
Full Name: _________________________________________

Andrew Id: _________________________________________

15-418/618, Spring 2019

Exam 2 SOLUTIONS
April 15, 2019

Instructions:

• Write your answers in the space provided for the problem. If your work gets messy, please clearly
indicate your final answer.

• The exam has a maximum score of 60 points.

• The problems are of varying difficulty. The point value of each problem is indicated. Pile up the
easy points quickly and then come back to the harder problems.

• This exam is CLOSED BOOK, CLOSED NOTES (with the exception of your one sheet of notes.)

Problem Your Score Possible Points

1 9

2 9

3 8

4 10

5 12

6 12

Total 60

Page 1



Interconnection Networks

Problem 1. (9 points):

You are building a packet switched logarithmic network for an eight-core processor. The logarithmic
network is pictured below with the processors numbered 1 to 8 and the switches labeled A to L. Assume
that a packet is 64 bytes.

A. (3 pts) Is this network blocking? If it is, list two source-destination pairs that would block each other.

Solution: It is blocking. Consider simultaneous messages from 1 - 7 and 4 - 8

B. (3 pts) With store and forward routing, what is the minimum latency for sending a single packet
from one processor to another? Assume a link can transmit 4 bytes per cycle.

Solution: With store-and-forward flow control, a packet must be completely transmitted to the next switch on
its route before that switch can begin transmitting it. Since it takes 16 cycles to transfer a packet and the each
path is 4 hops, the minimum latency is 64 cycles.

C. (3 pts) If the network is designed to use cut-through routing, what it is the minimum latency for
sending a single packet from one processor to another? Assume a link can transmit 4 bytes per
cycle.

Solution: 18 cycles total. It takes 4 cycles for the header to reach its destination, and from there the next 4
bytes are right behind it. It takes 15 additional cycles for the rest of the packet to arrive. Bringing us to a total
of 19 cycles.

Page 2



Heterogeneous Parallelism

Problem 2. (9 points):

You are part of a team that is designing new family of single-chip parallel processors. Your colleagues
have already designed the following two CPUs, which will be the building blocks of your system design:

CPU-Lean: this CPU was designed for area efficiency;

CPU-Fast: this CPU was designed for speed. It is twice as fast as the CPU-Lean design, but it also takes
up four times as much area.

Your team is considering several different machine designs, having an overall area equivalent to that of
N CPU-Lean cores. That is, it will have PL lean cores and PF fat cores, such that 4PF + PL = N .

Assume the following:

• The key benchmark that your team cares about takes 200 seconds to run sequentially on a single
CPU-Lean core, and 100 seconds to run sequentially on a single CPU-Fast core.

• The benchmark’s computation consists of parallel and sequential parts, where the fraction of the orig-
inal sequential time that is parallel is f . These two cannot overlap: while the sequential portion is
executing on one core, the others remain idle.

• The parallel portion of the benchmark will experience linear speedup when it runs on multiple
CPUs (i.e., there are no inefficiencies in running in parallel).

A. (1pt) First consider a lean-only machine, where PF = 0. Write an equation for the total execution
time of the benchmark, as a function of f and PL, making optimal use of the processing elements.

Solution:

T = 200

(
1− f

1
+

f

PL

)

B. (2pts) Now consider the case where PF > 0 Write an equation for the total execution time of the
benchmark, as a function of f , PL, and PF , making optimal use of the processing elements.

Solution:

T = 200

(
1− f

2
+

f

2PF + PL

)

Page 3



C. (6pts) Using your equations above, calculate the execution time (in seconds) for the benchmark
with the following machine configurations (all with N = 20), assuming f = 0.90.

As an aid, separately list the time spent for the sequential portion Tseq, the time spent for the parallel
portion Tpar, and the overall time Ttot = Tseq + Tpar.

PL PF Tseq Tpar Ttot

20 0

0 5

4 4

Solution:

PL PF Tseq Tpar Ttot

20 0 20.0 9.0 29.0
0 5 10.0 18.0 28.0
4 4 10.0 15.0 25.0

Page 4



Lock-Free Data Structures

Problem 3. (8 points):
Consider the following version of compare-and-swap:

bool CAS(int *addr, int check, int new) {
atomic {

int old = *addr; // Read
if (old == check) { // Compare

*addr = new; // Write
return true;

}
return false;

}
}

You are given the following sequential code implementing a bounded stack of integers using an array
and a counter indicating the number of elements in the stack.

