
15-418/618, Spring 2021

Assignment 3

Parallel Wandering Salesperson

Assigned: Mon. March 1st
Due: Wed. March 17th, 11:59 pm
Last day to handin: Sat. March 20th, 11:59 pm

Overview

In this assignment you will be solving the Wandering Salesman Problem (WSP) using the Branch-and-
Bound technique. WSP is representative of combinatorial optimization problems. The Branch-and-Bound
technique is an exhaustive evaluation technique that tries to make use of knowledge of the underlying
problem to reduce the amount of computation.

You are permitted to work in groups of 2 people to solve the problems for this assignment (hand in one
assignment per group.) You will be submitting to both Autolab and Gradescope.

Before you begin, please take the time to review the course policy on academic integrity at:

http://www.cs.cmu.edu/418/academicintegrity.html

The Wandering Salesman Problem

The object of WSP is to find the shortest route for a traveling salesman so that the salesman visits every
one of a set of cities exactly once. (Note: the salesman doesn’t return home. This is the difference between
the wandering salesman problem and the traveling salesman problem.) This is a hard combinatorial
optimization problem since for N cities there are at most N! possible routes (we assume that the cities are
fully connected).

The input to the problem is given in the form of a matrix. An element of the matrix, d[i][j] gives the
distance between city i and city j. The input to your program should be a file organized as follows:

N

d[1][2]

d[1][3] d[2][3]

d[1][4] d[2][4] d[3][4]

.

.

1

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-f20/www/academicintegrity.html

.

d[1][N] d[2][N] d[3][N] ... d[N-1][N]

where N is the number of cities, and d[i][j] is an integer giving the distance between cities i and j. The
output from the program should be an ordered list of cities (numbers between 1 and N). Clearly, there are
2 equivalent permutations - either one is acceptable.

1 Branch-and-Bound Solutions to Combinatorial Optimization Problems

First, consider a simple exhaustive evaluation as a way of solving the WSP. One way you might think
about evaluating every possible route is to construct a tree that describes all of the possible routes from
the first city, as shown in Figure 1 for a four city example.

1

1

2

2 2

2 2

3

3 3

33

4

44

4 4

2

34

5

6

8

911
40

Figure 1: A WSP example

For this WSP, d[1][2] = 5, d[1][3] = 40, d[1][4] = 11, d[2][3] = 9, d[2][4] = 6, d[3][4] = 8. All
of the possible routes can be found by traveling from the root to a different leaf node three times, once for
each unique path. For example, by taking the middle branch from the root node and the right branch after
that, the route 1 → 3 → 4 → 2 is produced, and has a distance of 40+8+6 = 54. There are six unique
root to leaf paths in this tree. Each possible route is represented twice, once in each direction.

A simple exhaustive evaluation of WSP for this example would then be to follow the six root to leaf paths
and determine the total distance for each path by adding up the distances indicated by each edge in the
tree. The route with the smallest distance is then chosen.

A better way to traverse each tree is to do it recursively. Here the summation of the earlier parts of each
route is not repeated every time that route portion is reused in several routes. The Branch-and-Bound
approach uses this type of problem formulation, but with some added intelligence. It uses more knowledge
of the problem to prune the tree as much as possible so that less evaluation is necessary. The basic approach
works as follows:

1. Evaluate one route of the tree in its entirety, (say 1 → 2 → 3 → 4) and determine the distance of

2

that path. Call this distance the current “bound” of the problem. The bound for this path in the
above tree is 5 + 9 + 8 = 22.

2. Next, suppose that a second path is partially evaluated, say path 1 → 3, and the partial distance, 40,
is already greater than the bound. If that is the case, then there is no need to complete the traversal
of any part of the tree from there on, because all of those possible routes (in this case there are two)
must have a distance greater than the bound. In this way the tree is pruned and therefore does not
have to be entirely traversed.

3. Whenever any route is discovered that has a better distance than the current bound, then the bound
is updated to this new value.

