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Topics
¢ What is MPI
¢ MPI Basics
¢ Implementing a 2-D Grid Solver

§ Structuring problem for message-passing parallelism
§ Message passing coding examples
§ Running on GHC and Latedays machines
§ Performance measurements and analysis

¢ Suggestions for additional information

¢ All code in directory linked from schedule web page
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Background
¢ Message Passing Interface

§ Library + compiler support for message-passing parallel programs
§ Independent processes that communicate only by explicit 

sending and receiving of messages
§ Supports multiple styles of communication

§ Point-to-point
§ Broadcast
§ Reduction (e.g., global sum or minimum)

¢ Multiple Implementations
§ Runs on everything from data clusters to supercomputers
§ On GHC machines

§ Can utilize multiple cores within single machine
§ On Latedays machines

§ Multiple cores on one or more machines
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MPI Can be Simple
¢ Many parallel programs can be written using just these 

six functions:
§ Setup/teardown

§ MPI_INIT

§ MPI_FINALIZE

§ Who am I?
§ MPI_COMM_SIZE

§ MPI_COMM_RANK

§ Message passing
§ MPI_SEND

§ MPI_RECV
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… but Painful!
¢ OpenMP

§ Add pragmas to existing program
§ Compiler + runtime system arrange for parallel execution
§ Rely on shared memory for communication

¢ MPI
§ Must rewrite program to describe how single process should 

operate on its data and communicate with other processes
§ Explicit data movement: programmer must say exactly what data 

goes where and when
§ Advantage: Can operate on systems that don’t have shared 

memory
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Process Identification
¢ When running with P processes:

§ Size: P
§ Total number of processes

§ Rank: Number between 0 and P–1
§ Identity of individual process

¢ Library Functions
§ MPI_Comm_size
§ MPI_Comm_rank
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A Simple MPI Program
¢ From hello.c

§ MPI_COMM_WORLD indicates the set of all processes
§ All MPI functions return error code
§ Update values by passing pointers as arguments

#include "mpi.h"
#include <stdio.h>

int main( int argc, char *argv[] )
{

int rank, size;
MPI_Init(NULL, NULL);
MPI_Comm_rank( MPI_COMM_WORLD, &rank );
MPI_Comm_size( MPI_COMM_WORLD, &size );
printf("Hello! I am %d of %d\n", rank, size );
MPI_Finalize();
return 0;

}
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A Simple MPI Program
¢ From hello.c

¢ Compile
§ mpicc -O2 -g -Wall hello.c -o hello

¢ Run
§ mpirun -np 2 ./hello

#include "mpi.h"
#include <stdio.h>

int main( int argc, char *argv[] )
{

int rank, size;
MPI_Init(NULL, NULL);
MPI_Comm_rank( MPI_COMM_WORLD, &rank );
MPI_Comm_size( MPI_COMM_WORLD, &size );
printf("Hello! I am %d of %d\n", rank, size );
MPI_Finalize();
return 0;

}

Hello! I am 0 of 2
Hello! I am 1 of 2
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Comparing Frameworks
¢ Multiple Processes with MPI

§ Fixed number of processes created as program starts
§ All execute code starting with main
§ Isolated address spaces

¢ Multiple Processes with fork
§ Processes created during program execution
§ Replicate address space upon creation, but then isolated

¢ Multiple Threads with pthread_create
§ Threads created during program execution
§ Shared address space

¢ Multiple Threads with OpenMP
§ Set of threads created at beginning of program (conceptually)
§ Recruited to execute tasks spawned by #pragma omp parallel

§ Shared address space
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Synchronous Sending and Receiving 
(From Lecture #5)

¢ send(): call returns when sender receives 
acknowledgement that message data resides in address 
space of receiver

¢ recv(): call returns when data from received message is 
copied into address space of receiver and 
acknowledgement sent back to sender

¢ Potential for deadlock if all processes attempt to send and 
then receive
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Synchronous Sending and Receiving
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Asynchronous Sending and Receiving
¢ Low-level communication handled by additional threads
¢ send(): call returns immediately

