Recitation 5

MPI| Programming

15-418/618 Spring 2020

Topics

m What is MPI
m MPI Basics

m Implementing a 2-D Grid Solver
= Structuring problem for message-passing parallelism
" Message passing coding examples
® Running on GHC and Latedays machines

" Performance measurements and analysis

m Suggestions for additional information

m All code in directory linked from schedule web page

15-418/618 Spring 2020 2

Carnegie Mellon

Background

m Message Passing Interface
® Library + compiler support for message-passing parallel programs

= Independent processes that communicate only by explicit
sending and receiving of messages

= Supports multiple styles of communication
= Point-to-point
= Broadcast

= Reduction (e.g., global sum or minimum)

m Multiple Implementations
®" Runs on everything from data clusters to supercomputers
®" On GHC machines
= Can utilize multiple cores within single machine
®" On Latedays machines

= Multiple cores on one or more machines

15-418/618 Spring 2020 3

MPI Can be Simple

m Many parallel programs can be written using just these
six functions:
= Setup/teardown
» MPI_INIT

= MPI FINALIZE
= WhoamI?

= MPI_COMM SIZE

= MPI_COMM_ RANK
" Message passing

= MPI_SEND

= MPI_RECV

15-418/618 Spring 2020 4

... but Painful!

m OpenMP
" Add pragmas to existing program
= Compiler + runtime system arrange for parallel execution
= Rely on shared memory for communication

= MPI

= Must rewrite program to describe how single process should
operate on its data and communicate with other processes

= Explicit data movement: programmer must say exactly what data
goes where and when

= Advantage: Can operate on systems that don’t have shared
memory

15-418/618 Spring 2020

Carnegie Mellon

Process Identification

m When running with P processes:
= Size: P
= Total number of processes
= Rank: Number between 0 and P-1

= |dentity of individual process

m Library Functions
" MPI Comm size

= MP I_Comm_rank

15-418/618 Spring 2020 6

A Simple MPI Program

m From hello.c

int main(int , char * [1)
{

int , ;

MPI_ Init(;) ;

MPI Comm rank(MPI COMM WORLD, &rank);

MPI Comm size(MPI COMM WORLD, &size);

printf (, rank, size);
MPI Finalize();

return 0O;

}

" MPI COMM WORLD indicates the set of all processes
= All MPI functions return error code

® Update values by passing pointers as arguments

15-418/618 Spring 2020 7

A Simple MPI Program

m From hello.c

int main(int , char * [1)
{

int ; ;

MPI Init(’) ;

MPI Comm rank(MPI_COMM WORLD, &rank);
MPI Comm size(MPI_COMM WORLD, &size);

printf (, rank, size);
MPI Finalize();
return O;
}
m Compile
" mpicc -02 -g -Wall hello.c -o hello
m Run
_ Hello! I am O of 2
" mpirun -np 2 ./hello Hello! I am 1 of 2

15-418/618 Spring 2020

Carnegie Mellon

Comparing Frameworks

m Multiple Processes with MPI
" Fixed number of processes created as program starts
= All execute code starting withmain

" |solated address spaces
m Multiple Processes with fork

" Processes created during program execution
= Replicate address space upon creation, but then isolated

m Multiple Threads with pthread create

" Threads created during program execution
= Shared address space

m Multiple Threads with OpenMP
= Set of threads created at beginning of program (conceptually)
" Recruited to execute tasks spawned by #pragma omp parallel
= Shared address space

15-418/618 Spring 2020 9

Synchronous Sending and Receiving

(From Lecture #5)

m send(): call returns when sender receives
acknowledgement that message data resides in address
space of receiver

m recv(): call returns when data from received message is
copied into address space of receiver and
acknowledgement sent back to sender

m Potential for deadlock if all processes attempt to send and
then receive

15-418/618 Spring 2020 10

Carnegie Mellon

Synchronous Sending and Receiving

Sender: Receiver:

Call SEND(foo) Call RECV(bar)
Copy data from buffer ‘foo’ in sender’s address

space into network buffer

Copy data into buffer‘bar’ in receiver’s
address space

Receive ack r——————— 000 ack
SEND() returns RECV() returns

15-418/618 Spring 2020 11

Carnegie Mellon

Asynchronous Sending and Receiving

m Low-level communication handled by additional threads

m send(): call returns immediately

= Buffer provided to send() cannot be modified by calling thread
since message processing occurs concurrently with process
execution

= Calling thread can perform other work while waiting for message
to be sent

m recv(): posts intent to receive in the future, returns

immediately
= Use checksend(), checkrecv() to determine actual status of
send/receipt
= Calling thread can perform other work while waiting for message
to be received

15-418/618 Spring 2020 12

Carnegie Mellon

Asynchronous Sending and Receiving

Sender:

Call SEND(foo)
SEND returns handle h1

Copy data from ‘foo’ into network buffer

Receiver:

Call RECV(bar)
RECV(bar) returns handle h2

» Receive message

Send message

Call CHECKSEND(h1) //if message sent, now safe for thread to modify ‘foo’

RED TEXT = executes concurrently with application thread

15-418/618 Spring 2020

Messaging library copies data into ‘bar’

Call CHECKRECV(h2)
// if received, now safe for thread

// to access ‘bar’

13

Carnegie Mellon

MPI Send/Receive Operations

m Synchronous
" MPI Send
“ MPI Recv

m Asynchronous
" MPI Isend
* MPI Irecv
" MPI Wait

15-418/618 Spring 2020 14

Carnegie Mellon

Example Application

ne A new[r,c] = 0.2 *

(A_curr|r, c]
A curr|r, c-1]
A curr[r-1, c]
A curr|r, c+1]
A currl[r+l, c 1]);

+
+
+
+

m Jacobi Iterations

" = Compute new state
for each grid point
based on current state

m Avoids sequential
dependency among
grid points

15-418/618 Spring 2020 15

Carnegie Mellon

Visualization of Grid Solver

m Outer ring shows boundary conditions
m Inner 30 x 30 grid shows grid values

15-418/618 Spring 2020

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

16

Carnegie Mellon

Horizontal Boundary Conditions

.“

m ./heat.py-V-bh

15-418/618 Spring 2020 17

Carnegie Mellon

Corner Boundary Conditions

m ./heat.py-V-bc

15-418/618 Spring 2020 18

Carnegie Mellon

Diagonal Boundary Conditions

"'5\
&

m ./heat.py-V-bd
15-418/618 Spring 2020 19

Carnegie Mellon

Random Boundary Conditions

m ./heat.py-V-br

15-418/618 Spring 2020 20

Carnegie Mellon

Sequential Version: Grid Representation

typedef struct {
int ;
int ;
double * ; // Size = (nrow+2) X (ncol+2)
double * ; // Size = (nrow+2) X (ncol+2)
} g
< ncol+2 >
A
nrow+2
v

data

15-418/618 Spring 2020 21

Carnegie Mellon

Sequential Code Structure

static double step grid(grid t *g) ({
double = 0.0;
for (int r = 0; r < g->nrow,; r++) {
for (int ¢ = 0; ¢ < g->ncol; c++) {
Compute g->ndata[r,c]
Compute diff = |g->data[r,c] - g->ndata[r,c]|
maxdiff = max(diff, maxdiff)

}

Swap g->data and g->ndata

return maxdiff;

m Keep stepping until maxdiff < epsilon

15-418/618 Spring 2020 22

Carnegie Mellon

Computing New State for One Grid Point

m Indexing into grid (row-major order)
GINDEX (g, r, c) (((r)+1l)*((g)->ncol+2)+((c)+1))

m Fraction of new state coming from adjacent grid points
0.8

m Computation of g->ndata[GINDEX (g, r, c)]

static inline double new state(grid t *g, int r, int c) ({

double = g->data[GINDEX (g, r, c)l;
double = g->data[GINDEX(g, r-1, c)l;
double = g->data[GINDEX(g, r, c+l)];
double = g->data[GINDEX (g, r+l, c)l;
double = g->data[GINDEX(g, r, «c¢-1)];

return 0.25 * CONDUCTIVITY * (nv+ev+sv+wv)
+ (1-CONDUCTIVITY) * ov;

15-418/618 Spring 2020 23

Carnegie Mellon

Additional Points

m Exchanging Data Arrays

double * = g->data;
g->data = g->ndata;
g->ndata = tdata;

m Properties of Computation
" On eachstep, g->data isread-only, g->ndata is write-only
= Requires storage for 16 bytes / grid point
= GHC machines have 12MiB L3 cache
— Up to 886 X 886 array
= Latedays nodes have 15MiB L3 cache
— Up to 991 X991 array

15-418/618 Spring 2020 24

Carnegie Mellon

Using OpenMP for Parallelism

static double step grid(grid t *g) {
double = 0.0;

#pragma omp parallel for schedule (static) reduction (max:maxdiff)
for (int r = 0; r < g->nrow,; r++) {
for (int c 0; ¢ < g->ncol; c++) {

Compute g->ndata[r,c]
Compute diff = |g->data[r,c] - g->ndata[r,c]|
maxdiff = max(diff, maxdiff)

}

Swap g->data and g->ndata

return maxdiff;

}

m Easy!

