
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2021

Lecture 18:

Fine-grained synchronization &
lock-free programming

CMU 15-418/618,
Spring 2021

▪ Fine-grained Synchronization

▪ Fine-grained Locking

▪ Lock-free Programming

CMU 15-418/618,
Spring 2021

Locking Problem

▪ Locks can be big and expensive

- How many atomic operations does one lock require?

- How much data requires one lock?

CMU 15-418/618,
Spring 2021

Recall CUDA 7 atomic operations
int atomicAdd(int* address, int val);

float atomicAdd(float* address, float val);

int atomicSub(int* address, int val);

int atomicExch(int* address, int val);

float atomicExch(float* address, float val);

int atomicMin(int* address, int val);

int atomicMax(int* address, int val);

unsigned int atomicInc(unsigned int* address, unsigned int val);

unsigned int atomicDec(unsigned int* address, unsigned int val);

int atomicCAS(int* address, int compare, int val);

int atomicAnd(int* address, int val); // bitwise

int atomicOr(int* address, int val); // bitwise

int atomicXor(int* address, int val); // bitwise

(omitting additional 64 bit and unsigned int versions)

CMU 15-418/618,
Spring 2021

GCC Atomic Builtins

type __sync_fetch_and_add (type *ptr, type value, ...)
type __sync_fetch_and_sub (type *ptr, type value, ...)
type __sync_fetch_and_or (type *ptr, type value, ...)
type __sync_fetch_and_and (type *ptr, type value, ...)
type __sync_fetch_and_xor (type *ptr, type value, ...)
type __sync_fetch_and_nand (type *ptr, type value, ...)
type __sync_add_and_fetch (type *ptr, type value, ...)
type __sync_sub_and_fetch (type *ptr, type value, ...)
type __sync_or_and_fetch (type *ptr, type value, ...)
type __sync_and_and_fetch (type *ptr, type value, ...)
type __sync_xor_and_fetch (type *ptr, type value, ...)
type __sync_nand_and_fetch (type *ptr, type value, ...)

type can be (unsigned) char, short, int, or long

CMU 15-418/618,
Spring 2021

Implementing atomic fetch-and-op

▪ Exercise: how can you build an atomic fetch+op out of atomicCAS()?

- try: atomic_max()

// atomicCAS:
// atomic compare and swap performs this logic atomically
int atomicCAS(int* addr, int compare, int val) {

int old = *addr;
*addr = (old == compare) ? val : old;
return old;

}

void atomic_max(int* addr, int x) {
int old = *addr;
int new = max(old, x);
while (atomicCAS(addr, old, new) != old) {
old = *addr;
new = max(old, x);

}
}

▪ What about these operations?
int atomic_increment(int* addr, int x); // for signed values of x
void lock(int* addr);

CMU 15-418/618,
Spring 2021

C++ 11 atomic<T>
▪ Provides atomic read, write, read-modify-write of entire objects

- Atomicity may be implemented by mutex or efficiently by processor-supported atomic instructions (if T
is a basic type)

▪ Provides memory ordering semantics for operations before and after
atomic operations
- By default: sequential consistency

- See std::memory_order or more detail

atomic<int> i;

i++; // atomically increment i

int a = i;

// do stuff

i.compare_exchange_strong(a, 10); // if i has same value as a, set i to 10

bool b = i.is_lock_free(); // true if implementation of atomicity

// is lock free

▪ Will be useful if implementing the lock-free programming ideas in C++

CMU 15-418/618,
Spring 2021

How are the operations atomic?

▪ x86 Lock prefix

- If the memory location is cached, then the cache retains
that location until the operation completes

- If not:

- On a bus, the processor uses the lock signal and holds
the bus until the operation completes

- On other designs, the processor (probably) NACKs any
request for the cache line until the operation completes

N.B. Operations must be made on non-overlapping addresses

CMU 15-418/618,
Spring 2021

Locking more than one location

▪ Data structures are often larger than a single memory
location

- How can an entire data structure be protected?
E.g. 15213 Proxylab cache

CMU 15-418/618,
Spring 2021

Example: a sorted linked list
What can go wrong if multiple threads
operate on the linked list simultaneously?

struct Node {

int value;

Node* next;

};

struct List {

Node* head;

};

void insert(List* list, int value) {

Node* n = new Node;

n->value = value;

// assume case of inserting before head of

// of list is handled here (to keep slide simple)

Node* prev = list->head;

Node* cur = list->head->next;

while (cur) {

if (cur->value > value)

break;

prev = cur;

cur = cur->next;

}

n->next = cur;

prev->next = n;

