“ 15-441 Computer Networking

Intra-Domain Routing, Part ||

OSPF (Open Shortest Path First)

A Link-State Routing Algorithm ‘\.

Dijkstra’s algorithm Notation:
* nettopology, link costs known * ¢(i,): link cost from node i to .
to all nodes cost infinite if not direct
» accomplished via “link state neighbors
broadcast”

e D(v): current value of cost of

+ all nodes have same info path from source to dest. V

« computes least cost paths from
one node (‘source”) to all other
nodes

« gives routing table for that
node * N: set of nodes whose least
cost path definitively known

* p(v): predecessor node along
path from source to v, that is
nextv

« iterative: after k iterations, know
least cost path to k dest’s

Lecture #10: 9-27-01 2

Dijsktra’s Algorithm ‘\.

1 Initialization:

2 N={A}

3 forall nodes v
4 ifvadjacentto A
5 then D(v) = c(A,v)
6 else D(v) = infinity
7

g

Loop
9 find w notin N such that D(w) is @ minimum
10 addwtoN

11 update D(v) for all v adjacent to w and not in N:
12 D(v) = min(D(v), D(w) + c(w,v))

13 /*new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v */
15 until all nodes in N

Lecture #10: 9 -27-01 3

Dijkstra’s algorithm: example ‘\.

Step statN_ D(B),p(B) D(C).p(C) D(D),p(D) D(E).p(E) D(F).p(F)
A

-0 2A 5A TA __ infinty _ infinity

—»1 AD 7A 7D 2.0 infinity

—»2 ADE 2,A 3E 4E

—»3 _ ADEB 3E 4.E

—»4 __ADEBC 4,E
5 ADEBCF

Lecture #10: 9-27-01 4

Link State Characteristics

» With consistent LSDBs?*, all
nodes compute consistent
loop-free paths

 Limited by Dijkstra
computation overhead, space
requirements

» Can still have transient loops

Packet from C>A
* Lump Sum Death Benefit? may loop around BDC
Leisure Studies Data Bank? if B knows about failure

Latvijas spriedumu datu baze? and C & D do not

>> Link State Data Base

Lecture #10: 9 -27-01 5

Dijkstra’s algorithm, discussion “-

Algorithm complexity: n nodes

« each iteration: need to check all nodes, w, notin N

¢ n*(n+1)/2 comparisons: O(n**2)

« more efficient implementations possible: O(n log n) (or better)
Oscillations possible:

* e.g., link cost = amount of carried traffic

amount of flow destined for node A from external source

- 1
e
initi ... recompute .. recompute
initially np .. recompute D
routing

Lecture #10: 9-27-01 6

o
Importance of Cost Metric t\.

* Choice of link cost defines traffic load
* Low cost = high probability link belongs to SPT and will
attract traffic, which increases cost
» Main problem: convergence
« Avoid oscillations
« Achieve good network utilization

Lecture #10: 9 -27-01 7

L
Metric Choices t\.

« Static metrics (e.g., hop count)
* Good only if links are homogeneous
« Definitely not the case in the Internet
« Static metrics do not take into account
* Link delay
¢ Link capacity
« Link load (hard to measure)

Lecture #10: 9-27-01 8

Original ARPANET Metric o™

» Cost proportional to queue size
 Instantaneous queue length as delay estimator

e Problems

Did not take into account link speed

Poor indicator of expected delay due to rapid
fluctuations

Delay may be longer even if queue size is small due to
contention for other resources

Lecture #10: 9 -27-01 9

Metric 2 - Delay Shortest Path Tree ‘\.

* Delay = (depart time - arrival time) + transmission
time + link propagation delay
« (Depart time - arrival time) captures queuing
* Transmission time captures link capacity
« Link propagation delay captures the physical length of
the link
» Measurements averaged over 10 seconds

» Update sent if difference > threshold, or every 50
seconds

Lecture #10: 9-27-01 10

Performance of Metric 2 i\.

» Works well for light to moderate load
« Static values dominate

» Oscillates under heavy load
¢ Queuing dominates

» Reason: there is no correlation between original
and new values of delay after re-routing!

Lecture #10: 9 -27-01 11

Specific Problems “

« Range is too wide

* 9.6 Kbps highly loaded link can appear 127 times
costlier than 56 Kbps lightly loaded link

» Can make a 127-hop path look better than 1-hop
« No limit to change between reports
« All nodes calculate routes simultaneously

» Triggered by link update

Lecture #10: 9-27-01 12

o
Consequences t\.