15-418/618 Spring 2020 25

Message-Passing Decomposition

From Lecture #5

®© ©6 06 0 06 00 0 0 0 0 o Thread 1 Each]]
© ©6 0600 0000600 0 Address| M dC processpmalntalns

Space

e ecececee e state for subrange of rows
Send row = Plus storage for “ghost cells”
above and below

Thread 2
Address
Space

m Exchanges boundary data
with processes p—1 and p+1
on each step

Send row = Fill in ghost cells
© 06 060000 0 0 0 0 of Madd o Computes local value of
Address

Space maxdiff

m Globally: find max of
Thread 4

Addaess maxdiff’s
® 6 6 6 06 6 6 6 6 & 0 o Space

15-418/618 Spring 2020 26

Carnegie Mellon

Parallel Version: Grid Representation

typedef struct {
int ; // Total rows in grid
int ; // Columns in grid
int ;
int ;
int ; // Number of rows in local region
int ; // Offset of local rows from global rows
double * ; // Size = (row _count+2) X (ncol+2)
double * ; // Size = (row _count+2) X (ncol+2)
A } ;
row_start
data ndata
nrow+2
ncol+2

v

15-418/618 Spring 2020 27

Carnegie Mellon

Message Passing Code Structure

static double step grid(grid t *g) ({
double = 0.0;
for (int r = 0; r < g->row _count; r++) ({
for (int ¢ = 0; ¢ < g->ncol; c++) {
Compute g->ndata[r,c]

Compute diff = |g->data[r,c] - g->ndata[r,c]|
local maxdiff = max(diff, local maxdiff)

}

Swap g->data and g->ndata

Exchange rows with neighbors

double maxdiff = global maximum(local maxdiff)

return maxdiff;

15-418/618 Spring 2020 28

Carnegie Mellon

Exchanging Row Data

/* Exchange rows with neighbors to north and south */
static void exchange rows(grid t *g) ({

if (g->row_count == 0)
return;
int = g->process_id;
bool = process_id > 0;
bool = process_id < g->process count - 1;

if (north neighbor)
Start sending row 0 north
if (south neighbor) Asynchronous Send
Start sending row row_count-1 to south
if (north neighbor)
Receive row -1 from north
if (south neighbor)
Receive row row_count from south
if (north neighbor)
Wait until finished sending data north
if (south neighbor)
Wait until finished sending data south

Synchronous Receive

}

15-418/618 Spring 2020 29

Carnegie Mellon

Send/Receive Functions

m Keeping record of asynchronous send or receive
MPI Request ;

m Asynchronous send

double * = &g->data[GINDEX(g, O, 0)];
start send data(north boundary, g->ncol, process id - 1,
&north request);

m Synchronous receive

double * = &g->data[GINDEX(g, -1, 0)];
receive data(north ghost, g->ncol, process id - 1);

m Completion of asynchronous send

finish data(&north request);

15-418/618 Spring 2020 30

Carnegie Mellon

Asynchronous Send Function

m Call to wrapper function

double * = &g->data[GINDEX(g, O, 0)];
start send data(north boundary, g->ncol, process id - 1,
&north request);

m Wrapper Implementation

static void start send data(double * , int , int
MPI Request *) {
MPI Isend(data, count, MPI DOUBLE, process_id,
0, MPI COMM WORLD, request);

" Send count double’s at data to process id and track with
request

" Note how send buffer is a portion of the grid data array

15-418/618 Spring 2020 31

Carnegie Mellon

Synchronous Receive Function
m Call to wrapper function

double * = &g->data[GINDEX(g, -1, 0)1];
receive data(north ghost, g->ncol, process id - 1);

m Wrapper Implementation

static void receive_ data(double * , int , int) {
MPI Recv(data, count, MPI DOUBLE, process id,
0, MPI_COMM_WORLD , MPI_STATUS_IGNORE) ;

" Receive count double’s into data from process id
" Note how receive buffer is a portion of the grid data array

15-418/618 Spring 2020 32

Carnegie Mellon

Asynchronous Completion Function

m Call to wrapper function

finish data(&north request);

m Wrapper Implementation

static void finish data (MPI_Request *) |
MPI Wait(request, MPI STATUS IGNORE) ;

}

" Wait until communication tracked with request has completed

® Can also be used to wait for completion of asynchronous receive

15-418/618 Spring 2020 33

MPI Send/Receive APIs

int MPI Isend(const void * , int , MPI Datatype ,
int , int , MPI Comm , MPI Request *)
int MPI Recv(void * , int , MPI Datatype ,
int , int , MPI Comm , MPI Status *)
int MPI Wait (MPI_ Request * , MPI Status *)
buf Send / receive buffer
count Number of items

datatype Data type of items

source / Rank of source or destination

dest
tag Integer identifier to distinguish messages
comm Subset of processes

request Struct for tracking send/receive status

status Struct for recording communication status
15-418/618 Spring 2020 34

Carnegie Mellon

Choosing Synchronous vs. Asynchronous

m When exchanging data, best if at least one of send /
receive is asynchronous
= Avoids deadlock

m Asynchronous lets more things happen simultaneously

® Especially, to start sending messages to neighbors
= Possible to overlap with grid computation