}

void delete(List* list, int value) {

// assume case of deleting first element is

// handled here (to keep slide simple)

Node* prev = list->head;

Node* cur = list->head->next;

while (cur) {

if (cur->value == value) {

prev->next = cur->next;

delete cur;

return;

}

prev = cur;

cur = cur->next;

}

}

CMU 15-418/618,
Spring 2021

Example: simultaneous insertion
Thread 1 attempts to insert 6

Thread 2 attempts to insert 7

3 5 10 11 18

Thread 1:

3 5 10 11 18

prev cur

6

CMU 15-418/618,
Spring 2021

Example: simultaneous insertion
Thread 1 attempts to insert 6
Thread 2 attempts to insert 7

Thread 1:

3 5 10 11 18

prev cur

6

Thread 2:

3 5 10 11 18

prev cur

7

Thread 1 and thread 2 both compute same prev and cur.
Result: one of the insertions gets lost!

Result: (assuming thread 1 updates prev->next before thread 2)

3 5 10 11 18

7

CMU 15-418/618,
Spring 2021

Solution 1: protect the list with a single lock

void insert(List* list, int value) {

Node* n = new Node;

n->value = value;

lock(list->lock);

// assume case of inserting before head of

// of list is handled here (to keep slide simple)

Node* prev = list->head;

Node* cur = list->head->next;

while (cur) {

if (cur->value > value)

break;

prev = cur;

cur = cur->next;

}

n->next = cur;

prev->next = n;

unlock(list->lock);

}

void delete(List* list, int value) {

lock(list->lock);

// assume case of deleting first element is

// handled here (to keep slide simple)

Node* prev = list->head;

Node* cur = list->head->next;

while (cur) {

if (cur->value == value) {

prev->next = cur->next;

delete cur;

unlock(list->lock);

return;

}

prev = cur;

cur = cur->next;

}

unlock(list->lock);

}

struct Node {

int value;

Node* next;

};

struct List {

Node* head;

Lock lock;

};
Per-list lock

CMU 15-418/618,
Spring 2021

Single global lock per data structure

▪ Good:

- It is relatively simple to implement correct mutual
exclusion for data structure operations (we just did it!)

▪ Bad:

- Operations on the data structure are serialized

- May limit parallel application performance

CMU 15-418/618,
Spring 2021

Challenge: who can do better?
struct Node {

int value;

Node* next;

};

struct List {

Node* head;

};

3 5 10 11 18

void insert(List* list, int value) {

Node* n = new Node;

n->value = value;

// assume case of inserting before head of

// of list is handled here (to keep slide simple)

Node* prev = list->head;

Node* cur = list->head->next;

while (cur) {

if (cur->value > value)

break;

prev = cur;

cur = cur->next;

}

prev->next = n;

n->next = cur;

}

void delete(List* list, int value) {

// assume case of deleting first element is

// handled here (to keep slide simple)

Node* prev = list->head;

Node* cur = list->head->next;

while (cur) {

if (cur->value == value) {

prev->next = cur->next;

delete cur;

return;

}

prev = cur;

cur = cur->next;

}

}

CMU 15-418/618,
Spring 2021

T0T0T0T0

-over-

3 5 10 11 18

Thread 0: delete(11)

T0 prev T0 cur

CMU 15-418/618,
Spring 2021

T0T1T1

3 5 10 18

T0

11

Thread 0: delete(11)
Thread 1: delete(10)

T0 prev T0 cur

-over-

CMU 15-418/618,
Spring 2021

T1T1

3 5 10 18

Thread 0: delete(11)
Thread 1: delete(10)

-over-

CMU 15-418/618,
Spring 2021

T1

3 5 18

Thread 0: delete(11)
Thread 1: delete(10)

-over-

CMU 15-418/618,
Spring 2021

Solution 2: fine-grained locking
struct Node {

int value;

Node* next;

Lock* lock;

};

struct List {

Node* head;

Lock* lock;

};

void insert(List* list, int value) {

Node* n = new Node;

n->value = value;

// assume case of insert before head handled

// here (to keep slide simple)

Node* prev, *cur;

lock(list->lock);

prev = list->head;

cur = list->head->next;

lock(prev->lock);

unlock(list->lock);

if (cur) lock(cur->lock);

while (cur) {

if (cur->value > value)

break;

Node* old_prev = prev;

prev = cur;

cur = cur->next;

unlock(old_prev->lock);

if (cur) lock(cur->lock);

}

n->next = cur;

prev->next = n;

unlock(prev->lock);

if (cur) unlock(cur->lock);

}

void delete(List* list, int value) {

// assume case of delete head handled here

// (to keep slide simple)

Node* prev, *cur;

lock(list->lock);

prev = list->head;

cur = list->head->next;

lock(prev->lock);

unlock(list->lock);

if (cur) lock(cur->lock)

while (cur) {

if (cur->value == value) {

prev->next = cur->next;

unlock(prev->lock);

unlock(cur->lock);

delete cur;

return;

}

Node* old_prev = prev;

prev = cur;

cur = cur->next;

unlock(old_prev->lock);

if (cur) lock(cur->lock);

}

unlock(prev->lock);

}

Challenge to students: there is way to further
improve the implementation of insert(). What is it?

