
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2021

Lecture 19:

Transactional Memory

CMU 15-418/618,
Spring 2021

Raising level of abstraction for synchronization

▪ Previous topic: machine-level atomic operations

- Fetch-and-op, test-and-set, compare-and-swap, load linked-store conditional

▪ Then we used these atomic operations to construct higher level
synchronization primitives in software:

- Locks, barriers

-
primitives (easy to create bugs that violate atomicity, create deadlock, etc.)

▪ Today: raising level of abstraction for synchronization even further

- Idea: transactional memory

CMU 15-418/618,
Spring 2021

What you should know
▪ What a transaction is

▪ The difference (in semantics) between an atomic code block and
lock/unlock primitives

▪ The basic design space of transactional memory implementations
- Data versioning policy

- Conflict detection policy

- Granularity of detection

▪ The basics of a hardware implementation of transactional memory
(consider how it relates to the cache coherence protocol

CMU 15-418/618,
Spring 2021

Review: ensuring atomicity via locks

▪ Deposit is a read-modify-
atomic with respect to other bank operations on this account

▪ Locks are one mechanism to synchronize threads to ensure
atomicity of update (via ensuring mutual exclusion on the account)

void deposit(Acct account, int amount)
{

int tmp = bank.get(account);
tmp += amount;
bank.put(account, tmp);

}

lock(account.lock);

unlock(account.lock);

CMU 15-418/618,
Spring 2021

Programming with transactions
void deposit(Acct account, int amount)
{

lock(account.lock);
int tmp = bank.get(account);
tmp += amount;
bank.put(account, tmp);
unlock(account.lock);

}

void deposit(Acct account, int amount)
{

atomic {
int tmp = bank.get(account);
tmp += amount;
bank.put(account, tmp);

}
}

▪ Atomic construct is declarative
- Programmer states what to do (maintain atomicity of this code), not how to do it

- No explicit use or management of locks

▪ System implements synchronization as necessary to ensure
atomicity
- System could implement atomic { } using a lock

- Implementation discussed today uses optimistic concurrency: serialization only in
situations of true contention (R-W or W-W conflicts)

CMU 15-418/618,
Spring 2021

Declarative vs. imperative abstractions

▪ Declarative: programmer defines what should be done

- Execute all these independent 1000 tasks

▪ Imperative: programmer states how it should be done

- Spawn N worker threads. Assign work to threads by
removing work from a shared task queue

- Perform this set of operations atomically

- Acquire a lock, perform operations, release the lock

CMU 15-418/618,
Spring 2021

Transactional Memory (TM)

▪ Memory transaction
- An atomic and isolated sequence of memory accesses

- Inspired by database transactions

▪ Atomicity (all or nothing)
- Upon transaction commit, all memory writes in transaction take effect at once

- On transaction abort, none of the writes appear to take effect (as if
transaction never happened)

▪ Isolation
- No other processor can observe writes before transaction commits

▪ Serializability
- Transactions appear to commit in a single serial order

- But the exact order of commits is not guaranteed by semantics of transaction

CMU 15-418/618,
Spring 2021

Transactional Memory (TM)

▪

maintain for sets of reads and writes in a transaction.

Transaction:

Reads: X, Y, Z
Writes: A, X These memory transactions will either all be

observed by other processors, or none of them will.
(the effectively all happen at the same time)

CMU 15-418/618,
Spring 2021

Load-linked, store conditional (LL/SC)

▪ LL/SC is a lite version of transactional memory

▪ Pair of corresponding instructions (not a single atomic
instruction like compare-and-swap)
- load_linked(x): load value from address

- store_conditional
corresponding LL

▪ Corresponding ARM instructions: LDREX and STREX

▪ How might LL/SC be implemented on a cache coherent
processor?