» Low network utilization (50% in example)

» Congestion can spread elsewhere

» Routes could oscillate between short and long
paths

» Large swings lead to frequent route updates
* More messages
« Frequent SPT re-calculation

Lecture #10: 9 -27-01 13

Revised Link Metric ‘\,

» Better metric: packet delay = f(queueing,
transmission, propagation)

* When lightly loaded, transmission and
propagation are good predictors

* When heavily loaded queueing delay is dominant
and so transmission and propagation are bad
predictors

Lecture #10: 9-27-01 14

Normalized Metric ‘\,

 If a loaded link looks very bad then everyone will
move off of it

* Want some to stay on to load balance and avoid
oscillations

« ltis still an OK path for some

¢ Hop normalized metric diverts routes that have an
alternate that is not too much longer

« Also limited relative values and range of values
advertised - gradual change

Lecture #10: 9 -27-01 15

OSPF (Open Shortest Path First) “

« “open”: publicly available
* Uses Link State algorithm
* LS packet dissemination
« Topology map at each node
» Route computation using Dijkstra’s algorithm

* OSPF advertisement carries one entry per neighbor

router
« Advertisements disseminated to entire AS (via flooding)

Lecture #10: 9-27-01 16

OSPF “advanced” features (not in RIP) i\

« Security: all OSPF messages authenticated (to prevent
malicious intrusion); TCP connections used

* Multiple same-cost paths allowed (only one path in RIP)

« For each link, multiple cost metrics for different TOS

(e.g., satellite link cost set “low” for best effort; high for
real time)

* Integrated uni- and multicast support:

* Multicast OSPF (MOSPF) uses same topology data base as
OSPF

* Hierarchical OSPF in large domains.

Lecture #10: 9 -27-01 17

Hierarchical OSPF “-

Lecture #10: 9-27-01 18

L
Hierarchical OSPF t\.

* Two-level hierarchy: local area, backbone.
< Link-state advertisements only in area

< each nodes has detailed area topology; only know
direction (shortest path) to nets in other areas.

* Area border routers: “summarize” distances to nets in
own area, advertise to other Area Border routers.

« Backbone routers: run OSPF; routing limited to
backbone.

« Boundary routers: connect to other ASs.

Lecture #10: 9 -27-01 19

B
IGRP (Interior Gateway Routing Protocol) ‘I‘-

* CISCO proprietary; successor of RIP (mid 80s)
- Distance Vector, like RIP

» several cost metrics (delay, bandwidth, reliability, load etc)
« uses TCP to exchange routing updates

« Loop-free routing via Distributed Updating Alg. (DUAL)
based on diffused computation

Lecture #10: 9-27-01 20

Comparison of LS and DV algorithms ‘\

Message complexity

+ LS: with n nodes, E links, « LS maintains entire topology
O(NE) messages

« DV maintains only neighbor
» DV: exchange between state
neighbors only

Speed of Convergence
* LS:O(n log n) algorithm
requires O(nE) msgs
« may have oscillations
+ DV: convergence time varies
* may be routing loops
« count-to-infinity problem
« (faster with triggered
updates)

Space requirements:

Lecture #10: 9 -27-01 21

Comparison of LS and DV algorithms ‘L

Robustness: what happens if router malfunctions?
LS:

« node can advertise incorrect link cost

< each node computes only its owntable

« DV node can advertise incorrect path cost
« each node’s table used by others
« errors propagate thru network

Lecture #10: 9-27-01 22

How To Do Variable Prefix Match i\.

» Traditional method — Patricia Tree

» Arrange route entries into a series of bit tests
» Worst case = 32 bit tests

» Problem: memory speed is a bottleneck

(0) sit to test -0 = left child1 = right child

default
128.2/16
128.32/16

128.32.130/24 128.32.150/24

Lecture #10: 9 -27-01 23

Speeding up Prefix Match -
Alternatives “

« Content addressable memory (CAM)
« Hardware based route lookup
* Input = tag, output = value associated with tag
* Requires exact match with tag

< Multiple cycles (1 per prefix searched) with single
CAM

« Multiple CAMs (1 per prefix) searched in parallel
* Ternary CAM

« 0,1,don't care values in tag match

« Priority (I.e. longest prefix) by order of entries in
CAM

Lecture #10: 9-27-01 24

Speeding up Prefix Match t\.

 Cut prefix tree at 16/24/32 bit depth
< Fill in prefix tree entries by creating extra entries
 Entries contain output interface for route

« Add special value to indicate that there are deeper tree
entries

» Only keep 24/32 bit cuts as needed

» Example cut prefix tree at 16 bit depth
¢ 64K entries!!

« Use a variety of clever techniques to compress space
taken

Lecture #10: 9 -27-01 25

Prefix Tree

(]2 fa]lx]ls]s Ix]lz 13 [3](3]x]x]lo](s]

1 2 3 4 5 6 7 8

[

Port 1 Port 5 Port 7[
Port 3

9 10 11 12 13 14 15

Port 9

Port 5

Lecture #10: 9-27-01

Prefix Tree ‘\.

[1]ada{x]ls]s Ix]lz] 313 [3][3]x]x][o]is]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Subtree 1 Subtree 2
Subtree 3

Lecture #10: 9 -27-01 27

Speeding up Prefix Match -
Alternatives ‘\'

* Route caches

« Packet trains - group of packets belonging to same
flow

« Temporal locality

* Many packets to same destination
» Other algorithms

* Bremler-Barr — Sigcomm 99

* Clue = prefix length matched at previous hop
* Why is this useful?

Lecture #10: 9 -27-01 29

Speeding up Prefix Match

-

» Scaling issues
* How would it handle IPv6
¢ Other possibilities
* Why were the cuts done at 16/24/32 bits?

Lecture #10: 9-27-01

