

• Max sequence must be ? send window + recv
window

Lecture 14: 10-23-01 30

Overview

• Transport introduction

• Error recovery

• TCP flow control

• TCP connection setup/data transfer

• TCP reliability

6

Lecture 14: 10-23-01 31

Sequence Number Space

• Each byte in byte stream is numbered.
• 32 bit value
• Wraps around
• Initial values selected at start up time

• TCP breaks up the byte stream in packets.
• Packet size is limited to the Maximum Segment Size

• Each packet has a sequence number.
• Indicates where it fits in the byte stream

packet 8 packet 9 packet 10

13450 14950 16050 17550

Lecture 14: 10-23-01 32

TCP Flow Control

• TCP is a sliding window protocol
• For window size n, can send up to n bytes

without receiving an acknowledgement
• When the data is acknowledged then the

window slides forward
• Each packet advertises a window size

• Indicates number of bytes the receiver has
space for

• Original TCP always sent entire window
• Congestion control now limits this

Lecture 14: 10-23-01 33

Window Flow Control: Send Side

Sent but not acked Not yet sent

window

Next to be sent

Sent and acked

Lecture 14: 10-23-01 34

acknowledged sent to be sentoutside window

Source PortSource Port Dest. PortDest. Port

Sequence NumberSequence Number

AcknowledgmentAcknowledgment

HL/FlagsHL/Flags WindowWindow

D. ChecksumD. Checksum Urgent PointerUrgent Pointer

Options..Options..

Source PortSource Port Dest. PortDest. Port

Sequence NumberSequence Number

AcknowledgmentAcknowledgment

HL/FlagsHL/Flags WindowWindow

D. ChecksumD. Checksum Urgent PointerUrgent Pointer

Options..Options..

Packet Sent Packet Received

App write

Window Flow Control: Send Side

Lecture 14: 10-23-01 35

Acked but not
delivered to user

Not yet
acked

Receive buffer

window

Window Flow Control: Receive Side

Lecture 14: 10-23-01 36

TCP Persist

• What happens if window is 0?
• Receiver updates window when application

reads data
• What if this update is lost?

• TCP Persist state
• Sender periodically sends 1 byte packets
• Receiver responds with ACK even if it can’t

store the packet

7

Lecture 14: 10-23-01 37

Performance Considerations

• The window size can be controlled by receiving
application

• Can change the socket buffer size from a default (e.g. 16Kbytes)
to a maximum value (e.g. 64 Kbytes)

• The window size field in the TCP header limits the window
that the receiver can advertise

• 16 bits ? 64 KBytes
• 10 msec RTT ? 51 Mbit/second
• 100 msec RTT ? 5 Mbit/second

Lecture 14: 10-23-01 38

Overview

• Transport introduction

• Error recovery

• TCP flow control

• TCP connection setup/data transfer

• TCP reliability

Lecture 14: 10-23-01 39

Connection Establishment

• A and B must agree on initial sequence number
selection
• Use 3-way handshake

A B

SYN + Seq A
SYN+ACK-A + Seq B

ACK-B

Lecture 14: 10-23-01 40

Sequence Number Selection

• Why not simply chose 0?
• Must avoid overlap with earlier incarnation

Lecture 14: 10-23-01 41

Connection Setup

CLOSED

SYN
SENT

SYN
RCVD

ESTAB

LISTEN

active OPEN
create TCB
Snd SYN

create TCB

passive OPEN

delete TCB
CLOSE

delete TCB
CLOSE

snd SYN
SEND

snd SYN ACK
rcvSYN

Send FIN
CLOSE

rcvACK of SYN
Snd ACK

RcvSYN, ACK

rcvSYN
snd ACK

Lecture 14: 10-23-01 42

Connection Tear-down

• Normal termination
• Allow unilateral close

• TCP must continue to receive data even
after closing

• Cannot close connection immediately
• What if a new connection restarts and uses

same sequence number?

8

Lecture 14: 10-23-01 43

Tear-down Packet Exchange

Sender Receiver
FIN

FIN-ACK

FIN

FIN-ACK

Data write

Data ack

Lecture 14: 10-23-01 44

Connection Tear-down

CLOSING

CLOSE
WAIT

FIN
WAIT-1

ESTAB

TIME WAIT

snd FIN
CLOSE

send FIN
CLOSE

rcv ACK of FIN

LAST-ACK

CLOSED

FIN WAIT-2

snd ACK
rcv FIN

delete TCB
Timeout=2msl

send FIN
CLOSE

send ACK
rcv FIN

snd ACK
rcv FIN

rcv ACK of FIN

snd ACK
rcv FIN+ACK

Lecture 14: 10-23-01 45

Detecting Half-open Connections

1. (CRASH)
2. CLOSED
3. SYN-SENT ? <SEQ=400><CTL=SYN>
4. (!!) ? <SEQ=300><ACK=100><CTL=ACK>
5. SYN-SENT ? <SEQ=100><CTL=RST>
6. SYN-SENT
7. SYN-SENT ? <SEQ=400><CTL=SYN>

(send 300, receive 100)
ESTABLISHED

? (??)
? ESTABLISHED
? (Abort!!)

CLOSED
?

TCP BTCP A

Lecture 14: 10-23-01 46

Observed TCP Problems

• Too many small packets
• Silly window syndrome
• Nagel’s algorithm

• Initial sequence number selection
• Amount of state maintained

Lecture 14: 10-23-01 47

Silly Window Syndrome

• Problem: (Clark, 1982)
• If receiver advertises small increases in the

receive window then the sender may waste
time sending lots of small packets

• Solution
• Receiver must not advertise small window

increases
• Increase window by min(MSS,RecvBuffer/2)

Lecture 14: 10-23-01 48

Nagel’s Algorithm

• Small packet problem:
• Don’t want to send a 41 byte packet for each

keystroke
• How long to wait for more data?