The Branch-and-Bound approach always remembers the best path it has found so far, and uses that to
prevent search down parts of the tree that couldn’t possibly produce better routes. You can see that for
larger trees, this could result in the removal of many possible evaluations.

2 The Assignment

The assignment is to write a parallel Branch-and-Bound program for the WSP, using OpenMP. The
objective is to obtain the best speedup possible. Start by cloning the below code. We recommend creating
a private repo for you and your partner to make collaboration easier.

git clone https://github.com/cmu15418-s21/asst3-s21

The starter code is contained in wsp.c. Run make to compile your program. You can run your program
using the following command.

./wsp -p [numProcessors] [inputFile]

Where numProcessors is the number of openMP cores and inputFile is reference to a dist file containing
city distances. An example of running the starter code is as such:

$./wsp -p 1 city/dist10

============ Time ============

Time: 0.013 ms (0.000 s)

========== Solution ==========

Cost: 0

Path: 0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 8 -> 9

The program computes the execution time of wsp-start() responsible for all the logic relevant to com-
puting an optimal path. Your first task is to implement the WSP algorithm sequentially. You may include
global variables, but all logic and allocations must run within wsp-start() in order for its time to
be correctly recorded.

We want you to focus on algorithm design and analysis rather than trying to hit a target
benchmark. Good speedups are meaningless unless you have the proper justification to accompany it.

3

As such, we do not want you aiming to hit a target speedup, as your analysis to the problem will be worth
more than your numeric results. Try to see how fast you can get your program to run, and justify the
limitations you meet with your program.

We’ve provided you a script verify.py that you can use to check your program against some of the smaller
sequential wsp-ref solutions. If you’d like to verify any of the larger distance files individually, you may
do so by running the wsp-ref program. Please note that wsp-ref is sequential and does not take the
number of cores as an argument.

$./wsp-ref city/dist10

============ Time ============

Time: 181.825 ms (0.182 s)

========== Solution ==========

Cost: 189

Path: 6 -> 1 -> 2 -> 7 -> 4 -> 5 -> 8 -> 3 -> 0 -> 9

Keep in mind that multiple paths of the optimal solution may exist. For this reason, we are only checking
that your distance cost matches that of the reference program.

We’ve also provided you with a program to help create additional distance files. You can make and run
./distgen in the city/ directory to create more cities. Please do not overwrite the distance files we’ve
provided you. An example of running ./distgen is provided below.

$./distgen

10 // number of cities

15418 // random seed

customCity // output file name

City 0: (54, 58)

City 1: (57, 3)

City 2: (80, 3)

City 3: (74, 40)

City 4: (72, 51)

City 5: (22, 62)

City 6: (80, 30)

City 7: (97, 73)

City 8: (34, 43)

City 9: (45, 10)

3 Write-Up

(10 pts) A brief (roughly one or two pages) description of how your program works. Describe the general
program flow and all significant data structures. You should first explain your sequential solution, and
then explain any modifications you made to your code when creating your parallel implementation.

(5 pts) The solutions (both the cost and path) to dist16, dist17, and dist18 problems. You should verify
your results with the sequential reference program we provide. We will be running your programs to
verify the correctness on these cases.

4

(10 pts) Execution time and speedup for 1, 2, 4, 8, 16, 24, and 32 cores on Latedays (instructions on how to
do so are included below) on dist16, dist17, and dist18. For reference, our solution to dist15 takes
approx. 30s with p=1 and 6s with p=8 on Latedays.

(25 pts) Discuss the results you expected and explain the reasons for any non-ideal behavior you observe. In
particular, if you don’t get perfect speedup, explain why. Is it possible to get better than perfect
speedup? Give measurements to back up your explanations.

4 Hand-in

You will submit your code via Autolab and your report via Gradescope.

• If you are working with a partner, form a group on Autolab. Do this before submitting
your assignment. One submission per group is sufficient.

• Make sure all of your code is compilable and runnable. We should be able to simply run make, then
execute your programs on AFS/Latedays without manual intervention.