§ Buffer provided to send() cannot be modified by calling thread 
since message processing occurs concurrently with process 
execution

§ Calling thread can perform other work while waiting for message 
to be sent

¢ recv(): posts intent to receive in the future, returns 
immediately
§ Use checksend(), checkrecv() to determine actual status of 

send/receipt
§ Calling thread can perform other work while waiting for message 

to be received
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Asynchronous Sending and Receiving
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MPI Send/Receive Operations
¢ Synchronous

§ MPI_Send

§ MPI_Recv

¢ Asynchronous
§ MPI_Isend
§ MPI_Irecv

§ MPI_Wait
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Example Application
A_new[r,c] = 0.2 *

(A_curr[r,   c  ] + 
A_curr[r,   c-1] + 
A_curr[r-1, c  ] +
A_curr[r,   c+1] + 
A_curr[r+1, c  ]);

¢ Jacobi Iterations
¢ Compute new state 

for each grid point 
based on current state

¢ Avoids sequential
dependency among
grid points
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Visualization of Grid Solver

¢ Outer ring shows boundary conditions
¢ Inner 30 x 30 grid shows grid values
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Horizontal Boundary Conditions

¢ ./heat.py –V –b h
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Corner Boundary Conditions

¢ ./heat.py –V –b c
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Diagonal Boundary Conditions

¢ ./heat.py –V –b d
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Random Boundary Conditions

¢ ./heat.py –V –b r
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Sequential Version: Grid Representation
typedef struct {

int nrow;
int ncol;
double *data; // Size = (nrow+2) X (ncol+2)
double *ndata; // Size = (nrow+2) X (ncol+2)

} grid_t;

nrow+2

ncol+2

data ndata
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Sequential Code Structure

¢ Keep stepping until   maxdiff < epsilon

static double step_grid(grid_t *g) {
double maxdiff = 0.0;
for (int r = 0; r < g->nrow; r++) {

for (int c = 0; c < g->ncol; c++) {

Compute g->ndata[r,c]

Compute diff = |g->data[r,c] – g->ndata[r,c]|
maxdiff = max(diff, maxdiff)

}
}

Swap g->data and g->ndata

return maxdiff;
}
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Computing New State for One Grid Point

¢ Indexing into grid (row-major order)

¢ Fraction of new state coming from adjacent grid points

¢ Computation of g->ndata[GINDEX(g, r, c)]

#define GINDEX(g, r, c) (((r)+1)*((g)->ncol+2)+((c)+1))

#define CONDUCTIVITY 0.8

static inline double new_state(grid_t *g, int r, int c) {
double ov = g->data[GINDEX(g, r, c)];
double nv = g->data[GINDEX(g, r-1, c)];
double ev = g->data[GINDEX(g, r, c+1)];
double sv = g->data[GINDEX(g, r+1, c)];
double wv = g->data[GINDEX(g, r, c-1)];
return 0.25 * CONDUCTIVITY * (nv+ev+sv+wv) 

+ (1-CONDUCTIVITY) * ov;
}
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Additional Points

¢ Exchanging Data Arrays

¢ Properties of Computation
§ On each step, g->data is read-only, g->ndata is write-only
§ Requires storage for 16 bytes / grid point

§ GHC machines have 12MiB L3 cache
– Up to 886 X 886 array

§ Latedays nodes have 15MiB L3 cache
– Up to 991 X 991 array

double *tdata = g->data;
g->data = g->ndata;
g->ndata = tdata;
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Using OpenMP for Parallelism

¢ Easy!

static double step_grid(grid_t *g) {
double maxdiff = 0.0;

#pragma omp parallel for schedule(static) reduction(max:maxdiff)
for (int r = 0; r < g->nrow; r++) {

for (int c = 0; c < g->ncol; c++) {

Compute g->ndata[r,c]

Compute diff = |g->data[r,c] – g->ndata[r,c]|
maxdiff = max(diff, maxdiff)

