
Carnegie Mellon

115-418/618 Spring 2020

Recitation 5

MPI Programming

Carnegie Mellon

215-418/618 Spring 2020

Topics
¢ What is MPI
¢ MPI Basics
¢ Implementing a 2-D Grid Solver

§ Structuring problem for message-passing parallelism
§ Message passing coding examples
§ Running on GHC and Latedays machines
§ Performance measurements and analysis

¢ Suggestions for additional information

¢ All code in directory linked from schedule web page

Carnegie Mellon

315-418/618 Spring 2020

Background
¢ Message Passing Interface

§ Library + compiler support for message-passing parallel programs
§ Independent processes that communicate only by explicit

sending and receiving of messages
§ Supports multiple styles of communication

§ Point-to-point
§ Broadcast
§ Reduction (e.g., global sum or minimum)

¢ Multiple Implementations
§ Runs on everything from data clusters to supercomputers
§ On GHC machines

§ Can utilize multiple cores within single machine
§ On Latedays machines

§ Multiple cores on one or more machines

Carnegie Mellon

415-418/618 Spring 2020

MPI Can be Simple
¢ Many parallel programs can be written using just these

six functions:
§ Setup/teardown

§ MPI_INIT

§ MPI_FINALIZE

§ Who am I?
§ MPI_COMM_SIZE

§ MPI_COMM_RANK

§ Message passing
§ MPI_SEND

§ MPI_RECV

Carnegie Mellon

515-418/618 Spring 2020

… but Painful!
¢ OpenMP

§ Add pragmas to existing program
§ Compiler + runtime system arrange for parallel execution
§ Rely on shared memory for communication

¢ MPI
§ Must rewrite program to describe how single process should

operate on its data and communicate with other processes
§ Explicit data movement: programmer must say exactly what data

goes where and when
§ Advantage: Can operate on systems that don’t have shared

memory

Carnegie Mellon

615-418/618 Spring 2020

Process Identification
¢ When running with P processes:

§ Size: P
§ Total number of processes

§ Rank: Number between 0 and P–1
§ Identity of individual process

¢ Library Functions
§ MPI_Comm_size
§ MPI_Comm_rank

Carnegie Mellon

715-418/618 Spring 2020

A Simple MPI Program
¢ From hello.c

§ MPI_COMM_WORLD indicates the set of all processes
§ All MPI functions return error code
§ Update values by passing pointers as arguments

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{

int rank, size;
MPI_Init(NULL, NULL);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf("Hello! I am %d of %d\n", rank, size);
MPI_Finalize();
return 0;

}

Carnegie Mellon

815-418/618 Spring 2020

A Simple MPI Program
¢ From hello.c

¢ Compile
§ mpicc -O2 -g -Wall hello.c -o hello

¢ Run
§ mpirun -np 2 ./hello

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{

int rank, size;
MPI_Init(NULL, NULL);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf("Hello! I am %d of %d\n", rank, size);
MPI_Finalize();
return 0;

}

Hello! I am 0 of 2
Hello! I am 1 of 2

Carnegie Mellon

915-418/618 Spring 2020

Comparing Frameworks
¢ Multiple Processes with MPI

§ Fixed number of processes created as program starts
§ All execute code starting with main
§ Isolated address spaces

¢ Multiple Processes with fork
§ Processes created during program execution
§ Replicate address space upon creation, but then isolated

¢ Multiple Threads with pthread_create
§ Threads created during program execution
§ Shared address space

¢ Multiple Threads with OpenMP
§ Set of threads created at beginning of program (conceptually)
§ Recruited to execute tasks spawned by #pragma omp parallel

§ Shared address space

Carnegie Mellon

1015-418/618 Spring 2020

Synchronous Sending and Receiving
(From Lecture #5)

¢ send(): call returns when sender receives
acknowledgement that message data resides in address
space of receiver

¢ recv(): call returns when data from received message is
copied into address space of receiver and
acknowledgement sent back to sender

¢ Potential for deadlock if all processes attempt to send and
then receive

Carnegie Mellon

1115-418/618 Spring 2020

Synchronous Sending and Receiving

Carnegie Mellon

1215-418/618 Spring 2020

Asynchronous Sending and Receiving
¢ Low-level communication handled by additional threads
¢ send(): call returns immediately

§ Buffer provided to send() cannot be modified by calling thread
since message processing occurs concurrently with process
execution