• Run the command tar -czvf handin.tar wsp.c Makefile to create a handin.tar for you to upload
to Autolab.

• Upload your report as file report.pdf to Gradescope, one submission per team, and select the
appropriate pages for each part of the assignment. After submitting, you will be able to add your
teammate using the add group members button on the top right of your submission.

5 Running on the Latedays Cluster

The Latedays cluster contains 18 machines (1 head node plus 17 worker nodes). Each machine features:

• Two, six-core Xeon e5-2620 v3 processors (2.4 GHz, 15MB L3 cache, hyper-threading, AVX2 in-
struction support).

• 16 GB RAM (60 GB/sec of BW)

You can login to the Latedays head node latedays.andrew.cmu.edu via your Andrew login. You can edit
and compile your code on the head node, and then run jobs on the cluster’s worker nodes using a batch
queue. You have a home directory on Latedays that is not your Andrew home directory. (You have a 2GB
quota.) However, your Andrew home directory is mounted as /AFS.

Do not attempt to submit jobs from your AFS directory, since that directory is not mounted when your
job runs on the worker nodes of the cluster. (It is only mounted and accessible on the head node.) Instead,
copy your source code over to a subdirectory you have set up in your Latedays directory and recompile it.

The program submitjob.py is used to generate and submit command files to the job queue. It is invoked
as follows:

linux> ./submitjob.py -h

Usage: ./submitjob.py [-h] [-J] [-s NAME] [-a ARGS] [-r ROOT] [-d DIGITS]

-h Print this message

5

-J. Don’t submit job (just generate command file)

-s NAME Specify command file name (output file)

-a ARGS Arguments for wsp (can be quoted string)

-r ROOT Specify root name of output file

-d DIGITS Specify number of randomly generated digits in command and output file names

Here’s a brief description of the options:

-J Generate the command file, but do not submit it.

-s NAME - Specify the name of the command file. The default will name is of the form latedays-
DDDD.sh, where DDDD is a sequence of random digits.

-a ARGS - Provide arguments(s) for ./wsp. Typically, ARGS is a quoted string. For example, specifying
-a ’-p 8 city/dist10’ will cause the wsp program to be done with 8 cores on dist10.

-r ROOT - Specify the prefix of the summary output file name. The output file is generally of the form
ROOT-DDDD.out, where DDDD is a sequence of random digits.

-d DIGITS - Specify the number of random digits to include in the command and output file names.

Running submitjob.py on Latedays expects the wsp program and the city folder to be in the same directory.
Below is an example of running the command.

$ ls

wsp submitjob.py city/

$./submitjob.py -s test -a "-p 1 input/dist15"

Generated script test-3724.sh

368497.latedays.andrew.cmu.edu

$ ls

wsp submitjob.py city/ test-3724.sh test-3724.sh.e368497 test-3724.sh.o368497

test-3724.sh contains the executable script and test-3724.sh.o368497 contains the output for this specific
instance. You’ll be using Latedays to time your program.

The inclusion of random digits in the file names provides a way to avoid naming collisions. For example,
you can invoke submitjob.py n times with the same arguments, submitting n jobs, each with distinct file
names. After a successful submission, the program will echo the ID of your job. For example, if your job was
given the number 337 by the job queue system, the job would have the ID 337.latedays.andrew.cmu.edu.
After you submit a job, you can check the status of the queue via one of the following commands:

$ showq

$ qstat

When your job is complete, log files from standard output and standard error will be placed in your working
directory. If the command file was latedays-1234.sh, then the generated files will be latedays-1234.sh.o337
and latedays-1234.sh.e337 (substituting your job number for 337, of course). In addition, a summary of
the results will be written to the output file.

6

Looking at the command file, you will see that the maximum wall clock time for the job is limited to 30
minutes. This means that the job scheduler will cut your program off after 30 minutes without generating
any output.

Good luck!

7

	Branch-and-Bound Solutions to Combinatorial Optimization Problems
	The Assignment
	Write-Up
	Hand-in
	Running on the Latedays Cluster

