
Parallelizing a Simple Chess Program

Brian Greskamp

ECE412, Fall 2003
E-mail:greskamp@crhc.uiuc.edu

Abstract

In a closely watched match in 1997, the parallel chess
supercomputerDeep Bluedefeated then world champion
Garry Kasparov3 1

2 to 2 1
2 . The fruits of Moore’s law com-

bined with steadily improving chess algorithms now allow
programs such asDeep Fritzto challenge human grandmas-
ters while running on nothing more than a commodity 4-way
SMP workstation. This paper provides a short overview of
the parallel chess algorithms that help achieve these feats
and details the implementation of a simple parallel chess
program. It also muses about possible methods for extract-
ing additional parallelism using reconfigurable hardware.

1. Introduction

Computer chess has been a compelling research topic
since the very inception of the artificial intelligence field.
Claude Shannon’s seminal 1950 paper [12] made crucial
early contributions, including an evaluation function for
quantifying the quality of a given board position. The
alpha-beta search strategy, due to Newellet. al. in 1958
[10], was another groundbreaking development. Although
newer search algorithms have been proposed, some with
great success, the venerable alpha-beta algorithm remains at
the heart of most implementations. Augmenting alpha-beta
with heuristic enhancements and knowledge databases has
extended its power considerably. Of course, improved com-
puter hardware has also contributed to the growing strength
of computer players. The shift toward parallel machines in
the 1980s and 90s saw many parallel chess implementations
mapping alpha-beta to both shared and distributed-memory
systems.CilkChessand *Socratesdemonstrated scalabil-
ity on systems with 1000 nodes or more [6], while recently
Deep Fritzhas achieved grandmaster strength on as few as
four processors.

This paper investigates the most basic serial chess al-
gorithms and techniques for parallelizing them. It also
presents an extremely simple implementation aimed at

small-scale, commodity SMP workstations. Preliminary
performance results are provided, and shortcomings of the
current system are evaluated. The paper is organized as fol-
lows: section 2introduces the basic theory and algorithms
of game tree searching and briefly discusses how they might
be parallelized. Insection 3, implementation details for a
simple parallel search engine are discussed. Some prelim-
inary results and analysis follow insection 4. Next, sec-
tion 5covers unfinished work and suggested enhancements,
including the use of reconfigurable hardware. Finally,sec-
tion 6concludes.

2. Background

This section provides a brief introduction to game tree
searching and the all-important alpha-beta algorithm as well
as some techniques for parallelizing it. Also included are
some enhancements to alpha-beta that any credible chess
program must implement. Later, these enhancements will
raise some difficult design questions in the parallel engine.

2.1. Game Tree Search

Fundamental to chess and any other turn-based perfect-
information game is the game tree. The tree represents all
possible paths through the game’s state space. Each node
in the tree is a game state (i.e. a board configuration), and
each arc represents a legal move for the player on-move at
that state. The example inFigure 1shows a portion of the
game tree for Tic-Tac-Toe. An important characteristic of
the tree is its branching factor, the average number of out-
edges per non-leaf node. In chess, the branching factor is
approximately 32 [8]. It is also important to note that for
many games, including chess, the game “tree” is in reality a
directed acyclic graph, where different sequences of moves
can transpose into the same board position. However, tree-
based analysis of such a graph is facilitated by cloning those
nodes that have in-degree greater than one to create a tree
where all nodes except the root have in-degree exactly one.

In order to choose its moves, a game-playing program
searches for a path through the tree that terminates with the

Player 1 (depth 3)

O X O X O
X

O O O

X

O XOX

XO O XOO
O O

.

.

. . . Player 1 (depth 0)

Player 2 (depth 1)

Figure 1. A fragment of the Tic-Tac-Toe game
tree.

most favorable result. In performing this search, it is fun-
damental to assume that the program’s opponent will also
be searching for its best path and that both sides agree on
the valuation of the leaf nodes. In other words, the pro-
gram must assume best play by both sides. Leaves with low
(or negative) value are desirable outcomes for one player
(the “minimizing player”), while those with high value are
desirable for the other (the “maximizing player”). A func-
tion calledEvaluate is provided to determine the value of
each leaf. Assuming that each player will attempt to respec-
tively minimize or maximize its score at every turn leads
directly to the recursive algorithm ofFigure 2. This simple
strategy, called MiniMax due to its alternating minimizing
and maximizing phases, examines every node in the game
tree and is guaranteed find an optimal solution.

