
1

15-441 Computer Networking

Intra-Domain Routing, Part II

OSPF (Open Shortest Path First)

Lecture #10: 9 -27-01 2

A Link-State Routing Algorithm

Dijkstra’s algorithm
• net topology, link costs known

to all nodes
• accomplished via “link state

broadcast”
• all nodes have same info

• computes least cost paths from
one node (‘source”) to all other
nodes
• gives routing table for that

node
• iterative: after k iterations, know

least cost path to k dest.’s

Notation:

• c(i,j): link cost from node i to j.
cost infinite if not direct
neighbors

• D(v): current value of cost of
path from source to dest. V

• p(v): predecessor node along
path from source to v, that is
next v

• N: set of nodes whose least
cost path definitively known

Lecture #10: 9 -27-01 3

Dijsktra’s Algorithm

1 Initialization:
2 N = {A}
3 for all nodes v
4 if v adjacent to A
5 then D(v) = c(A,v)
6 else D(v) = infinity
7
8 Loop
9 find w not in N such that D(w) is a minimum
10 add w to N
11 update D(v) for all v adjacent to w and not in N:
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v */
15 until all nodes in N

Lecture #10: 9 -27-01 4

Dijkstra’s algorithm: example

Step
0
1
2
3
4
5

start N
A

AD
ADE

ADEB
ADEBC

ADEBCF

D(B),p(B)
2,A
2,A
2,A

D(C),p(C)
5,A
4,D
3,E
3,E

D(D),p(D)
1,A

D(E),p(E)
infinity

2,D

D(F),p(F)
infinity
infinity

4,E
4,E
4,E

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

Lecture #10: 9 -27-01 5

Link State Characteristics

• With consistent LSDBs*, all
nodes compute consistent
loop-free paths

• Limited by Dijkstra
computation overhead, space
requirements

• Can still have transient loops

A

B

C

D

1

3

5 2

1

Packet from CàA
may loop around BDC
if B knows about failure
and C & D do not

X

* Lump Sum Death Benefit?
Leisure Studies Data Bank?
Latvijas spriedumu datu bâze?
>> Link State Data Base

Lecture #10: 9 -27-01 6

Dijkstra’s algorithm, discussion

Algorithm complexity: n nodes
• each iteration: need to check all nodes, w, not in N
• n*(n+1)/2 comparisons: O(n**2)
• more efficient implementations possible: O(n log n) (or better)

Oscillations possible:
• e.g., link cost = amount of carried traffic

A

D

C

B
1 1+e

e0

e

1 1

0 0

A
D

C

B
2+e 0

00
1+e 1

A
D

C

B
0 2+e

1+e1
0 0

A
D

C

B
2+e 0

e0
1+e 1

initially … recompute
routing

… recompute … recompute

amount of flow destined for node A from external source

2

Lecture #10: 9 -27-01 7

Importance of Cost Metric

• Choice of link cost defines traffic load
• Low cost = high probability link belongs to SPT and will

attract traffic, which increases cost

• Main problem: convergence
• Avoid oscillations

• Achieve good network utilization

Lecture #10: 9 -27-01 8

Metric Choices

• Static metrics (e.g., hop count)
• Good only if links are homogeneous

• Definitely not the case in the Internet

• Static metrics do not take into account
• Link delay

• Link capacity

• Link load (hard to measure)

Lecture #10: 9 -27-01 9

Original ARPANET Metric

• Cost proportional to queue size
• Instantaneous queue length as delay estimator

• Problems
• Did not take into account link speed

• Poor indicator of expected delay due to rapid
fluctuations

• Delay may be longer even if queue size is small due to
contention for other resources

Lecture #10: 9 -27-01 10

Metric 2 - Delay Shortest Path Tree

• Delay = (depart time - arrival time) + transmission
time + link propagation delay
• (Depart time - arrival time) captures queuing

• Transmission time captures link capacity

• Link propagation delay captures the physical length of
the link

• Measurements averaged over 10 seconds
• Update sent if difference > threshold, or every 50

seconds

Lecture #10: 9 -27-01 11

Performance of Metric 2

• Works well for light to moderate load
• Static values dominate

• Oscillates under heavy load
• Queuing dominates

• Reason: there is no correlation between original
and new values of delay after re-routing!

Lecture #10: 9 -27-01 12

Specific Problems

• Range is too wide
• 9.6 Kbps highly loaded link can appear 127 times

costlier than 56 Kbps lightly loaded link

• Can make a 127-hop path look better than 1-hop

• No limit to change between reports
• All nodes calculate routes simultaneously

• Triggered by link update

3

Lecture #10: 9 -27-01 13

Consequences

• Low network utilization (50% in example)

• Congestion can spread elsewhere

• Routes could oscillate between short and long
paths

• Large swings lead to frequent route updates
• More messages

• Frequent SPT re-calculation

Lecture #10: 9 -27-01 14

Revised Link Metric

• Better metric: packet delay = f(queueing,
transmission, propagation)

• When lightly loaded, transmission and
propagation are good predictors

• When heavily loaded queueing delay is dominant
and so transmission and propagation are bad
predictors