§ Calling thread can perform other work while waiting for message
to be sent

¢ recv(): posts intent to receive in the future, returns
immediately
§ Use checksend(), checkrecv() to determine actual status of

send/receipt
§ Calling thread can perform other work while waiting for message

to be received

Carnegie Mellon

1315-418/618 Spring 2020

Asynchronous Sending and Receiving

Carnegie Mellon

1415-418/618 Spring 2020

MPI Send/Receive Operations
¢ Synchronous

§ MPI_Send

§ MPI_Recv

¢ Asynchronous
§ MPI_Isend
§ MPI_Irecv

§ MPI_Wait

Carnegie Mellon

1515-418/618 Spring 2020

Example Application
A_new[r,c] = 0.2 *

(A_curr[r, c] +
A_curr[r, c-1] +
A_curr[r-1, c] +
A_curr[r, c+1] +
A_curr[r+1, c]);

¢ Jacobi Iterations
¢ Compute new state

for each grid point
based on current state

¢ Avoids sequential
dependency among
grid points

Carnegie Mellon

1615-418/618 Spring 2020

Visualization of Grid Solver

¢ Outer ring shows boundary conditions
¢ Inner 30 x 30 grid shows grid values

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Carnegie Mellon

1715-418/618 Spring 2020

Horizontal Boundary Conditions

¢ ./heat.py –V –b h

Carnegie Mellon

1815-418/618 Spring 2020

Corner Boundary Conditions

¢ ./heat.py –V –b c

Carnegie Mellon

1915-418/618 Spring 2020

Diagonal Boundary Conditions

¢ ./heat.py –V –b d

Carnegie Mellon

2015-418/618 Spring 2020

Random Boundary Conditions

¢ ./heat.py –V –b r

Carnegie Mellon

2115-418/618 Spring 2020

Sequential Version: Grid Representation
typedef struct {

int nrow;
int ncol;
double *data; // Size = (nrow+2) X (ncol+2)
double *ndata; // Size = (nrow+2) X (ncol+2)

} grid_t;

nrow+2

ncol+2

data ndata

Carnegie Mellon

2215-418/618 Spring 2020

Sequential Code Structure

¢ Keep stepping until maxdiff < epsilon

static double step_grid(grid_t *g) {
double maxdiff = 0.0;
for (int r = 0; r < g->nrow; r++) {

for (int c = 0; c < g->ncol; c++) {

Compute g->ndata[r,c]

Compute diff = |g->data[r,c] – g->ndata[r,c]|
maxdiff = max(diff, maxdiff)

}
}

Swap g->data and g->ndata

return maxdiff;
}

Carnegie Mellon

2315-418/618 Spring 2020

Computing New State for One Grid Point

¢ Indexing into grid (row-major order)

¢ Fraction of new state coming from adjacent grid points

¢ Computation of g->ndata[GINDEX(g, r, c)]

#define GINDEX(g, r, c) (((r)+1)*((g)->ncol+2)+((c)+1))

#define CONDUCTIVITY 0.8

static inline double new_state(grid_t *g, int r, int c) {
double ov = g->data[GINDEX(g, r, c)];
double nv = g->data[GINDEX(g, r-1, c)];
double ev = g->data[GINDEX(g, r, c+1)];
double sv = g->data[GINDEX(g, r+1, c)];
double wv = g->data[GINDEX(g, r, c-1)];
return 0.25 * CONDUCTIVITY * (nv+ev+sv+wv)

+ (1-CONDUCTIVITY) * ov;
}

Carnegie Mellon

2415-418/618 Spring 2020

Additional Points

¢ Exchanging Data Arrays

¢ Properties of Computation
§ On each step, g->data is read-only, g->ndata is write-only
§ Requires storage for 16 bytes / grid point

§ GHC machines have 12MiB L3 cache
– Up to 886 X 886 array

§ Latedays nodes have 15MiB L3 cache
– Up to 991 X 991 array

double *tdata = g->data;
g->data = g->ndata;
g->ndata = tdata;

Carnegie Mellon

2515-418/618 Spring 2020

Using OpenMP for Parallelism

¢ Easy!

static double step_grid(grid_t *g) {
double maxdiff = 0.0;

#pragma omp parallel for schedule(static) reduction(max:maxdiff)
for (int r = 0; r < g->nrow; r++) {

for (int c = 0; c < g->ncol; c++) {

Compute g->ndata[r,c]

Compute diff = |g->data[r,c] – g->ndata[r,c]|
maxdiff = max(diff, maxdiff)

}
}

Swap g->data and g->ndata

return maxdiff;
}

Carnegie Mellon

2615-418/618 Spring 2020

Message-Passing Decomposition
From Lecture #5

¢ Each process p maintains
state for subrange of rows
§ Plus storage for “ghost cells”

above and below

¢ Exchanges boundary data
with processes p–1 and p+1
on each step
§ Fill in ghost cells