2.2. Alpha-Beta Pruning

Fortunately, it is usually possible to achieve the same re-
sult asMiniMax while searching far fewer nodes. For a
tree with branching factorb, the alpha-beta pruningtech-
nique [10] reduces the effective branching factor toO(

√
b)

on average [7], allowing trees of depthd× 2 to be searched
in the same time MiniMax would require to search to depth
d. The alpha-beta algorithm works by “cutting off” the
search at a position if it becomes evident that the opponent
would never allow the player to reach that position because
its value is too great.

At each step the search function retains the best score it
has found so far. When the maximizing player is searching
a node and finds a path from that node having a higher score
than the minimizing player’s best score, then he knows the
node from which he is currently searching is ‘too good to
be true’ since the minimizing player will never give him the
opportunity to play the move to that node. At that point, the
search is said to “fail high” and the player can stop examin-

i n t MiniMax (Node cu r node)
{

i f (cu r node . i s l e a f)
re turn E v a l u a t e (cu rnode) ;

i f (cu r node . t ype = = MIN)
b e s t s c o r e = INFINITY ;

e l s e
b e s t s c o r e =− INFINITY ;

whi le (HasMoreSuccessors (cu rnode)) {
succ node = GetNextSucc (cu rnode)) ;
s c o r e = MiniMax (succnode) ;
i f (cu r node . t ype = = MIN) {

i f (s c o r e < b e s t s c o r e)
b e s t s c o r e = s c o r e ;

}
e l s e {

i f (s c o r e > b e s t s c o r e)
b e s t s c o r e = s c o r e ;

}
}
re turn b e s t s c o r e ;

}

Figure 2. The MiniMax algorithm.

ing the current node. Likewise, if during his search, the min-
imizing player finds a path score that is less than the max-
imizing player’s best score, then he can abandon searching
that branch since the maximizing player will never allow
him to move there. A straightforward implementation of
AlphaBeta is given inFigure 3. In practice, the equiva-
lent code fromFigure 4is preferred. Negating the result of
the recursion at each step eliminates the need to handle the
minimizing and maximizing cases separately.

In order to use theAlphaBeta routine, one invokes it
on the root of the search tree with argumentsα = −∞
andβ = ∞, which correspond to the worst possible scores
for the maximizing and minimizing players respectively. It
can then be shown that for every call in the recursion,α <
score ≤ β wherescore is the return value. Commonly,
an additionaldepth argument is added so that the recursion
can be stopped and the evaluation function applied at a pre-
set non-leaf level in the tree, because searching all30 to 50
levels in a typical chess tree would be far too costly. A final
note about real alpha-beta implementations is that they must
of course return the actual move that leads to the best score,
along with the score itself.

2.3. Heuristic Enhancements

It is important to note that the order in which branches
are evaluated underAlphaBeta has a major impact on
running time. If at each ply the best moves are evaluated
first, traversal simply proceeds down the left side of the tree,
following the best line, and searches of the remaining sub-

2

i n t AlphaBeta (Node curnode , i n t a lpha ,
i n t b e t a)

{
i f (cu r node . i s l e a f)

re turn E v a l u a t e (cu rnode) ;

i f (cu r node . t ype = = MIN)
b e s t s c o r e = b e t a ;

e l s e
b e s t s c o r e = a l p h a ;

whi le (HasMoreSuccessors (cu rnode)) {
succ node = GetNextSucc (cu rnode)) ;
i f (cu r node . t ype = = MIN) {

s c o r e = AlphaBeta (succnode , a lpha ,
b e s t s c o r e) ;

i f (s c o r e <= a l p h a)
re turn a l p h a ;

i f (s c o r e < b e s t s c o r e)
b e s t s c o r e = s c o r e ;

}
e l s e {

s c o r e = AlphaBeta (succnode ,
b e s t s c o r e , b e t a) ;

i f (s c o r e >= b e t a)
re turn b e t a ;

i f (s c o r e > b e s t s c o r e)
b e s t s c o r e = s c o r e ;

}
}
re turn b e s t s c o r e ;

}

Figure 3. The alpha-beta algorithm.

i n t AlphaBeta (Node curnode , i n t a lpha ,
i n t b e t a)

{
i f (cu r node . i s l e a f)

re turn E v a l u a t e (cu rnode) ;

whi le (HasMoreSuccessors (cu rnode)) {
succ node = GetNextSucc (cu rnode) ;
s c o r e =−AlphaBeta (succnode ,− beta ,

−a l p h a) ;
i f (s c o r e >= b e t a)

re turn b e t a ;
i f (s c o r e > a l p h a)

a l p h a = s c o r e ;
}
re turn a l p h a ;

}

Figure 4. The standard alpha-beta formulation.

trees quickly cut off. If on the other hand, the worst moves
are evaluated first, then no cutoffs occur and the algorithm
performs no better thanMiniMax . This fact has given rise
to a number of heuristics for estimating which moves are
best in order that they can be tried first.

