Lecture 6:
GPU Architecture and CUDA Programming
Today

- History: how graphics chips designed to accelerate Quake evolved into compute engines for a broad class of applications
- GPU programming in CUDA
- A more detailed look at GPU architecture
Recall basic GPU architecture

GPU
Multi-core chip
SIMD execution within a single core (many ALUs performing the same instruction)
Multi-threaded execution on a single core (multiple threads executed concurrently by a core)

Memory
DDR5 DRAM
(~1 GB)

~170 GB/sec
(high end GPUs)
Graphics 101 + GPU history
3D rendering

Model of a scene:
- 3D surface geometry (e.g., triangle mesh)
- surface materials
- lights
- camera

How does each triangle contribute to each pixel in the image?

Image credit: Henrik Wann Jensen
Real-time graphics primitives (entities)

- Vertices
- Primitives (triangles, points, lines)
- Fragments
- Pixels
Real-time graphics pipeline (operations)

Vertices
- Vertex Generation
 - Vertex stream
- Vertex Processing
 - Vertex stream

Primitives
- Primitive Generation
 - Primitive stream
- Primitive Processing
 - Primitive stream

Fragments
- Fragment Generation (Rasterization)
 - Fragment stream
- Fragment Processing
 - Fragment stream

Pixels
- Pixel Operations

Vertices in 3D space
1.

Vertices in positioned on screen
2.

Triangles positioned on screen
3.

Fragments (one per each covered pixel)

Shaded fragments
4.

Output image (pixels)
Example materials

Slide credit Pat Hanrahan
Images from Advanced Renderman [Apodaca and Gritz]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)
More materials

Slide credit Pat Hanrahan
Images from Matusik et al. SIGGRAPH 2003

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)
Example lights

- **Attenuating light** (intensity falls off with distance: $1/R^2$)

- **Spot light** (does not emit equally in all directions)

- **Environment light** (not a point source: defines light from all directions)
 - Defined by image: pixel(i,j) gives incoming light from direction (ϕ, Θ)

- **Non-physical light**
 - Example 1: cast negative light (makes surfaces darker)
 - Example 2: only illuminate blue surfaces
Early graphics programming (OpenGL)

- glLight(light_id, parameter_id, parameter_value)
 - 10 parameters (e.g., ambient/diffuse/specular color, position, direction, attenuation coefficient)

- glMaterial(face, parameter_id, parameter_value)
 - Parameter examples (surface color, shininess)

- Parameterized shading function evaluated at each mesh vertex
 - Summation over all enabled lights
 - Resulting per-vertex color modulated by result of texturing
Shading languages

- Specify materials and lights programmatically!
 - support large diversity in materials
 - support large diversity in lighting conditions

- Programmer provides mini-programs (“shaders”) that defines pipeline logic for certain stages
Example fragment shader

Run once per pixel covered by a triangle

HLSL shader program: defines behavior of fragment processing stage

```hlsl
sampler mySamp;
Texture2D<float3> myTex;
float3 lightDir;

float4 diffuseShader(float3 norm, float2 uv)
{
    float3 kd;
    kd = myTex.Sample(mySamp, uv);
    kd *= clamp(dot(lightDir, norm), 0.0, 1.0);
    return float4(kd, 1.0);
}
```

Let:

\[
\text{lightDir} = [-1, -1, 1]
\]

\[
\text{myTex} = \text{function defined on } [0,1]^2 \text{ domain: } [0,1]^2 \rightarrow \text{color} \]

\[
\text{mySamp defines how to sample from function to generate value at (u,v)}
\]
Texture coordinates (UV)

Red channel = u
Green channel = v
Shaded result
Observation circa 2001-2003

These GPUs are very fast processors for performing the same computation (shaders) on collections of data (streams of vertices, fragments, pixels)

Wait a minute! That sounds a lot like data-parallelism to me!