¢ Computes local value of
maxdiff

¢ Globally: find max of
maxdiff’s

Carnegie Mellon

2715-418/618 Spring 2020

typedef struct {
int nrow; // Total rows in grid
int ncol; // Columns in grid
int process_id;
int process_count;
int row_count; // Number of rows in local region
int row_start; // Offset of local rows from global rows
double *data; // Size = (row_count+2) X (ncol+2)
double *ndata; // Size = (row_count+2) X (ncol+2)

} grid_t;

Parallel Version: Grid Representation

nrow+2

ncol+2

data ndata

row_start

row_count+2

Carnegie Mellon

2815-418/618 Spring 2020

Message Passing Code Structure

¢ Keep stepping until maxdiff < epsilon

static double step_grid(grid_t *g) {
double local_maxdiff = 0.0;
for (int r = 0; r < g->row_count; r++) {

for (int c = 0; c < g->ncol; c++) {

Compute g->ndata[r,c]

Compute diff = |g->data[r,c] – g->ndata[r,c]|
local_maxdiff = max(diff, local_maxdiff)

}
}

Swap g->data and g->ndata

Exchange rows with neighbors

double maxdiff = global_maximum(local_maxdiff)

return maxdiff;
}

Carnegie Mellon

2915-418/618 Spring 2020

Exchanging Row Data

¢ Keep stepping until maxdiff < epsilon

/* Exchange rows with neighbors to north and south */
static void exchange_rows(grid_t *g) {

if (g->row_count == 0)
return;

int process_id = g->process_id;
bool north_neighbor = process_id > 0;
bool south_neighbor = process_id < g->process_count - 1;

if (north_neighbor)
Start sending row 0 north

if (south_neighbor)
Start sending row row_count–1 to south

if (north_neighbor)
Receive row –1 from north

if (south_neighbor)
Receive row row_count from south

if (north_neighbor)
Wait until finished sending data north

if (south_neighbor)
Wait until finished sending data south

}

Asynchronous Send

Synchronous Receive

Carnegie Mellon

3015-418/618 Spring 2020

Send/Receive Functions
¢ Keeping record of asynchronous send or receive

¢ Asynchronous send

¢ Synchronous receive

¢ Completion of asynchronous send

MPI_Request north_request;

double *north_boundary = &g->data[GINDEX(g, 0, 0)];
start_send_data(north_boundary, g->ncol, process_id - 1,

&north_request);

double *north_ghost = &g->data[GINDEX(g, -1, 0)];
receive_data(north_ghost, g->ncol, process_id - 1);

finish_data(&north_request);

Carnegie Mellon

3115-418/618 Spring 2020

Asynchronous Send Function
¢ Call to wrapper function

¢ Wrapper Implementation

§ Send count double’s at data to process_id and track with
request

§ Note how send buffer is a portion of the grid data array

double *north_boundary = &g->data[GINDEX(g, 0, 0)];
start_send_data(north_boundary, g->ncol, process_id - 1,

&north_request);

static void start_send_data(double *data, int count, int process_id,
MPI_Request *request) {

MPI_Isend(data, count, MPI_DOUBLE, process_id,
0, MPI_COMM_WORLD, request);

}

Carnegie Mellon

3215-418/618 Spring 2020

Synchronous Receive Function
¢ Call to wrapper function

¢ Wrapper Implementation

§ Receive count double’s into data from process_id
§ Note how receive buffer is a portion of the grid data array

double *north_ghost = &g->data[GINDEX(g, -1, 0)];
receive_data(north_ghost, g->ncol, process_id - 1);

static void receive_data(double *data, int count, int process_id) {
MPI_Recv(data, count, MPI_DOUBLE, process_id,

0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}

Carnegie Mellon

3315-418/618 Spring 2020

Asynchronous Completion Function
¢ Call to wrapper function

¢ Wrapper Implementation

§ Wait until communication tracked with request has completed
§ Can also be used to wait for completion of asynchronous receive

finish_data(&north_request);

static void finish_data(MPI_Request *request) {
MPI_Wait(request, MPI_STATUS_IGNORE);

}

Carnegie Mellon

3415-418/618 Spring 2020

MPI Send/Receive APIs
int MPI_Isend(const void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status)

int MPI_Wait(MPI_Request *request, MPI_Status *status)

Argument Meaning

buf Send / receive buffer

count Number of items

datatype Data type of items

source /
dest

Rank of source or destination

tag Integer identifier to distinguish messages

comm Subset of processes

request Struct for tracking send/receive status

status Struct for recording communication status

Carnegie Mellon

3515-418/618 Spring 2020

Choosing Synchronous vs. Asynchronous
¢ When exchanging data, best if at least one of send /

receive is asynchronous
§ Avoids deadlock

¢ Asynchronous lets more things happen simultaneously
§ Especially, to start sending messages to neighbors
§ Possible to overlap with grid computation