CMU 15-418/618,
Spring 2021

Fine-grained locking
▪ Goal: enable parallelism in data structure operations

- Reduces contention for global data structure lock

- In previous linked-list example: a single monolithic lock is overly conservative
(operations on different parts of the linked list can proceed in parallel)

▪ Challenge: tricky to ensure correctness
- Determining when mutual exclusion is required

- Deadlock? (how do you immediately know the earlier linked-list code is deadlock free?)

- Livelock?

▪ Costs?
- Overhead of taking a lock each traversal step (extra instructions + traversal now

involves memory writes)

- Extra storage cost (a lock per node)

- What is a middle-ground solution that trades off some parallelism for reduced
overhead? (hint: similar issue to selection of task granularity)

CMU 15-418/618,
Spring 2021

Practice exercise

▪ Implement a fine-grained locking implementation of a
binary search tree supporting insert and delete
struct Tree {

Node* root;

};

struct Node {

int value;

Node* left;

Node* right;

};

void insert(Tree* tree, int value);

void delete(Tree* tree, int value);

CMU 15-418/618,
Spring 2021

Lock-free data structures

CMU 15-418/618,
Spring 2021

Blocking algorithms/data structures

▪ A blocking algorithm allows one thread to prevent other
threads from completing operations on a shared data structure
indefinitely

▪ Example:
- Thread 0 takes a lock on a node in our linked list

- Thread 0 is swapped out by the OS, or crashes, or is just really slow (takes a page fault), etc.

- Now, no other threads can complete operations on the data structure (although thread 0 is
not actively making progress modifying it)

▪ An algorithm that uses locks is blocking regardless of whether
the lock implementation uses spinning or pre-emption

CMU 15-418/618,
Spring 2021

Lock-free algorithms

▪ Non-blocking algorithms are lock-free if some thread is

- In lock-free case, it is not possible to preempt one of the threads at an
inopportune time and prevent progress by rest of system

- Note: this definition does not prevent starvation of any one thread

CMU 15-418/618,
Spring 2021

Single reader, single writer bounded queue *

▪ Only two threads (one producer, one consumer) accessing queue at the same time
▪ Threads never synchronize or wait on each other

- When queue is empty (pop fails), when it is full (push fails)

struct Queue {

int data[N];

int head; // head of queue

int tail; // next free element

};

void init(Queue* q) {

q->head = q->tail = 0;

}

// return false if queue is full
bool push(Queue* q, int value) {

// queue is full if tail is element before head
if (q->tail == MOD_N(q->head - 1))

return false;

q.data[q->tail] = value;
q->tail = MOD_N(q->tail + 1);
return true;

}

// returns false if queue is empty
bool pop(Queue* q, int* value) {

// if not empty
if (q->head != q->tail) {

*value = q->data[q->head];
q->head = MOD_N(q->head + 1);
return true;

}
return false;

}

* Assume a sequentially consistent memory system for now
(or the presence of appropriate memory fences, or C++ 11 atomic<>)

CMU 15-418/618,
Spring 2021

Single reader, single writer unbounded queue *

▪ Tail points to last element added

▪ Head points to element BEFORE head of queue

▪ Allocation and deletion performed by the same thread (producer)

struct Node {

Node* next;

int value;

};

struct Queue {

Node* head;

Node* tail;

Node* reclaim;

};

void init(Queue* q) {

q->head = q->tail = q->reclaim = new Node;

}

void push(Queue* q, int value) {

Node* n = new Node;
n->next = NULL;
n->value = value;

q->tail->next = n;
q->tail = q->tail->next;

while (q->reclaim != q->head) {
Node* tmp = q->reclaim;
q->reclaim = q->reclaim->next;
delete tmp;

}
}

// returns false if queue is empty
bool pop(Queue* q, int* value) {

if (q->head != q->tail) {
*value = q->head->next->value;
q->head = q->head->next;
return true;

}
return false;

}

Source: Dr. Dobbs Journal

* Assume a sequentially consistent memory system for now
(or the presence of appropriate memory fences, or C++ 11 atomic<>)