}
}

Swap g->data and g->ndata

return maxdiff;
}
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Message-Passing Decomposition
From Lecture #5

¢ Each process p maintains 
state for subrange of rows
§ Plus storage for “ghost cells” 

above and below

¢ Exchanges boundary data 
with processes p–1 and p+1 
on each step
§ Fill in ghost cells

¢ Computes local value of
maxdiff

¢ Globally: find max of 
maxdiff’s
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typedef struct {
int nrow; // Total rows in grid
int ncol; // Columns in grid
int process_id;
int process_count;
int row_count; // Number of rows in local region
int row_start; // Offset of local rows from global rows
double *data; // Size = (row_count+2) X (ncol+2)
double *ndata; // Size = (row_count+2) X (ncol+2)

} grid_t;

Parallel Version: Grid Representation

nrow+2

ncol+2

data ndata

row_start

row_count+2
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Message Passing Code Structure

¢ Keep stepping until   maxdiff < epsilon

static double step_grid(grid_t *g) {
double local_maxdiff = 0.0;
for (int r = 0; r < g->row_count; r++) {

for (int c = 0; c < g->ncol; c++) {

Compute g->ndata[r,c]

Compute diff = |g->data[r,c] – g->ndata[r,c]|
local_maxdiff = max(diff, local_maxdiff)

}
}

Swap g->data and g->ndata

Exchange rows with neighbors

double maxdiff = global_maximum(local_maxdiff)

return maxdiff;
}
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Exchanging Row Data

¢ Keep stepping until   maxdiff < epsilon

/* Exchange rows with neighbors to north and south */
static void exchange_rows(grid_t *g) {

if (g->row_count == 0)
return;

int process_id = g->process_id;
bool north_neighbor = process_id > 0;
bool south_neighbor = process_id < g->process_count - 1;

if (north_neighbor)
Start sending row 0 north

if (south_neighbor)
Start sending row row_count–1 to south

if (north_neighbor)
Receive row –1 from north

if (south_neighbor)
Receive row row_count from south

if (north_neighbor)
Wait until finished sending data north

if (south_neighbor)
Wait until finished sending data south

}

Asynchronous Send

Synchronous Receive
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Send/Receive Functions
¢ Keeping record of asynchronous send or receive

¢ Asynchronous send

¢ Synchronous receive

¢ Completion of asynchronous send

MPI_Request north_request;

double *north_boundary = &g->data[GINDEX(g, 0, 0)];
start_send_data(north_boundary, g->ncol, process_id - 1, 

&north_request); 

double *north_ghost = &g->data[GINDEX(g, -1, 0)];
receive_data(north_ghost, g->ncol, process_id - 1);

finish_data(&north_request);
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Asynchronous Send Function
¢ Call to wrapper function

¢ Wrapper Implementation

§ Send count double’s at data to process_id and track with 
request

§ Note how send buffer is a portion of the grid data array

double *north_boundary = &g->data[GINDEX(g, 0, 0)];
start_send_data(north_boundary, g->ncol, process_id - 1, 

&north_request); 

static void start_send_data(double *data, int count, int process_id,
MPI_Request *request) {

MPI_Isend(data, count, MPI_DOUBLE, process_id,
0, MPI_COMM_WORLD, request);

}
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Synchronous Receive Function
¢ Call to wrapper function

¢ Wrapper Implementation

§ Receive count double’s into data from process_id
§ Note how receive buffer is a portion of the grid data array

double *north_ghost = &g->data[GINDEX(g, -1, 0)];
receive_data(north_ghost, g->ncol, process_id - 1);

static void receive_data(double *data, int count, int process_id) {
MPI_Recv(data, count, MPI_DOUBLE, process_id,

0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}
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Asynchronous Completion Function
¢ Call to wrapper function

¢ Wrapper Implementation

§ Wait until communication tracked with request has completed
§ Can also be used to wait for completion of asynchronous receive

finish_data(&north_request);

static void finish_data(MPI_Request *request) {
MPI_Wait(request, MPI_STATUS_IGNORE);