§ E.g., process grid points along boundaries first, then overlap
data exchange with internal grid point computation

¢ Synchronous is simpler
¢ Experiments

§ Found no performance difference using asynch send + asynch
receive, vs. asynch send + synch receive

§ Did not try overlapping with grid computation

Carnegie Mellon

3615-418/618 Spring 2020

Broadcasting
¢ Same function for broadcaster and receivers

¢ Process 0 broadcasts
§ Send contents of buffer data to all other processes

¢ Other processes receive
§ Store received data to buffer data

¢ In grid solver
§ Process 0 broadcasts boundary condition data before starting

solver
§ All others update their boundary data

static void broadcast_receive_data(double *data, int count) {
/* Master process will send. Others will receive */
MPI_Bcast(data, count, MPI_DOUBLE, 0, MPI_COMM_WORLD);

}

Carnegie Mellon

3715-418/618 Spring 2020

Global Reduction

§ Find global maximum for one value of type double

¢ API

§ Perform reduction operation for each of the elements in the
sendbuf’s. Distribute the results to the recvbuf’s.

static double global_maximum(double local_max) {
double result = 0.0;
MPI_Allreduce(&local_max, &result, 1, MPI_DOUBLE,

MPI_MAX, MPI_COMM_WORLD);
return result;

}

int MPI_Allreduce(const void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

Carnegie Mellon

3815-418/618 Spring 2020

Performance on GHC Machines
¢ Speedups for OMP & MPI with 800 X 800 grid

¢ Nearly the same. Reasonably good

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Threads/Processes

GHC Speedup (N = 800)

GHC/MPI
GHC/OMP
Ideal

Carnegie Mellon

3915-418/618 Spring 2020

Performance on GHC Machines
¢ Problem scaling with 8 threads / processes
¢ Express in units of Nanoseconds per update

§ N x N grid. S steps. Time T seconds
§ NPU = T * 109 / (N * N * S)

§ Describes time / work performed

Carnegie Mellon

4015-418/618 Spring 2020

Performance on GHC Machines
¢ Problem scaling with 8 threads / processes

¢ OMP / MPI nearly the same.

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000 6000 7000

Na
no

se
co

nd
s p

er
 u

pd
at

e

Grid Size N

GHC Problem Scaling (8 Threads/Processes)

GHC/MPI

GHC/OMP

Exceeds L3 cache capacity

Increased task granularity

Carnegie Mellon

4115-418/618 Spring 2020

Performance on Latedays Node
¢ Speedups for OMP & MPI with 900 X 900 grid

¢ Generally comparable

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14
Threads/Processes

Latedays Speedup (N = 900)

GHC/MPI

GHC/OMP

Ideal

Carnegie Mellon

4215-418/618 Spring 2020

Performance on Latedays Node
¢ Problem scaling with 12 threads / processes

¢ OMP much worse than MPI once exceed L3 cache
§ Less read/write conflict?

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000 5000 6000 7000

Na
no

se
co

nd
s p

er
 u

pd
at

e

Grid Size N

Latedays Problem Scaling (12 Threads/Processes)

GHC/MPI

GHC/OMP

Carnegie Mellon

4315-418/618 Spring 2020

Using Multiple Latedays Nodes
¢ Run on K nodes with 12 * K processes

¢ Internode communication has too much overhead to give
any speedup

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Na
no

se
co

nd
s p

er
 u

pd
at

e

Grid Size N

Latedays Problem Scaling (K Nodes, 12 processes/node)

K1/P12

K2/P24

K3/P36

K4/P48

Carnegie Mellon

4415-418/618 Spring 2020

Some Key Points
¢ MPI is a large and complex standard, but can do lots with

only core set of operations
¢ Well designed for bulk synchronous computations

§ Repeated steps:
§ Each process updates its portion of state
§ Each process communicates boundary information with

neighbors
§ Collectively test for convergence

¢ Users must explicitly manage buffers
§ Can extract data from or insert data into state data arrays
§ Don’t overwrite while waiting for asynchronous operation to

complete

Carnegie Mellon

4515-418/618 Spring 2020

Useful Resources
¢ General Tutorial

§ Good coverage of concepts and basics
§ https://mpitutorial.com/tutorials/

¢ Longer MPI Tutorial
§ More comprehensive and detailed
§ https://computing.llnl.gov/tutorials/mpi/

¢ Documentation for MPI 1.6
§ Default version running on Latedays
§ https://www.open-mpi.org/doc/v1.6/

https://mpitutorial.com/tutorials/
https://computing.llnl.gov/tutorials/mpi/
https://www.open-mpi.org/doc/v1.6/