CMU 15-418/618,
Spring 2021

Single reader, single writer unbounded queue
head, tail, reclaim

tailhead, reclaim

3 10

push 3, push 10

pop (returns 3)

tailreclaim

3 10

head

pop (returns 10)

tail, headreclaim

3 10

pop (returns false... queue empty)

tail, headreclaim

3 10

reclaim, head

10

push 5 (triggers reclaim)

5

tail

CMU 15-418/618,
Spring 2021

Lock-free stack (first try)
struct Node {

Node* next;

int value;

};

struct Stack {

Node* top;

};

void init(Stack* s) {

s->top = NULL;

}

void push(Stack* s, Node* n) {

while (1) {

Node* old_top = s->top;

n->next = old_top;

if (compare_and_swap(&s->top, old_top, n) == old_top)

return;

}

}

Node* pop(Stack* s) {

while (1) {

Node* old_top = s->top;

if (old_top == NULL)

return NULL;

Node* new_top = old_top->next;

if (compare_and_swap(&s->top, old_top, new_top) == old_top)

return old_top;

}

}

Note difference from fine-grained locks example earlier: before, implementation locked a part of a
data-structure for fine-grained access. Here, threads do not hold lock on data-structure at all.

* Assume a sequentially consistent memory system for now
(or the presence of appropriate memory fences, or C++ 11 atomic<>)

CMU 15-418/618,
Spring 2021

The ABA problem
Thread 0 Thread 1

A B C

top

begin pop() (local variable: old_top = A, new_top = B)

B C

top

begin pop() (local variable old_top == A)

complete pop() (returns A)

modify node A: e.g., set value = 42
begin push(A)
complete push(A)

begin push(D)

complete push(D)

D B C

top

D B CA

top

CAS succeeds (sets top to B!)
complete pop() (returns A)

B C

toptime
Stack structure is corrupted! (lost D)

A, B, C, and D are stack node addresses.

CMU 15-418/618,
Spring 2021

Lock-free stack using counter for ABA soln
struct Node {

Node* next;

int value;

};

struct Stack {

Node* top;

int pop_count;

};

void init(Stack* s) {

s->top = NULL;

}

void push(Stack* s, Node* n) {

while (1) {

Node* old_top = s->top;

n->next = old_top;

if (compare_and_swap(&s->top, old_top, n) == old_top)

return;

}

}

Node* pop(Stack* s) {

while (1) {

int pop_count = s->pop_count;

Node* top = s->top;

if (top == NULL)

return NULL;

Node* new_top = top->next;

if (double_compare_and_swap(&s->top, top, new_top,

&s->pop_count, pop_count, pop_count+1))

return top;

}

}

▪ Maintain counter of pop operations
▪
▪ Could also solve ABA problem with node allocation and/or element reuse policies

test to see if either have changed (in this
example: return true if no changes)

CMU 15-418/618,
Spring 2021

Compare and swap on x86

▪ -and-swap instruction
- -and-

slide

-
memory to use the 64-bit wide single compare-and-swap instruction below.

▪ cmpxchg8b
-
- Can be used for compare-and-swap of two 32-bit values

▪ cmpxchg16b
-
- Can be used for compare-and-swap of two 64-bit values

CMU 15-418/618,
Spring 2021

Another problem: referencing freed memory
struct Node {

Node* next;
int value;

};

struct Stack {
Node* top;
int pop_count;

};

void init(Stack* s) {
s->top = NULL;

}

void push(Stack* s, int value) {
Node* n = new Node;
n->value = value;
while (1) {

Node* old_top = s->top;
n->next = old_top;
if (compare_and_swap(&s->top, old_top, n) == old_top)

return;
}

}

int pop(Stack* s) {
while (1) {

Stack old;
old.pop_count = s->pop_count;
old.top = s->top;

if (old.top == NULL)
return NULL;

Stack new_stack;
new_stack.top = old.top->next;
new_stack.pop_count = old.pop_count+1;

if (doubleword_compare_and_swap(&s, &old, new_stack))
int value = top->value;
delete top;
return value;

}
}

}

top might have been freed at this point
by the thread that popped it.