#define MAXLEN 1000
int stack[MAXLEN];
int count = 0;

void push(int x) {
int ccount = count;
if (ccount >= MAXLEN)

return; // Silently fail if stack is full
stack[ccount] = x;
count = ccount + 1;

}

void pop(int *val) {
int ccount = count;
if (ccount == 0)

return; // Silently fail if stack is empty

*val = stack[ccount-1];
count = ccount - 1;

}

Page 5



Here are attempts at lock-free implementations of push and pop:

void push(int x) {
while (1) {

int ccount = count;
if (ccount >= MAXLEN)

return; // Silently fail if stack is full
if (CAS(&count, ccount, ccount+1)) {

stack[ccount] = x;
return;

}
}

}

void pop(int *val) {
while (1) {

int ccount = count;
if (ccount == 0)

return; // Silently fail if stack is empty
if (CAS(&count, ccount, ccount-1) {

*val = stack[ccount-1];
return;

}
}

}

Page 6



A. (4 pts) Identify a problem with the lock-free versions of push and pop.

Solution: There’s a race. Suppose one thread starts to push, successfully executing CAS. A second thread
could start to pop, executing CAS and reading from the top of the stack before the first thread has a chance to
store its value there. Trickier versions involving multiple pushes and pops are also possible.

B. (2 pts) Explain briefly why it is not possible to do lock-free implementations of these operations
using CAS.

Solution: Push operation is doing two write operations, one on count and the other one by writing the value
to the stack. Using a CAS we cannot guarantee that both operations happen together atomically.

C. (2 pts) Suppose you have a double-word CAS with the following prototype:

// Atomic compare-and-swap two integers simultaneously
// Both locations are updated if and only if both existing
// values match their check values.
bool DCAS(int *addr1, int check1, int new1,

int *addr2, int check2, int new2);

Explain (without writing code) how you could implement the push operation using DCAS.

Solution: Using a DCAS, we can atomically increment the count and write the top-of-stack value. This will
prevent any other thread from interrupting our update.

Page 7



Memory Consistency

Problem 4. (10 points):

Assume that global variable data has initial value 0, and ready has initial value false. Consider the
following code snippets being executed concurrently by two threads:

Thread 1:

1: *data = 1;
2: *ready = true;
3: *ready = false;
4: *data = 2;
5: *ready = true;

Thread 2:

A: while (!*ready) { /* nothing */ }
B: printf("Data = %d\n", *data);

A. (6 pts) For sequentially consistent execution, indicate which of the following outputs is possible.
For each, give an ordering of the 7 steps (1–5 for Thread 1 and A–B for Thread 2) that would lead
to this outcome. For the sequentially consistent cases, the ordering must be sequentially consistent.
For the ones that are not sequentially consistent, give an ordering that minimizes the number of
inconsistencies.

Output Possible (Y/N) Step ordering

Data = 0

Data = 1

Data = 2

Solution:

Output Possible (Y/N) Step ordering
Data = 0 N 2, A, B, 1, 3, 4, 5
Data = 1 Y 1, 2, A, B, 3, 4, 5
Data = 2 Y 1, 2, 3, 4, 5, A, B

B. (2 pts) Now suppose this code runs on a processor with a weak consistency model, where loads and
stores to different memory locations by one thread can appear to occur to other threads as if they
did not occur in program order. Would this change what the program could print? Explain your
answer.

Solution: Yes. Output “Data = 0” now becomes possible, because Thread 2 could observe the store of step 2
occuring before the store of step 1.

Page 8



C. (2 pts) Where could you place a minimum set of fences to guarantee that only sequentially consistent
outputs would occur with this program?

Solution: One fence is required between steps 1 and 2, and a second fence is required between steps A and B.

Page 9



Transactions on Trees

Problem 5. (12 points):

Consider the binary search tree illustrated below.

30

3

20

15

5

40

57

total sum = 170

The operations insert (insert value into tree, assuming no duplicates) and sum (return the sum of all
elements in the tree) are implemented as transactional operations on the tree as shown below:

struct Node {
Node *left, *right;
int value;

};
Node* root; // root of tree, assume non-null

void insertNode(Node* n, int value) {
if (value < n->value) {

if (n->left == NULL)
n->left = createNode(value);

else
insertNode(n->left, value);

} else {
if (n->right == NULL)

n->right = createNode(value);
else

insertNode(n->right, value);
}

}

int sumNode(Node* n) {
if (n == null) return 0;
int total = n->value;
total += sumNode(n->left);
total += sumNode(n->right);
return total;

}

Page 10



void insert(int value) {
bool done = false;
while (!done) {
xbegin();
insertNode(root, value);
done = xend();

}

int sum() {
int rval = 0;
bool done = false;
while (!done) {
xbegin();
rval = sumNode(root);
done = xend();

}
return rval;

}

Consider when the following four operations are executed by different threads, starting with the original
tree.