• Solution:
• Allow only one outstanding small (not full sized)

segment that has not yet been acknowledged

9

Lecture 14: 10-23-01 49

Why is Selecting ISN Important?

• Suppose machine X selects ISN based on
predictable sequence

• Fred has .rhosts to allow login to X from Y
• Evil Ed attacks

• Disables host Y – denial of service attack
• Make a bunch of connections to host X
• Determine ISN pattern a guess next ISN
• Fake pkt1: [<src Y><dst X>, guessed ISN]
• Fake pkt2: desired command

Lecture 14: 10-23-01 50

Time Wait Issues

• Web servers not clients close connection
first
• Established ? Fin-Waits ? Time-Wait ?

Closed
• Why would this be a problem?

• Time-Wait state lasts for 2 * MSL
• MSL should be 120 seconds (is often 60s)
• Servers often have order of magnitude more

connections in Time-Wait

Lecture 14: 10-23-01 51

Overview

• Transport introduction

• Error recovery

• TCP flow control

• TCP connection setup/data transfer

• TCP reliability

Lecture 14: 10-23-01 52

Reliability Challenges

• Like reliability on links
• Similar techniques (timeouts, acknowledgements, etc.)

• New challenges
• Congestion related losses
• Variable packet delays

• What should the timeout be?

• Reordering of packets
• Ensure sequences numbers are not reused
• How long do packets live?

• MSL = 120 seconds based on IP behavior

Lecture 14: 10-23-01 53

TCP = Go-Back-N Variant

• Receiver can only return a single “ack” sequence number
to the sender.
• Acknowledges all bytes with a lower sequence number
• Starting point for retransmission

• But: sender only retransmits a single packet.
• Reason???

• Error control is based on byte sequences, not packets.
• Retransmitted packet can be different from the original lost packet

– why?
• Packets can overlap – why?

• Sliding window with cumulative acks
• Ack field contains last in-order packet received
• Duplicate acks sent when out-of-order packet received

Lecture 14: 10-23-01 54

Round-trip Time Estimation

• Wait at least one RTT before retransmitting
• Importance of accurate RTT estimators:

• Low RTT ? unneeded retransmissions
• High RTT ? poor throughput

• RTT estimator must adapt to change in RTT
• But not too fast, or too slow!

• Spurious timeouts
• “Conservation of packets” principle – more than

a window worth of packets in flight

10

Lecture 14: 10-23-01 55

Initial Round-trip Estimator

• Round trip times exponentially averaged:
• New RTT = ? (old RTT) + (1 - ?) (new sample)
• Recommended value for ? : 0.8 - 0.9

• 0.875 for most TCP’s

• Retransmit timer set to ? RTT, where ? = 2
• Every time timer expires, RTO exponentially backed-off
• Like Ethernet

• Not good at preventing spurious timeouts

Lecture 14: 10-23-01 56

Jacobson’s Retransmission
Timeout

• Key observation:
• At high loads round trip variance is high

• Solution:
• Base RTO on RTT and standard deviation or

RRTT
• rttvar = ? * dev + (1- ?)rttvar

• Dev = linear deviation
• Inappropriately named – actually smoothed linear

deviation

Lecture 14: 10-23-01 57

Retransmission Ambiguity

A B

ACK

Sample
RTT

Original transmission

retransmission

RTO

A B
Original transmission

retransmission
Sample
RTT

ACKRTO
X

Lecture 14: 10-23-01 58

Karn’s RTT Estimator

• Accounts for retransmission ambiguity
• If a segment has been retransmitted:

• Don’t count RTT sample on ACKs for this
segment

• Keep backed off time-out for next packet
• Reuse RTT estimate only after one successful

transmission

Lecture 14: 10-23-01 59

Timestamp Extension

• Used to improve timeout mechanism by
more accurate measurement of RTT

• When sending a packet, insert current
timestamp into option
• 4 bytes for seconds, 4 bytes for microseconds

• Receiver echoes timestamp in ACK
• Actually will echo whatever is in timestamp

• Removes retransmission ambiguity
• Can get RTT sample on any packet

Lecture 14: 10-23-01 60

Timer Granularity

• Many TCP implementations set RTO in
multiples of 200,500,1000ms

• Why?
• Avoid spurious timeouts – RTTs can vary

quickly due to cross traffic
• Make timers interrupts efficient

• What happens for the first couple of
packets?
• Pick a very conservative value (seconds)

11

Lecture 14: 10-23-01 61

Delayed ACKS

• Problem:
• In request/response programs, you send

separate ACK and Data packets for each
transaction

• Solution:
• Don’t ACK data immediately
• Wait 200ms (must be less than 500ms – why?)
• Must ACK every other packet
• Must not delay duplicate ACKs

Lecture 14: 10-23-01 62

TCP ACK Generation [RFC 1122, RFC 2581]

Event

In-order segment arrival,
No gaps,
Everything else already ACKed

In-order segment arrival,
No gaps,
One delayed ACK pending

Out-of-order segment arrival
Higher-than-expect seq. #
Gap detected

Arrival of segment that
Partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single
cumulative ACK

Send duplicate ACK, indicating seq. #
of next expected byte

Immediate ACK if segment starts
at lower end of gap