(I remember data-parallelism from exotic supercomputers in the 90s)
Hack! early GPU-based scientific computation

Dense matrix-matrix multiplication by drawing triangles

Set screen size to be output matrix size
Set graphics blend mode to ADD
for k=0 to K
Set texture coords as shown at right
Render 2 triangles that exactly cover screen
(one shader computation per pixel)

[Larson and McAllister, SC 2001]
“GPGPU” 2002-2003

GPGPU = “general purpose” computation on GPUs

Coupled Map Lattice Simulation [Harris 02]

Ray Tracing on Programmable Graphics Hardware [Purcell 02]

Sparse Matrix Solvers [Bolz 03]
Brook language (2004)

- Research project
- Abstract GPU as data-parallel processor

```cpp
kernel void scale(float amount, float a<>, out float b<>)
{
  b = amount * a;
}

// note: omitting initialization
float scale_amount;
float input_stream<1000>;
float output_stream<1000>;

// map kernel onto streams
scale(scale_amount, input_stream, output_stream);
```

- Brook compiler turned program into GPU commands such as createTexture, drawTriangles
GPU Compute Mode
NVIDIA Tesla architecture (2007)
(GeForce 8xxx series)
Provided alternative, non-graphics-specific ("compute mode") software interface to GPU

Multi-core CPU architecture
- CPU presents itself to system software (OS) as multi-processor system
- ISA provides instructions for managing context (program counter, VM mappings, etc.) on a per core basis

Pre-2007 GPU architecture
- GPU presents following interface** to system software (driver):
 - Set shader program start PC
 - DrawTriangles
 (** interface also included many other commands for configuring graphics pipeline: e.g., set screen output size)

Post-2007 "compute mode" GPU architecture
- GPU presents following interface to system software (driver):
 - Set kernel program start PC
 - Launch(kernel, N)
CUDA programming language

- Introduced in 2007 with NVIDIA Tesla architecture
- C-like language to express programs that run on GPUs using the compute-mode hardware interface
- Relatively low-level: (low abstraction distance) CUDA’s abstractions closely match the capabilities/performance characteristics of modern GPUs

Note: OpenCL is an open standards version of CUDA
- CUDA only runs on NVIDIA GPUs
- OpenCL runs on CPUs/GPUs from many vendors
- Almost everything I say about CUDA also holds for OpenCL
- At this time CUDA is better documented, thus I find it preferable to teach with
The plan

1. CUDA programming abstractions
2. Implementation on modern GPUs
3. More detail on GPU architecture

Things to consider throughout this lecture:

- Is CUDA a data-parallel programming model?
- Is it an instance of the shared address space model?
- Or the message passing model?
- Can you draw analogies to ISPC instances and tasks? What about pthreads?
Clarification

- I am going to describe CUDA abstractions using CUDA terminology

- Specifically, the term thread is going to carry different than how I’ve used it in class so far.

- We will discuss these differences at the end of the lecture.
CUDA programs consist of a hierarchy of concurrent threads. Thread IDs can be up to 3-dimensional (2D example below). Multi-dimensional thread ids are convenient for problems that are naturally nD.

```c
const int Nx = 12;
const int Ny = 6;

// kernel definition
__global__ void matrixAdd(float A[Ny][Nx],
                           float B[Ny][Nx],
                           float C[Ny][Nx])
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;

    C[i][j] = A[i][j] + B[i][j];
}

// assume A, B, C are allocated Nx x Ny float arrays
// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
```
CUDA programs consist of a hierarchy of concurrent threads

SPMD execution of device code:

Each thread computes its overall grid thread id from its position in its block (threadIdx) and its block’s position in the grid (blockIdx)

```cpp
const int Nx = 12;
const int Ny = 6;

// kernel definition
__global__ void matrixAdd(float A[Ny][Nx],
                          float B[Ny][Nx],
                          float C[Ny][Nx])
{
  int i = blockIdx.x * blockDim.x + threadIdx.x;
  int j = blockIdx.y * blockDim.y + threadIdx.y;

  C[i][j] = A[i][j] + B[i][j];
}

/////////////////////////////////////////////

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
                Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
```

“Device” code: SPMD execution
Kernel function (denoted by __global__) runs on co-processing device (GPU)

“Host” code: serial execution
Running as part of normal C/C++ application on CPU

Bulk launch of many threads
Precisely: launch a grid of thread blocks
Call returns when all threads have terminated
Clear separation of host and device code

Separation of execution into host and device code is performed statically by the programmer.

```
const int Nx = 12;
const int Ny = 6;

__device__ float doubleValue(float x)
{
  return 2 * x;
}

// kernel definition
__global__ void matrixAddDoubleB(float A[Ny][Nx],
                                  float B[Ny][Nx],
                                  float C[Ny][Nx])
{
  int i = blockIdx.x * blockDim.x + threadIdx.x;
  int j = blockIdx.y * blockDim.y + threadIdx.y;

  C[i][j] = A[i][j] + doubleValue(B[i][j]);
}

// must be called on GPU

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
                Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAddDoubleB<<<numBlocks, threadsPerBlock>>>(A, B, C);
```
Number of SPMD threads is explicit in program