CMU 15-418/618,
Spring 2021

Motivating transactional memory

CMU 15-418/618,
Spring 2021

Another example: tree update by two threads

1

2

3 4

Goal: modify nodes 3 and 4 in a thread-safe way

Slide credit: Austen McDonald

CMU 15-418/618,
Spring 2021

Fine-grained locking example

1

2

3 4

Slide credit: Austen McDonald

Hand-over-hand locking

Goal: modify nodes 3 and 4 in a thread-safe way

CMU 15-418/618,
Spring 2021

Fine-grained locking example

1

2

3 4

Slide credit: Austen McDonald

Hand-over-hand locking

Goal: modify nodes 3 and 4 in a thread-safe way

CMU 15-418/618,
Spring 2021

Fine-grained locking example

1

2

3 4

Slide credit: Austen McDonald

Hand-over-hand locking

Goal: modify nodes 3 and 4 in a thread-safe way

CMU 15-418/618,
Spring 2021

Fine-grained locking example

1

2

3 4

Slide credit: Austen McDonald

Hand-over-hand locking

Goal: modify nodes 3 and 4 in a thread-safe way

CMU 15-418/618,
Spring 2021

Fine-grained locking example

1

2

3 4

Slide credit: Austen McDonald

Hand-over-hand locking

Goal: modify nodes 3 and 4 in a thread-safe way

CMU 15-418/618,
Spring 2021

Fine-grained locking example

1

2

3 4

Slide credit: Austen McDonald

Locking can prevent concurrency
(here: locks on node 1 and 2 during update to node 3 could delay update to 4)

Hand-over-hand locking

Goal: modify nodes 3 and 4 in a thread-safe way

CMU 15-418/618,
Spring 2021

Transactions example

1

2

3 4

Slide credit: Austen McDonald

Transaction A
READ: 1, 2, 3

Figure highlights data touched
as part of transaction

CMU 15-418/618,
Spring 2021

Transactions example

1

2

3 4

Slide credit: Austen McDonald

Transaction A
READ: 1, 2, 3
WRITE: 3

Figure highlights data touched
as part of transaction

CMU 15-418/618,
Spring 2021

Transactions example

1

2

3 4

Slide credit: Austen McDonald

Transaction A
READ: 1, 2, 3
WRITE: 3

Transaction B
READ: 1, 2, 4
WRITE: 4

NO READ-WRITE or
WRITE-WRITE conflicts!
(no transaction writes to data that is
accessed by other transactions)

Figure highlights data touched
as part of transaction

CMU 15-418/618,
Spring 2021

Transactions example #2

1

2

3 4

Slide credit: Austen McDonald

Transaction A
READ: 1, 2, 3
WRITE: 3

Transaction B
READ: 1, 2, 3
WRITE: 3

Conflicts exist: transactions
must be serialized
(both transactions write to node 3)

(Both transactions modify node 3)

CMU 15-418/618,
Spring 2021

Performance: locks vs. transactions

0.0000

0.2500

0.5000

0.7500

1.0000

1 2 4 8 16

E
x

e
c

u
ti

o
n

 T
im

e

Processors

coarse locks fine locks TCC

0.0000

1.0000

2.0000

3.0000

4.0000

1 2 4 8 16

E
x

e
c

u
ti

o
n

 T
im

e

Processors

coarse locks fine locks TCC

B
a
la

n
c
e
d

 T
re

e
H

a
s
h

M
a
p

implemented in hardware

CMU 15-418/618,
Spring 2021

Failure atomicity: locks

▪ Complexity of manually catching exceptions
- -by-case basis

-
- Some side-effects may become visible to other threads

-

void transfer(A, B, amount) {
synchronized(bank)
{

try {
withdraw(A, amount);
deposit(B, amount);

}
catch(exception1) { /* undo code 1*/ }
catch(exception2) { /* undo code 2*/ }

…
}

}

CMU 15-418/618,
Spring 2021

Failure atomicity: transactions

▪ System now responsible for processing exceptions
- All exceptions (except those explicitly managed by the programmer)

- Transaction is aborted and memory updates are undone

-
to other threads

-

void transfer(A, B, amount)
{

atomic {
withdraw(A, amount);
deposit(B, amount);

}
}

CMU 15-418/618,
Spring 2021

Composability: locks

▪ Composing lock-based code can be tricky
- Requires system-wide policies to get correct

- System-wide policies can break software modularity

▪ Programmer caught between an extra lock and a hard
(to implement) place *
- Coarse-grain locks: low performance

- Fine-grain locking: good for performance, but can lead to deadlock

void transfer(A, B, amount)
{

synchronized(A) {
synchronized(B) {
withdraw(A, amount);
deposit(B, amount);

}
}

}

Thread 0:
transfer(x, y, 100);

Thread 1:
transfer(y, x, 100);

DEADLOCK!

* line. Too good to remove.