T1: insert(10);
T2: insert(25);
T3: insert(24);
T4: printf("Sum = %d\n", sum());

A. (4 pts) Consider the different orders in which these operations could be executed. Draw all possible
trees that could result. (Note: you can draw just the subtrees rooted at node 20, since that is the only
part of the tree that is affected.)

Solution: There are only two. 20 –> 25 –> 24 or 20 –> 24 –> 25

B. (2 pts) How many different values could thread T4 print? Explain. (You need not list them.)

Solution: The original sum, adding any combination of 10, 25, and 24, for a total of 8 possibilities.

Page 11



C. (2 pts) Do your answers to parts A or B change depending on whether the implementation of trans-
actions uses optimistic or pessimistic conflict detection? Why or why not?

Solution: Definitely not! The choice of how to implement a transaction cannot change the semantics of the
transactional abstraction.

D. (2 pts) Consider an implementation using lazy data versioning and optimistic conflict detection that
manages transactions at the granularity of tree nodes (the read and writes sets are lists of nodes). As-
sume that the transaction for insert(10) commits when those for insert(24) and insert(25)
are at node 20, and for sum() is at node 40. Which of the four transactions (if any) are aborted?
Please describe why.

Solution: Only sum is aborted since the write set of the committing transaction (which is node 5) conflicts
with the read set of sum. Note that there is no conflict with the other insertions since they read no data written
by insert(10).

E. (2 pts) Now consider a version that uses optimistic conflict detection for reads and pessimistic
conflict detection for writes. Does transactional memory in this case offer any performance benefit
for sum() compared to a fine-grained locking approach? Explain.

Solution: Probably not and in fact it might be worse, because the read set of the sum() transaction will almost
always be changed by the insertions causing the sum() transaction to abort on commit wasting potentially a
sizeable amount of work.

Page 12



A Simple Image Processing Pipeline

Problem 6. (12 points):

Consider the following code to perform a vertical convolution on an input image.

float input[H+3][W];
float output[H][W];

void convolve(float output[H][W], float input[H][W]) {
for (int j=0; j<H; j++) {
for (int i=0; i<W; i++) {

float accum = 0.f;
for (int jj=0; jj<4; jj++) {
// count as two floating-point operations
accum += 0.25 * input[j+jj][i];

}
output[j][i] = accum;

}
}

}

convolve(output, input);

We consider execution under the following conditions:

• H = W = 4096.

• The cache is fully associate and uses write-back plus write-allocate policies. It has a capacity of
16,384 bytes and a block size of 32 bytes.

• Both arrays begin on cache boundaries.

A. (2 pts) What is the arithmetic intensity of this program, defined as the number of floating-point
operations divided by the number of load and store operations.

Solution: It is 8/5 = 1.60. For each pixel, there are 4 loads, 1 store, and 8 arithmetic operations.

B. (3 pts) Under the conditions described, what would be the cache hit rate for load operations?

Solution: It is 7/8. Each cache block is loaded once and then used for another seven values of i. By the time
the next iteration of j occurs, it would have been evicted.

Page 13



C. (3 pts) A colleague suggests switching the outer two loops, as follows:

void convolve(float output[H][W], float input[H][W]) {
for (int i=0; i<W; i++) {
for (int j=0; j<H; j++) {

float accum = 0.f;
for (int jj=0; jj<4; jj++) {

// count as two floating-point operations
accum += 0.25 * input[j+jj][i];

}
output[j][i] = accum;

}
}

}

What would be the hit rate for load operations in this case?

Solution: It is 3/4. Each block would be loaded for one value of j and then used used 3 more times. But, by
the time the next iteration of i occurs, it would have been evicted.

D. (4 pts) Describe (in words; no code is necessary) how you could modify the second version of the
program to achieve the maximum possible hit rate on loads, while having the same arithmetic in-
tensity? What would that hit rate be?

Solution: Restructure the outer two loops so that the image is processed in vertical stripes that are 32/4 = 8
pixels wide. The hit rate would be 31/32.

Page 14