}
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MPI Send/Receive APIs
int MPI_Isend(const void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status)

int MPI_Wait(MPI_Request *request, MPI_Status *status)

Argument Meaning

buf Send / receive buffer

count Number of items

datatype Data type of items

source /
dest

Rank of source or destination

tag Integer identifier to distinguish messages

comm Subset of processes 

request Struct for tracking send/receive status

status Struct for recording communication status
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Choosing Synchronous vs. Asynchronous
¢ When exchanging data, best if at least one of send / 

receive is asynchronous
§ Avoids deadlock

¢ Asynchronous lets more things happen simultaneously
§ Especially, to start sending messages to neighbors
§ Possible to overlap with grid computation

§ E.g., process grid points along boundaries first, then overlap 
data exchange with internal grid point computation

¢ Synchronous is simpler
¢ Experiments

§ Found no performance difference using asynch send + asynch
receive, vs. asynch send + synch receive

§ Did not try overlapping with grid computation
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Broadcasting
¢ Same function for broadcaster and receivers

¢ Process 0 broadcasts
§ Send contents of buffer data to all other processes

¢ Other processes receive
§ Store received data to buffer data

¢ In grid solver
§ Process 0 broadcasts boundary condition data before starting 

solver
§ All others update their boundary data

static void broadcast_receive_data(double *data, int count) {
/* Master process will send. Others will receive */
MPI_Bcast(data, count, MPI_DOUBLE, 0, MPI_COMM_WORLD);

}
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Global Reduction

§ Find global maximum for one value of type double

¢ API

§ Perform reduction operation for each of the elements in the 
sendbuf’s.  Distribute the results to the recvbuf’s.

static double global_maximum(double local_max) {
double result = 0.0;
MPI_Allreduce(&local_max, &result, 1, MPI_DOUBLE,

MPI_MAX, MPI_COMM_WORLD);
return result;

}

int MPI_Allreduce(const void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)



Carnegie Mellon

3815-418/618 Spring 2020

Performance on GHC Machines
¢ Speedups for OMP & MPI with 800 X 800 grid

¢ Nearly the same.  Reasonably good
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Performance on GHC Machines
¢ Problem scaling with 8 threads / processes
¢ Express in units of Nanoseconds per update

§ N x N grid.  S steps.  Time T seconds
§ NPU = T * 109 / (N * N * S)

§ Describes time / work performed



Carnegie Mellon

4015-418/618 Spring 2020

Performance on GHC Machines
¢ Problem scaling with 8 threads / processes

¢ OMP / MPI nearly the same.
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Performance on Latedays Node
¢ Speedups for OMP & MPI with 900 X 900 grid

¢ Generally comparable
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Performance on Latedays Node
¢ Problem scaling with 12 threads / processes

¢ OMP much worse than MPI once exceed L3 cache
§ Less read/write conflict?
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Using Multiple Latedays Nodes
¢ Run on K nodes with 12 * K processes

¢ Internode communication has too much overhead to give 
any speedup
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Some Key Points
¢ MPI is a large and complex standard, but can do lots with 

only core set of operations
¢ Well designed for bulk synchronous computations

§ Repeated steps:
§ Each process updates its portion of state
§ Each process communicates boundary information with 

neighbors
§ Collectively test for convergence

¢ Users must explicitly manage buffers
§ Can extract data from or insert data into state data arrays
§ Don’t overwrite while waiting for asynchronous operation to 

complete
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Useful Resources
¢ General Tutorial

§ Good coverage of concepts and basics
§ https://mpitutorial.com/tutorials/

¢ Longer MPI Tutorial
§ More comprehensive and detailed
§ https://computing.llnl.gov/tutorials/mpi/

¢ Documentation for MPI 1.6
§ Default version running on Latedays
§ https://www.open-mpi.org/doc/v1.6/

https://mpitutorial.com/tutorials/
https://computing.llnl.gov/tutorials/mpi/
https://www.open-mpi.org/doc/v1.6/