CMU 15-418/618,
Spring 2021

Composability: transactions

▪ Transactions compose gracefully (in theory)
- Programmer declares global intent (atomic execution of transfer)

- No need to know about global implementation strategy

- Transaction intransfer subsumes any defined in withdraw and deposit

- Outermost transaction defines atomicity boundary

▪ System manages concurrency as well as possible serialization
- Serialization for transfer(A, B, 100) and transfer(B, A, 200)

- Concurrency for transfer(A, B, 100) and transfer(C, D, 200)

void transfer(A, B, amount) {
atomic {

withdraw(A, amount);
deposit(B, amount);

}
}

25

Thread 0:
transfer(x, y, 100)

Thread 1:
transfer(y, x, 100);

CMU 15-418/618,
Spring 2021

Advantages (promise) of transactional memory
▪ Easy to use synchronization construct

- It is difficult for programmers to get synchronization right

- Programmer declares need for atomicity, system implements it well

- Claim: transactions are as easy to use as coarse-grain locks

▪ Often performs as well as fine-grained locks
- Provides automatic read-read concurrency and fine-grained concurrency

- Performance portability: locking scheme for four CPUs may not be the best scheme for 64 CPUs

- Productivity argument for transactional memory: system support for transactions can achieve
90% of the benefit of expert programming with fined-grained locks, with 10% of the
development time

▪ Failure atomicity and recovery
- No lost locks when a thread fails

- Failure recovery = transaction abort + restart

▪ Composability
- Safe and scalable composition of software modules

CMU 15-418/618,
Spring 2021

Atomic { }
▪ The difference

- Atomic: high-level declaration of atomicity

- Does not specify implementation of atomicity

- Lock: low-level blocking primitive

- Does not provide atomicity or isolation on its own

▪ Keep in mind
- Locks can be used to implement an atomic

- Locks can be used for purposes beyond atomicity

- Cannot replace all uses of locks with atomic regions

- Atomic eliminates many data races, but programming with atomic blocks
can still suffer from atomicity violations: e.g., programmer erroneous splits
sequence that should be atomic into two atomic blocks

Make sure you
understand this

difference in semantics!

CMU 15-418/618,
Spring 2021

What about replacing synchronized with atomic in
this example?

// Thread 1
synchronized(lock1)
{
…
flagA = true;
while (flagB == 0);
…

}

// Thread 2
synchronized(lock2)
{
…
flagB = true;
while (flagA == 0);
…

}

CMU 15-418/618,
Spring 2021

Atomicity violation due to programmer error

▪ Programmer mistake: logically atomic code sequence (in thread 1) is
erroneously separated into two atomic blocks (allowing another thread to
set pointer to NULL in between)

// Thread 1
atomic
{
…
ptr = A;
…

}

atomic
{
B = ptr->field;

}

// Thread 2
atomic
{
…
ptr = NULL;

}

CMU 15-418/618,
Spring 2021

Implementing transactional memory

CMU 15-418/618,
Spring 2021

Recall transactional semantics

▪ Atomicity (all or nothing)
- At commit, all memory writes take effect at once

- In event of abort, none of the writes appear to take effect

▪ Isolation
- No other code can observe writes before commit

▪ Serializability / Consistency
- Transactions seem to commit in a single serial order

- The exact order is not guaranteed though

▪ Durability
- Changes persist

- Not strictly true for TM

CMU 15-418/618,
Spring 2021

TM implementation basics

▪ TM systems must provide atomicity and isolation
- Without sacrificing concurrency

▪ Basic implementation requirements
- Data versioning (ALLOWS transaction to abort)

- Conflict detection and resolution (WHEN to abort)

▪ Implementation options
- Hardware transactional memory (HTM)

- Software transactional memory (STM)

- Hybrid transactional memory

- e.g., hardware-accelerated STMs

CMU 15-418/618,
Spring 2021

Data versioning

Manage uncommitted (new) and previously committed (old)
versions of data for concurrent transactions

1. Eager versioning (undo-log based)

2. Lazy versioning (write-buffer based)

CMU 15-418/618,
Spring 2021

Eager versioning

Begin Transaction

Memory

Thread
(executing transaction)

X: 10

Undo log

Write x ← 15

Memory

Thread
(executing transaction)

X: 15

Undo log
X: 10

Commit Transaction

Memory

Thread
(executing transaction)

X: 15

Undo log
X: 10

Abort Transaction

Memory

Thread
(executing transaction)

X: 10

Undo log
X: 10

CMU 15-418/618,
Spring 2021

Lazy versioning
Log memory updates in transaction write buffer, flush buffer on commit

Begin Transaction Write x ← 15

Commit Transaction Abort Transaction

Memory

Thread
(executing transaction)