Iterative Deepening Iterative deepening is a technique
wherein the tree search is first attempted with a shallow
depth in order to obtain score estimates for each branch at
the root node. Subsequent searches to greater depths can use
the score estimates from previous iterations for move order-
ing. Iterative deepening is also applied in conjunction with
a technique called “aspiration”, which allows for the selec-
tion of smaller search windows based on the node’s score
from the preceding iteration.

History Table The history table is a small hash table that
assists move ordering at all levels in the tree. When search
completes at each node, the best move from that node has
been found. The from-square and to-square of the best move
serve as indices in the history table, and a counter for the
corresponding entry is incremented. Before searching the
moves at each node, the search routine first counsults the
counter value in the history table entry for each available
move. The routine examines moves with higher counts first,
since those moves have been good at other nodes in the tree
and they are likely to be good in the current position as well.

Transposition Table As discussed insubsection 2.1, the
game tree for chess is in reality a DAG. Thus, positions
which have already been searched are likely to be reached
again. The transposition table memoizes the results of
searching each node. Before searching any node, the search
routine examines the transposition table. If the move has
already been searched, the routine simply returns the mem-
oized result without further consideration.

2.4. Parallel Alpha-Beta

In order to parallelize the search, it is necessary to as-
sign processors to simultaneously search multiple subtrees
of the game tree. The question of how to partition the tree
is deceptively complex. One of the earliest and most intu-
itive techniques isprincipal variation splitting[9]. At each
node, it first recursively searches the left-most branch to find
anα-bound for the remaining branches which can then be
searched with parallel invocations ofAlphaBeta . For ex-
ample,Figure 5shows how PVSplit partitions a shallow tree
between two processors. Pseudocode forPVSplit appears
in Figure 6.

An apparent error in thePVSplit code is that a cross-
iteration dependence onalpha still exists in the parallel
loop. However, as long as the value ofalpha used in each

3

Depth 2

P1 P2P1 P1 P2 P1P2 P2

Prin
cipal V

aria
tio

n

Serial task

Parallel task

Depth 1

Depth 0

Figure 5. Parallel and sequential tasks in PVS-
plit.

i n t PVSp l i t (Node cur node , i n t a lpha ,
i n t b e t a)

{
i f (cu r node . i s l e a f)

re turn E v a l u a t e (cu rnode) ;

succ node = G e t F i r s t S u c c (cu rnode) ;
s c o r e = PVSp l i t (curnode , a lpha ,

b e t a) ;
i f (s c o r e > b e t a)

re turn b e t a ;
i f (s c o r e > a l p h a)

a l p h a = s c o r e ;

/ / Begin p a r a l l e l loop
whi le (HasMoreSuccessors (cu rnode)) {

succ node = GetNextSucc (cu rnode) ;
s c o r e = AlphaBeta (succnode , a lpha ,

b e t a) ;
i f (s c o r e > b e t a)

re turn b e t a ;
i f (s c o r e > a l p h a)

a l p h a = s c o r e ;
} / / End p a r a l l e l loop

re turn a l p h a ;
}

Figure 6. The PVSplit algorithm.

iteration is less than or equal to the value that would occur
in the sequential version, the iterations can execute indepen-
dently and the result will be correct. Nevertheless, keeping
alpha as up-to-date as possible is critical for performance.
Whenever one of the parallel iterations completes, it updates
alpha if it has found a new best score. When the next itera-
tion following the update begins, it reads the updated value.
In the case that the best move is always searched first, the
parallel algorithm visits the same number of nodes as the
sequential algorithm, sinceα does not change during the
parallel search. In practice, the parallel algorithm usually
visits more nodes that the sequential one as a consequence
of the weakerα-bound given to each iteration.

Another shortcoming ofPVSplit is thatall of the par-
allel searches must complete before the currentPVSplit
invocation may return. This leads to inefficient processor
usage when most of the search threads have completed.
Some processors will remain idle while the last few pro-
cessors finish their searches. One solution is to imple-
ment work-stealing, and experiments indicate that the ben-
efit is significant. TheYounger Brothers Wait Concept
[2] achieves speedups of over140 on 256 nodes, and the
previously-mentionedCilkChessuses theJamboreestrat-
egy to achieve similar speedups. In contrast, the reported
speedup forPVSplit is a modest3.0 on four processors,
with an asymptotic limit of approximately five [4]. For the
purposes of this paper, the low asymptotic speedup is not a
major concern.