Number of kernel invocations is not determined by size of data collection
(Kernel launch is not map(kernel, collection) as was the case with graphics shader programming)

```c
const int Nx = 11;  // not a multiple of threadsPerBlock.x
const int Ny = 5;   // not a multiple of threadsPerBlock.y

__global__ void matrixAdd(float A[Ny][Nx],
                          float B[Ny][Nx],
                          float C[Ny][Nx])
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;

    // guard against out of bounds array access
    if (i < Nx && j < Ny)
        C[i][j] = A[i][j] + B[i][j];
}

////////////////////////////////////////////////////////////////////////

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
                Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
```
Execution model

Host
(serial execution)

Implementation: CPU

Device
(SPMD execution)

Implementation: GPU
Memory model

Distinct host and device address spaces

Host (serial execution)

- Host memory address space

Implementation: CPU

Device (SPMD execution)

- Device “global” memory address space

Implementation: GPU
memcpy primitive
Move data between address spaces

```
float* A = new float[N]; // allocate buffer in host mem

// populate host address space pointer A
for (int i=0; i<N; i++)
    A[i] = (float)i;

int bytes = sizeof(float) * N
float* deviceA;  // allocate buffer in
cudaMalloc(&deviceA, bytes);  // device address space

// populate deviceA
cudaMemcpy(deviceA, A, bytes, cudaMemcpyHostToDevice);

// note: deviceA[i] is an invalid operation here (cannot
// manipulate contents of deviceA directly from host.
// Only from device code.)
```

What does cudaMemcpy remind you of?
(Async variants also exist)
CUDA device memory model

Three distinct types of memory visible to device-side code:

- **Per-block shared memory**: Readable/writable by all threads in block.
- **Per-thread private memory**: Readable/writable by thread.
- **Device global memory**: Readable/writable by all threads.

There are actually five: “constant” and “texture” address spaces not discussed here (carried over from graphics shading languages).
CUDA synchronization constructs

- __syncthreads()
 - Barrier: wait for all threads in the block to reach this point

- Atomic operations
 - e.g., `float atomicAdd(float* addr, float amount)`
 - Atomic operations on both global memory and shared memory variables

- Host/device synchronization
 - Implicit barrier across all threads at return of kernel
1D convolution in CUDA

One thread per output element

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

 __shared__ float support[THREADS_PER_BLK+2]; // shared across block
 int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local variable

 support[threadIdx.x] = input[index];
 if (threadIdx.x < 2) {
 support[THREADS_PER_BLK + threadIdx.x] = input[index+THREADS_PER_BLK];
 }

 __syncthreads();

 float result = 0.0f; // thread-local variable
 for (int i=0; i<3; i++)
 result += support[threadIdx.x + i];

 output[index] = result;
}

// host code
int N = 1024 * 1024
cudaMalloc(&devInput, N+2); // allocate array in device memory
cudaMalloc(&devOutput, N); // allocate array in device memory

// property initialize contents of devInput here ...
convolve<<<N/THREAD_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);
CUDA abstractions

- **Execution: thread hierarchy**
 - Bulk launch of many threads (this is imprecise... I’ll clarify later)
 - Two-level hierarchy: threads are grouped into blocks

- **Distributed address space**
 - Built-in memcpy primitives to copy between host and device address spaces
 - Three types of variables in device space
 - Per thread, per block (“shared”), or per program (“global”)
 (can think of types as residing within different address spaces)

- **Barrier synchronization primitive for threads in thread block**

- **Atomic primitives for additional synchronization (shared and global variables)**
CUDA semantics

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {
 __shared__ float support[THREADS_PER_BLK+2]; // shared across block
 int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local
 support[threadIdx.x] = input[index];
 if (threadIdx.x < 2) {
 support[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK];
 }
 __syncthreads();
 float result = 0.0f; // thread-local variable
 for (int i=0; i<3; i++)
 result += support[threadIdx.x + i];
 output[index] = result;
}

// host code //
int N = 1024 * 1024;
cudaMalloc(&devInput, N+2); // allocate array in device memory
cudaMalloc(&devOutput, N); // allocate array in device memory

// property initialize contents of devInput here ...
convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

Consider pthreads:

Call to pthread_create():
Allocate thread state:
 - Stack space for thread
 - Allocate control block so OS/libpthread can schedule thread

Will CUDA program create 1 million instances of local variables/stack?
8K instances of shared variables? (support)

launch over 1 million CUDA threads (over 8K thread blocks)
Assigning work

High-end GPU
(16 cores)