X: 10

Write
buffer

Memory

Thread
(executing transaction)

X: 10

Write buffer
X: 15

Memory

Thread
(executing transaction)

X: 15

Write
bufferX: 15

Memory

Thread
(executing transaction)

X: 10

Write
bufferX: 15

CMU 15-418/618,
Spring 2021

Data versioning

▪ Manage uncommitted (new) and committed (old) versions of
data for concurrent transactions

▪ Eager versioning (undo-log based)
- Update memory location directly on write

- Maintain undo information in a log (incurs per-store overhead)

- Good: faster commit (data is already in memory)

- Bad: slower aborts, fault tolerance issues (consider crash in middle of transaction)

▪ Lazy versioning (write-buffer based)
- Buffer data in a write buffer until commit

- Update actual memory location on commit

- Good: faster abort (just clear log), no fault tolerance issues

- Bad: slower commits

Eager versioning philosophy: write to memory

(but deal with aborts when you have to)

Lazy versioning philosophy: only write to memory
when you have to

CMU 15-418/618,
Spring 2021

Conflict detection

▪ Must detect and handle conflicts between transactions
- Read-write conflict: transaction A reads address X, which was written to by

pending transaction B

- Write-write conflict: transactions A and B are both pending, and both write to
address X

▪
- Read-set: addresses read within the transaction

- Write-set: addresses written within the transaction

CMU 15-418/618,
Spring 2021

Pessimistic detection

▪ Check for conflicts during loads or stores
- A HW implementation will check for conflicts through coherence actions

(will discuss in detail later)

-

▪
when a conflict is detected
- Various priority policies to handle common case fast

CMU 15-418/618,
Spring 2021

Pessimistic detection examples

T0 T1

rd A

wr B

check

check

wr C

check

commit
commit

T0 T1

wr A

rd A

check

check

commit

commit

stall

T0 T1

rd A

wr A

check

check

commit

commit

restart
rd A

check

T0 T1

check

wr A

wr A

check

restart

check

wr A

restart

wr A

check

restart

Case 1 Case 2 Case 3 Case 4

Success Early detect
(and stall)

Abort No progress
(question: how to avoid livelock?)

Ti
m

e

stall
(case 2)

contention manager on writes: writer wins)

CMU 15-418/618,
Spring 2021

Optimistic detection
▪ Detect conflicts when a transaction attempts to commit

- HW: validate write set using coherence actions

- Get exclusive access for cache lines in write set

-

▪ On a conflict, give priority to committing transaction
- Other transactions may abort later on

- On conflicts between committing transactions, use contention manager to
decide priority

▪ Note: can use optimistic and pessimistic schemes together
- Several STM systems use optimistic for reads and pessimistic for writes

CMU 15-418/618,
Spring 2021

Optimistic detection

rd A

wr B

wr C

commit

commit

wr A

rd A

commit

rd A

wr A

commit

rd A
wr A

rd A
wr A

check

check

check

rd A

check

commit
check commit

check

rd A
wr A

commit
check

commit
check

T0 T1 T0 T1 T0 T1 T0 T1

Case 1 Case 2 Case 3 Case 4

Success Abort Success Forward Progress

Ti
m

e

restart
restart

CMU 15-418/618,
Spring 2021

Conflict detection trade-offs

▪
- Good: Detect conflicts early (undo less work, turn some aborts to stalls)

- Bad: no forward progress guarantees, more aborts in some cases

- Bad: fine-grained communication (check on each load/store)

- Bad: detection on critical path

▪ Optimistic conflict detection (
- Good: forward progress guarantees

- Good: bulk communication and conflict detection

- Bad: detects conflicts late, can still have fairness problems

CMU 15-418/618,
Spring 2021

Conflict detection granularity

▪ Object granularity (SW-based techniques)
- Good: reduced overhead (time/space)

-
- Bad: false sharing on large objects (e.g. arrays)

▪ Machine word granularity
- Good: minimize false sharing

- Bad: increased overhead (time/space)

▪ Cache-line granularity
- Good: compromise between object and word

▪ Can mix and match to get best of both worlds
- Word-level for arrays, object-

CMU 15-418/618,
Spring 2021

TM implementation space (examples)
▪ Hardware TM systems

- Lazy + optimistic: Stanford TCC

- Lazy + pessimistic: MIT LTM, Intel VTM

- Eager + pessimistic: Wisconsin LogTM

- Eager + optimistic: not practical

▪ Software TM systems
- Lazy + optimistic (rd/wr): Sun TL2

- Lazy + optimistic (rd)/pessimistic (wr): MS OSTM

- Eager + optimistic (rd)/pessimistic (wr): Intel STM

- Eager + pessimistic (rd/wr): Intel STM

▪ Optimal design remains an open question
- May be different for HW, SW, and hybrid