Lecture #10: 9 -27-01 15

Normalized Metric

• If a loaded link looks very bad then everyone will
move off of it

• Want some to stay on to load balance and avoid
oscillations

• It is still an OK path for some

• Hop normalized metric diverts routes that have an
alternate that is not too much longer

• Also limited relative values and range of values
advertised à gradual change

Lecture #10: 9 -27-01 16

OSPF (Open Shortest Path First)

• “open”: publicly available

• Uses Link State algorithm
• LS packet dissemination
• Topology map at each node
• Route computation using Dijkstra’s algorithm

• OSPF advertisement carries one entry per neighbor
router

• Advertisements disseminated to entire AS (via flooding)

Lecture #10: 9 -27-01 17

OSPF “advanced” features (not in RIP)

• Security: all OSPF messages authenticated (to prevent
malicious intrusion); TCP connections used

• Multiple same-cost paths allowed (only one path in RIP)

• For each link, multiple cost metrics for different TOS
(e.g., satellite link cost set “low” for best effort; high for
real time)

• Integrated uni- and multicast support:
• Multicast OSPF (MOSPF) uses same topology data base as

OSPF

• Hierarchical OSPF in large domains.

Lecture #10: 9 -27-01 18

Hierarchical OSPF

4

Lecture #10: 9 -27-01 19

Hierarchical OSPF

• Two-level hierarchy: local area, backbone.

• Link-state advertisements only in area

• each nodes has detailed area topology; only know
direction (shortest path) to nets in other areas.

• Area border routers: “summarize” distances to nets in
own area, advertise to other Area Border routers.

• Backbone routers: run OSPF; routing limited to
backbone.

• Boundary routers: connect to other ASs.

Lecture #10: 9 -27-01 20

IGRP (Interior Gateway Routing Protocol)

• CISCO proprietary; successor of RIP (mid 80s)

• Distance Vector, like RIP

• several cost metrics (delay, bandwidth, reliability, load etc)

• uses TCP to exchange routing updates

• Loop-free routing via Distributed Updating Alg. (DUAL)
based on diffused computation

Lecture #10: 9 -27-01 21

Comparison of LS and DV algorithms

Message complexity
• LS: with n nodes, E links,

O(nE) messages
• DV: exchange between

neighbors only

Speed of Convergence
• LS: O(n log n) algorithm

requires O(nE) msgs
• may have oscillations

• DV: convergence time varies
• may be routing loops
• count-to-infinity problem
• (faster with triggered

updates)

Space requirements:
• LS maintains entire topology
• DV maintains only neighbor

state

Lecture #10: 9 -27-01 22

Robustness: what happens if router malfunctions?
LS:

• node can advertise incorrect link cost
• each node computes only its own table

DV:
• DV node can advertise incorrect path cost
• each node’s table used by others

• errors propagate thru network

Comparison of LS and DV algorithms

Lecture #10: 9 -27-01 23

How To Do Variable Prefix Match

128.2/16

10

16

19
128.32/16

128.32.130/24 128.32.150/24

default
0/0

0

• Traditional method – Patricia Tree
• Arrange route entries into a series of bit tests

• Worst case = 32 bit tests
• Problem: memory speed is a bottleneck

Bit to test – 0 = left child,1 = right child

Lecture #10: 9 -27-01 24

Speeding up Prefix Match -
Alternatives

• Content addressable memory (CAM)
• Hardware based route lookup
• Input = tag, output = value associated with tag
• Requires exact match with tag

• Multiple cycles (1 per prefix searched) with single
CAM

• Multiple CAMs (1 per prefix) searched in parallel
• Ternary CAM

• 0,1,don’t care values in tag match
• Priority (I.e. longest prefix) by order of entries in

CAM

5

Lecture #10: 9 -27-01 25

Speeding up Prefix Match

• Cut prefix tree at 16/24/32 bit depth
• Fill in prefix tree entries by creating extra entries

• Entries contain output interface for route

• Add special value to indicate that there are deeper tree
entries

• Only keep 24/32 bit cuts as needed

• Example cut prefix tree at 16 bit depth
• 64K entries!!

• Use a variety of clever techniques to compress space
taken

Lecture #10: 9 -27-01 26

Prefix Tree

1
0

1 1 1 5 5 X 7 3 3 3 3 X X 9 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Port 1 Port 5 Port 7
Port 3

Port 9
Port 5

Lecture #10: 9 -27-01 27

Prefix Tree

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Subtree 1 Subtree 2
Subtree 3

1 1 1 1 5 5 X 7 3 3 3 3 X X 9 5

Lecture #10: 9 -27-01 28

Speeding up Prefix Match

• Scaling issues
• How would it handle IPv6

• Other possibilities
• Why were the cuts done at 16/24/32 bits?

Lecture #10: 9 -27-01 29

Speeding up Prefix Match -
Alternatives

• Route caches
• Packet trains à group of packets belonging to same

flow

• Temporal locality

• Many packets to same destination

• Other algorithms
• Bremler-Barr – Sigcomm 99

• Clue = prefix length matched at previous hop

• Why is this useful?