= E.g., process grid points along boundaries first, then overlap
data exchange with internal grid point computation

m Synchronous is simpler
m Experiments

®" Found no performance difference using asynch send + asynch
receive, vs. asynch send + synch receive

®" Did not try overlapping with grid computation

15-418/618 Spring 2020 35

Carnegie Mellon

Broadcasting

m Same function for broadcaster and receivers

static void broadcast receive data(double * , int) {
/* Master process will send. Others will receive */
MPI Bcast(data, count, MPI DOUBLE, 0, MPI COMM WORLD) ;

m Process 0 broadcasts
= Send contents of buffer data to all other processes

m Other processes receive
" Store received data to buffer data

m In grid solver

" Process 0 broadcasts boundary condition data before starting
solver

= All others update their boundary data

15-418/618 Spring 2020 36

Carnegie Mellon

Global Reduction

static double global maximum(double) {
double = 0.0;
MPI Allreduce(&local max, &result, 1, MPI DOUBLE,
MPI_MAX, MPI_COMM WORLD) ;
return result;

®" Find global maximum for one value of type double

= API

int MPI Allreduce(const void * , void * , int ,
MPI Datatype , MPI Op , MPI Comm)

= Perform reduction operation for each of the elements in the
sendbuf’s. Distribute the results to the recvbuf’s.

15-418/618 Spring 2020 37

Carnegie Mellon

Performance on GHC Machines

m Speedups for OMP & MPI with 800 X 800 grid

GHC Speedup (N = 800)

6 “ o— ¥
5 / —e—GHC/MPI
s g o~ GHC/OMP

3 5//////*” Ideal

Threads/Processes

m Nearly the same. Reasonably good

15-418/618 Spring 2020 38

Carnegie Mellon

Performance on GHC Machines
m Problem scaling with 8 threads / processes

m Express in units of Nanoseconds per update

®= N x N grid. Ssteps. Time T seconds
= NPU=T*10°/(N*N *S)
" Describes time / work performed

15-418/618 Spring 2020 39

Carnegie Mellon

Performance on GHC Machines
m Problem scaling with 8 threads / processes

GHC Problem Scaling (8 Threads/Processes)
1.2

——GHC/MPI

Nanoseconds per update
o
(@)

04 ¥ o~ GHC/OMP
o
0.2
0
0 1000 2000 00 4000 5000 6000 7000

Grid Size N
Increased task granularity

Exceeds L3 cache capacity

m OMP / MPI nearly the same.

15-418/618 Spring 2020 40

Carnegie Mellon

Performance on Latedays Node

m Speedups for OMP & MPI with 900 X 900 grid

Latedays Speedup (N = 900)

14

12

10

—e— GHC/MPI

®— GHC/OMP

Ideal

m Generally comparable

15-418/618 Spring 2020 41

Carnegie Mellon

Performance on Latedays Node

m Problem scaling with 12 threads / processes
Latedays Problem Scaling (12 Threads/Processes)

25
2) =
215
E —e—GHC/MPI
e 1 «— GHC/OMP
0.5
0
0 1000 2000 3000 4000 5000 6000 7000

Grid Size N

m OMP much worse than MPI once exceed L3 cache

® Less read/write conflict?
15-418/618 Spring 2020 42

Carnegie Mellon

Using Multiple Latedays Nodes

m Run on K nodes with 12 * K processes

Latedays Problem Scaling (K Nodes, 12 processes/node)

25

2 g
g V e
;:1'5 o 4B e o | = L —e—K1/P12
£) ; . ¢ e K2/P24
g 1 K3/P36
- K4/P48
05

0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Grid Size N

m Internode communication has too much overhead to give
any speedup

15-418/618 Spring 2020 43

Carnegie Mellon

Some Key Points

m MPIlis a large and complex standard, but can do lots with
only core set of operations

m Well designed for bulk synchronous computations

" Repeated steps:
= Each process updates its portion of state

= Each process communicates boundary information with
neighbors

= Collectively test for convergence

m Users must explicitly manage buffers
® Can extract data from or insert data into state data arrays

" Don’t overwrite while waiting for asynchronous operation to
complete

15-418/618 Spring 2020 44

Carnegie Mellon

Useful Resources

m General Tutorial

" Good coverage of concepts and basics

" https://mpitutorial.com/tutorials/
m Longer MPI Tutorial

= More comprehensive and detailed

" https://computing.linl.gov/tutorials/mpi/
m Documentation for MPI 1.6

® Default version running on Latedays

" https://www.open-mpi.org/doc/v1.6/

15-418/618 Spring 2020 45

https://mpitutorial.com/tutorials/
https://computing.llnl.gov/tutorials/mpi/
https://www.open-mpi.org/doc/v1.6/