CMU 15-418/618,
Spring 2021

Hardware transactional memory (HTM)

▪ Data versioning is implemented in caches
- Cache the write buffer or the undo log

- Add new cache line metadata to track transaction read set and write set

▪ Conflict detection through cache coherence protocol
- Coherence lookups detect conflicts between transactions

- Works with snooping and directory coherence

▪ Note:
- Register checkpoint must also be taken at transaction begin (to restore

execution context state on abort)

CMU 15-418/618,
Spring 2021

HTM design
▪ Cache lines annotated to track read set and write set

- R bit: indicates data read by transaction (set on loads)

- W bit: indicates data written by transaction (set on stores)

- R/W bits can be at word or cache-line granularity

- R/W bits gang-cleared on transaction commit or abort

- For eager versioning, need a 2nd cache write for undo log

▪ Coherence requests check R/W bits to detect conflicts
- Observing shared request to W-word is a read-write conflict

- Observing exclusive (intent to write) request to R-word is a write-read conflict

- Observing exclusive (intent to write) request to W-word is a write-write conflict

M Tag R W Word 1 R W Word N. . .

This illustration tracks read and
write set at word granularity

MESI state bit for line (e.g., M state)

CMU 15-418/618,
Spring 2021

Example HTM implementation: lazy-optimistic

▪ CPU changes
- Ability to checkpoint register state (available in many CPUs)

-

CPU

Cache

ALUs

TM State

Tag DataV

Registers

CMU 15-418/618,
Spring 2021

CPU

Cache

ALUs

TM State

Tag DataVWR

Registers

Example HTM implementation: lazy-optimistic

▪ Cache changes
- R bit indicates membership to read set

- W bit indicates membership to write set

CMU 15-418/618,
Spring 2021

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

▪ Transaction begin
- Initialize CPU and cache state

- Take register checkpoint

HTM transaction execution

Xbegin

Load A

Load B

Store C ⇐ 5

Xcommit

0 0

0 0

0 0

CMU 15-418/618,
Spring 2021

Xbegin

Load A

Load B

Store C ⇐ 5

Xcommit

HTM transaction execution

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 3311 0

▪ Load operation
- Serve cache miss if needed

- Mark data as part of read set

A

0 0

0 0

1

CMU 15-418/618,
Spring 2021

Xbegin

Load A

Load B

Store C ⇐ 5

Xcommit

HTM transaction execution

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 3311 0

▪ Load operation
- Serve cache miss if needed

- Mark data as part of read set

A

1 0

0 0

B1

1

CMU 15-418/618,
Spring 2021

Xbegin

Load A

Load B

Store C ⇐ 5

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 3311 0

B 510 1

▪ Store operation
- Service cache miss if needed
- Mark data as part of write set (note: this is not a load into exclusive state. Why?)

HTM transaction execution

A

C

1 0 B1

1

1

CMU 15-418/618,
Spring 2021

Xbegin

Load A

Load B

Store C ⇐ 5

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

1 0

A 3311 0

B 510 1 upgradeX C
(result: C is now in exclusive-dirty state)

0 0

0 0

0 0

▪ Fast two-phase commit
- Validate: request RdX access to write set lines (if needed)

- Commit: gang-reset R and W bits, turns write set data to valid (dirty) data

HTM transaction execution: commit

1

1

1

A

C

B

CMU 15-418/618,
Spring 2021

Xbegin

Load A

Load B

Store C ⇐ 5

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 331

B 51

upgradeX D 

upgradeX A

▪ Fast conflict detection and abort
- Check: lookup exclusive requests in the read set and write set
- Abort: invalidate write set, gang-reset R and W bits, restore to register checkpoint

HTM transaction execution: detect/abort

1 0

0 1

A

C

1 0 B coherence requests from

conflicts with local read of A:
triggers abort of pending
local transaction)

1

1

1

Assume remote processor commits transaction with writes to A and D

CMU 15-418/618,
Spring 2021

Hardware transactional memory support in
Intel Haswell architecture *
▪

- xbegin:

- e.g., fallback to code-path with a spin-lock

- xend

- Xabort

- Implementation: tracks read and write set in L1 cache

▪ Processor makes sure all memory operations commit atomically
- But processor may automatically abort transaction for many reasons (e.g., eviction of

line in read or write set will cause a transaction abort).