Mid-range
(6 cores)

Want CUDA program to run on all of these GPUs without modification

Note: no concept of num_cores in the CUDA programs I have shown: similar in spirit to forall loop in data parallel model examples
CUDA compilation

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

__shared__ float support[THREADS_PER_BLK+2]; // shared across block
int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local

support[threadIdx.x] = input[index];
if (threadIdx.x < 2) {
 support[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK];
}
__syncthreads();

float result = 0.0f; // thread-local variable
for (int i=0; i<3; i++)
 result += support[threadIdx.x + i];

output[index] = result;
}

// host code ///
int N = 1024 * 1024;
cudaMalloc(&devInput, N+2); // allocate array in device memory
cudaMalloc(&devOutput, N); // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

Key components of compiled CUDA device binary:

Program text (instructions)
Resource declarations:
- 128 threads per block
- X bytes of local data per thread
- 130 floats (520 bytes) of shared space per block

launch over 8K thread blocks
CUDA thread-block assignment

Grid of convolve thread blocks (specified by kernel launch)

Kernel launch cmd from host
launch(blockDim, convolve)

Special HW in GPU

Thread block scheduler

Block resource requirements:
(contained in kernel binary)
128 threads
520 bytes of shared mem
128*x bytes of local mem

Major CUDA assumption: thread block execution can be carried out in any order (no dependencies)

Implementation assigns thread blocks ("work") to cores using dynamic scheduling policy that respects resource requirements

Shared mem is fast on-chip memory

Device global memory (DRAM)
NVIDIA Fermi: per core resources

NVIDIA GTX 480 core

Fetch/Decode

Fetch/Decode

Execution contexts (128 KB)

“Shared” memory (up to 48 KB)

Source: Fermi Compute Architecture Whitepaper
CUDA Programming Guide 3.1, Appendix G

= SIMD function unit, control shared across 16 units (1 MUL-ADD per clock)

Core Limits:
48 KB of shared memory
Up to 1536 CUDA threads

In the case of convolve:
Thread count limits the number of blocks that can be scheduled on a core at once to twelve

At kernel launch: semi-statically partition core into 12 thread block contexts = 1536 thread contexts (allocate these up front)
Think of these as the “workers” (note: number of workers is chip resource dependent. Number of logical CUDA threads is NOT)

Reuse contexts for many blocks dynamically assigned to core over duration of computation!
Steps in creating a parallel program

1. Problem to solve
2. Decomposition
 - Sub-problems (aka “tasks”, “work”)
3. Assignment
4. Orchestration
5. Mapping
6. Execution on parallel machine

Parallel program (communicating threads)
Pools of worker “threads”

Best practice: create enough workers to “fill” parallel machine, and no more:
- One worker per parallel execution resource (e.g., core)
- N workers per core (where N is large enough to hide memory/IO latency
- Pre-allocate resources for each worker
- Dynamically assign tasks to worker threads. (reuse allocation for many tasks)

Examples:
- Thread pool in a web server
 - Number of threads is a function of number of cores, not number of outstanding requests
 - Threads spawned at web server launch, wait for work to arrive
- ISPC’s implementation of launch[] tasks
 - Creates one pthread for each hyper-thread on CPU. Threads kept alive for reminder of program
Assigning CUDA threads to core execution resources

CUDA thread block has been assigned to core

How do we execute logic for the block?

```c
#define THREADS_PER_BLK 128
__global__ void convolve(int N, float* input, float* output) {
  __shared__ float support[THREADS_PER_BLK+2];
  int index = blockIdx.x * blockDim.x + threadIdx.x;

  support[threadIdx.x] = input[index];
  if (threadIdx.x < 2) {
    support[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK];
  }

  __syncthreads();

  float result = 0.0f; // thread-local variable
  for (int i=0; i<3; i++)
    result += support[threadIdx.x + i];

  output[index] = result;
}
```

= SIMD function unit, control shared across 16 units (1 MUL-ADD per clock)
Fermi warps: groups of threads sharing instruction stream

CUDA kernels are SPMD programs

On NVIDIA GPUs groups of 32 CUDA threads share an instruction stream. These groups called "warps". This thread block consists of 4 warps

(Note: warps are an implementation detail, not a CUDA concept)
NVIDIA Fermi core has two independent groups of 16-wide SIMD ALUs (clocked at 2x rate of rest of chip)

Each “slow” clock, core’s warp scheduler: **

1. Selects 2 runnable warps (warps that are not stalled)
2. Decodes instruction for each warp (can be different instructions)
3. For each warp, executes instruction for all 32 CUDA threads using 16 SIMD ALUs over two fast clocks (has divergence behavior of 32-wide SIMD)
Why allocate execution contexts for all threads in block?