CMU 15-418/618,
Spring 2021

Hazard pointer: avoid freeing nodes until its determined
all other threads do not hold reference to node
struct Node {

Node* next;
int value;

};

struct Stack {
Node* top;
int pop_count;

};

// per thread ptr (node that cannot
// be deleted since the thread is
// accessing it)
Node* hazard;

// per-thread list of nodes thread
// must delete
Node* retireList;
int retireListSize;

void init(Stack* s) {
s->top = NULL;

}

void push(Stack* s, int value) {
Node* n = new Node;
n->value = value;
while (1) {

Node* old_top = s->top;
n->next = old_top;
if (compare_and_swap(&s->top, old_top, n) == old_top)

return;
}

}

int pop(Stack* s) {
while (1) {

Stack old;
old.pop_count = s->pop_count;
old.top = s->top;

if (old.top == NULL) return NULL;

hazard = old.top;
Stack new_stack;
new_stack.top = old.top->next;
new_stack.pop_count = old.pop_count+1;

if (doubleword_compare_and_swap(&s, &old, new_stack))
{

int value = old.top->value;
retire(old.top);
return value;

}
hazard = NULL;

}
}

// delete nodes if possible
void retire(Node* ptr) {

push(retireList, ptr);
retireListSize++;

if (retireListSize > THRESHOLD)
for (each node n in retireList) {

if (n not pointed to by any
thread’s hazard pointer) {

remove n from list
delete n;

}
}

}

CMU 15-418/618,
Spring 2021

Lock-free linked list insertion *
struct Node {

int value;

Node* next;

};

struct List {

Node* head;

};

// insert new node after specified node

void insert_after(List* list, Node* after, int value) {

Node* n = new Node;

n->value = value;

// assume case of insert into empty list handled

// here (keep code on slide simple for class discussion)

Node* prev = list->head;

while (prev->next) {

if (prev == after) {

while (1) {

Node* old_next = prev->next;

n->next = old_next;

if (compare_and_swap(&prev->next, old_next, n) == old_next)

return;

}

}

prev = prev->next;

}

}

Compared to fine-grained
locking implementation:

No overhead of taking locks
No per-node storage overhead

* For simplicity, this slide assumes the *only* operation on the list is insert

CMU 15-418/618,
Spring 2021

Lock-free linked list deletion
Supporting lock-free deletion significantly complicates data-structure

Consider case where B is deleted simultaneously with successful insertion of E after B.

B now points to E, but B is not in the list!

For the curious:
- Harris 2001. A Pragmatic Implementation of Non-blocking Linked-Lists
- Fomitchev 2004. Lock-free linked lists and skip lists

A B C D

E

X

CAS succeeds
on A->next

CAS succeeds
on B->next

CMU 15-418/618,
Spring 2021

Lock-free vs. locks performance comparison

Queue

Lock-free algorithm run time normalized to run time of using pthread mutex locks

Source: Hunt 2011. Characterizing the Performance and Energy
Efficiency of Lock-Free Data Structures

Linked List

Dequeue

CMU 15-418/618,
Spring 2021

In practice: why lock free data-structures?

▪ When optimizing parallel programs in this class you often assume
that only your program is using the machine
- Because you care about performance

- Typical assumption in scientific computing, graphics, data analytics, etc.

▪ In these cases, well written code with locks can be as fast (or faster)
than lock-free code

▪ But there are situations where code with locks can suffer from tricky
performance problems
- Multi-programmed situations where page faults, pre-emption, etc. can occur while thread

is in a critical section

- Creates problems like priority inversion, convoying, crashing in critical section, etc. that are
often discussed in OS classes

CMU 15-418/618,
Spring 2021

Summary
▪ Use fine-grained locking to reduce contention (maximize parallelism)

in operations on shared data structures
- But fine-granularity can increase code complexity (errors) and increase execution overhead

▪ Lock-free data structures: non-blocking solution to avoid overheads
due to locks
- But can be tricky to implement (ensuring correctness in a lock-free setting has its own

overheads)

- Still requires appropriate memory fences on modern relaxed consistency hardware

▪ Note: a lock-free design does not eliminate contention
- Compare-and-swap can fail under heavy contention, requiring spins

CMU 15-418/618,
Spring 2021

More reading
▪ Michael and Scott 1996. Simple, Fast and Practical Non-Blocking and Blocking Concurrent

Queue Algorithms

- Multiple reader/writer lock-free queue

▪ Harris 2001. A Pragmatic Implementation of Non-Blocking Linked-Lists

▪ Many good blog posts and articles on the web:

- http://www.drdobbs.com/cpp/lock-free-code-a-false-sense-of-security/210600279

- http://developers.memsql.com/blog/common-pitfalls-in-writing-lock-free-algorithms/

▪ Often students like to implement lock-free data structures for projects

- Linked list, skip- ConcurrentSkipListMap), list-based sets, etc.

- R
these projects.

http://developers.memsql.com/blog/common-pitfalls-in-writing-lock-free-algorithms/