- Implementation does not guarantee progress (see fallback address)

- Intel optimization guide (ch 12) gives guidelines for increasing probability that
transactions will not abort

* Shipped with bug that caused Intel disable it when discovered in 2014, fixed in Broadwell arch chips

CMU 15-418/618,
Spring 2021

TSX does not guarantee progress

▪ Transactions fail for many reasons

▪ Writing fallback paths still require locks

- The fallback path most overlap with the transaction

- The lock path must prevent transactions from committing

▪ For example:

Result status = _xbegin();

if (status == SUCCESS) {

if (_stop_the_world) {

_xabort();

}

...

_xend();

}

else {

/* Fall back path */

lock();

_stop_the_world = true;

...

_stop_the_world = false;

unlock();

}

CMU 15-418/618,
Spring 2021

TSX Performance

▪ TSX can only track a limited number of locations

- Minimize memory touched

▪ For example, treap better than AVL tree

- Self-balancing increases tracked set

▪ Transactions have a cost

- Approximately equal to the cost of six atomic primitives to
the same cache line

Results collected by Mario Dehesa-Azuara and Nick Stanley as Spring 2016 project

CMU 15-418/618,
Spring 2021

Summary: transactional memory
▪ Atomic construct: declaration of atomic behavior

- Motivating idea: increase simplicity of synchronization, without
(significantly) sacrificing performance

▪ Transactional memory implementation
- Many variants have been proposed: SW, HW, SW+HW

- Implementations differ in:

- Versioning policy (eager vs. lazy)

- Conflict detection policy (pessimistic vs. optimistic)

- Detection granularity

▪ Hardware transactional memory
- Versioned data is kept in caches

- Conflict detection mechanisms built upon coherence protocol

CMU 15-418/618,
Spring 2021

Another example: Java HashMap
▪ Map: Key → Value

- Implemented as a hash table with linked list per bucket

public Object get(Object key) {

int idx = hash(key); // compute hash

HashEntry e = buckets[idx]; // find bucket

while (e != null) { // find element in bucket

if (equals(key, e.key))

return e.value;

e = e.next;

}

return null;

}

Bad: not thread safe (when synchronization needed)
Good: no lock overhead when synchronization not needed

CMU 15-418/618,
Spring 2021

Synchronized HashMap

▪ Java 1.4 solution: synchronized layer
- Convert any map to thread-safe variant

- Uses explicit, coarse-grained locking specified by programmer

public Object get(Object key) {

synchronized (myHashMap) { // guards all accesses to hashMap

return myHashMap.get(key);

}

}

▪ Coarse-grain synchronized HashMap
- Good: thread-safe, easy to program

- Bad: limits concurrency, poor scalability

CMU 15-418/618,
Spring 2021

Review from earlier fine-grained sync lecture

▪ One solution: use finer-grained synchronization (e.g., lock per bucket)

- Now thread safe: but incurs lock overhead even if synchronization not needed

public Object get(Object key) {

int idx = hash(key); // compute hash

HashEntry e = buckets[idx]; // find bucket

while (e != null) { // find element in bucket

if (equals(key, e.key))

return e.value;

e = e.next;

}

return null;

}

-safe?

CMU 15-418/618,
Spring 2021

Review: performance of fine-grained locking

0.0000

0.2500

0.5000

0.7500

1.0000

1 2 4 8 16

E
x
e
c
u

ti
o

n
 T

im
e

Processors

coarse locks fine locks

0.0000

1.2500

2.5000

3.7500

5.0000

1 2 4 8 16

E
x
e
c
u

ti
o

n
 T

im
e

Processors

coarse locks fine locks

Ba
la

nc
ed

 T
re

e
H

as
h-

Ta
bl

e

Reducing contention via fine-grained locking leads to better performance

CMU 15-418/618,
Spring 2021

Transactional HashMap
▪ Simply enclose all operation in atomic block

- Semantics of atomic block: system ensures atomicity of logic within block

public Object get(Object key) {

atomic { // System guarantees atomicity

return m.get(key);

}

}

▪ Transactional HashMap
- Good: thread-safe, easy to program

- What about performance and scalability?

- Depends on the workload and implementation of atomic (to be discussed)