128 logical CUDA threads
Only 2 warps worth of parallel execution in HW
Why not have a pool of two “worker” warps?

CUDA kernels may create dependencies between threads in a block
Simplest example is __syncthreads

Threads in a block cannot be executed by the system in any order when dependencies exist.

CUDA semantics: threads in a block ARE running concurrently. If a thread in a block is runnable it will eventually be run! (no deadlock)
CUDA execution semantics

- Thread blocks can be scheduled in any order by the system
 - System assumes no dependencies
 - A lot like ISPC tasks, right?

- Threads in a block DO run concurrently
 - When block begins, all threads are running concurrently
 (these semantics impose a scheduling constraint on the system)
 - A CUDA thread block is itself an SPMD program (like an ISPC gang of program instances)
 - Threads in thread-block are concurrent, cooperating “workers”

- CUDA implementation:
 - A Fermi warp has performance characteristics akin to an ISPC gang of instances (but unlike an ISPC gang, a warp is not manifest in the programming model)
 - All warps in a thread block are scheduled onto the same core, allowing for high-BW/low latency communication through shared memory variables
 - When all threads in block complete, block resources become available for next block
Implications of CUDA atomics

- Notice that I did not say CUDA thread blocks were independent. I only claimed they can be scheduled in any order.
- CUDA threads can atomically update shared variables in global memory
 - Example: build a histogram of values in an array
- Observe how this use of atomics does not impact implementation’s ability to schedule blocks in any order (atomics for mutual exclusion, and nothing more)
Implications of CUDA atomics

- But what about this?
- Consider single core GPU, resources for one block per core
 - What are the possible outcomes of different schedules?

```
// do stuff
atomicAdd(&myFlag, 1);

while(atomicAdd(&myFlag, 0) == 0)
    {}

// do stuff
```

```
int myFlag
(assume initialized to 0)
```
"Persistent thread" technique

```c
#define THREADS_PER_BLK 128
#define BLOCKS_PER_CHIP 15 * 12 // specific to a certain GTX 480 GPU

device int workIndex = 0; // global mem variable

global void convolve(int N, float* input, float* output) {

    __shared__ float support[THREADS_PER_BLK+2]; // shared across block
    while (1) {
        int blockWorkIndex = atomicInc(workCounter, THREADS_PER_BLK);
        if (blockWorkIndex >= N)
            break;

        int index = blockWorkIndex + threadIdx.x; // thread local
        support[threadIdx.x] = input[index];
        if (threadIdx.x < 2)
            support[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK];

        __syncthreads();

        float result = 0.0f; // thread-local variable
        for (int i=0; i<3; i++)
            result += support[threadIdx.x + i];
        output[index] = result;

        __syncthreads();
    }
}
```

// host code //
int N = 1024 * 1024;
cudaMalloc(&devInput, N+2); // allocate array in device memory
cudaMalloc(&devOutput, N); // allocate array in device memory
// property initialize contents of devInput here ...
convolve<<<BLOCKS_PER_CHIP, THREADS_PER_BLK>>>(N, devInput, devOutput);

Programmer launches exactly as many thread-blocks as will fill the GPU
(Exploit knowledge of implementation: that GPU will in fact run all blocks concurrently)

Work assignment to blocks is implemented entirely by the application
(circumvents GPU thread block scheduler, and intended CUDA thread block semantics)

Now programmer’s mental model is that *all* threads are concurrently running on the machine at once.
CUDA summary

- Execution semantics
 - Partitioning problem into thread blocks is in the spirit of the data-parallel model (intended to be machine independent, CUDA schedules blocks onto any number of cores)
 - Threads in a thread block run concurrently (they have to, since they cooperate)
 - SPMD shared address space programming
 - There are subtle, but notable differences between these models of execution. Make sure you understand it. (And ask yourself what semantics are being used whenever you encounter a parallel programming system)

- Memory semantics
 - Distributed host/device memories
 - Local/block shared/global variables
 - Loads/stores move data between them (as a result can think about this as a NUMA address space, or different address spaces)

- Key implementation detail:
 - Threads in a thread block scheduled onto same GPU core to allow fast communication through shared memory