3. Implementation

In order to implement PVSplit in the time allotted, it was
necessary to build upon a simple, serial chess engine. For
this purpose, version 1.2 ofmscp, “Marcel’s Simple Chess
Program” was an ideal choice. The parallel varsion is re-
ferred to asmscp-par. Written by Marcel van Kervinck,
mscpincludes search enhancements such as transposition
and history tables. It also uses iterative deepening and ap-
plies null-window and aspiration searching [11] in a limited
way, but its most attractive feature is that the entire C lan-
guage implementation comprises only 2000 lines of code.
Furthermore, it is freely available under the GNUGeneral
Public License. The relative simplicity ofmscpmade it
preferable to much stronger but more complex programs in-
cluding GNUChessand Crafty. Still, there is little doubt
that the more advanced serial programs would handily de-
featmscp-par.

3.1. Architectural Considerations

Since the target machine is an SMP, it can be assumed
that each processor has equally fast access to a single shared
memory. Communication between parallel tasks takes place

4

using the familiar threaded model and its associated syn-
chronization primitives. Large shared data structures such
as the transposition table can simply reside in the shared
memory. Targeting a distributed-memory machine would
complicate the design. Although most parallel search algo-
rithms do not require much communication bandwidth for
the basic alpha-beta search, shared data structures such as
the history and transposition tables must be physically dis-
tributed across the nodes.

3.2. Threading Model

The parallel search is built on the POSIX threads
(“pthreads”) API. The pthreads library is available on nearly
all UNIX-like systems, and most implementations are capa-
ble of spreading threads across an SMP system’s multiple
CPUs. For optimal search efficiency, one thread should ex-
ist per CPU. Although there is no way to specify a mapping
between threads and CPUs, it is reasonable to assume that
each thread will quickly migrate to a different CPU assum-
ing the system is otherwise un-loaded.

The actualmscp-parcode is kludgy and difficult to fol-
low in part because it includes two separate and slightly dif-
ferent parallel search routines. They remain separate be-
cause searches at the root node behave slightly different
from searches at other levels. For the sake of clarity, the
following explanation assumes a single search routine, the
familiar PVSplit . With this simplification, the threads op-
erate as follows: For eachPVSplit invocation, the main
thread first serially searches the branch having the high-
est history table score. Then, before entering the parallel
search loop, the main thread atomically pushes all remain-
ing legal moves (except the first one which has already been
searched serially) onto a worklist. It then createsn worker
threads, wheren is the number of system processors and
calls pthread join on each one to wait for their com-
pletion.

Each worker then begins consuming moves from the
worklist and searching them one at a time until all moves in
the list are exhausted. A mutex ensures atomic accesses to
the list for all threads. Whenever a worker consumes a move
from the list, it atomically reads the current value ofalpha
from another mutex-protected shared data structure. Next,
it invokesAlphaBeta to search the move. If the search
returns a new best score, the worker atomically updates the
shared value ofalpha so that the next thread to consume
a move will see the new value. When a worker reaches the
end of the list, it returns. When all worker threads have
terminated, the main thread’s call topthread join com-
pltes andPVSplit returns.

3.3. Reentrancy and Shared Data

Most serial chess engines are not designed to be reen-
trant, andmscpis no exception. Almost every procedure
updates a global variable, and the game state (board con-
figuration, move stack,etc.) are all global. A quick fix for
this problem is to encapsulate all of the program’s global
variables in a new Cstruct and pass a pointer to the
new type into each function that formerly accessed glob-
als. Now multiple procedures may be active simultaneously
as long as each operates on a different instance of the struc-
ture. This approach led to the creation of a structure called
game state , which is copied into each new thread that is
created. Each thread then has a private copy of the board
state.

Data structures that are shared between parallel invoca-
tions of the search function, such as the transposition and
history tables, remain global. A read-write lock (using the
pthread rwlock functions) governs access to the trans-
position table. Synchronization is crucial since corrupt data
in the transposition table can corrupt the board state. When-
ever the search routine does a transposition table lookup, it
will compare a hash tag stored with the entry to a hash of
the current board position. A match indicates that the cur-
rent board position isdefinitely the one in the table. The
search routine will then return the memoizedbest move
field, which might actually be played. If thebest move
field was corrupted, the move may be illegal and result in
an illegal board state!

Although some type of synchronization appears neces-
sary, locking is extremely costly because the transposition
table is read every time a move is searched and it is updated
with the best move and score at the end of each non-leaf call
to AlphaBeta . Consequently, the ratio of reads to writes
is approximately equal to the branching factor of the search
tree. The resultant lock contention will be quantified in the
experiments ofsection 4. In contrast, no synchronization
whatsoever is applied to the history table. Whereas the in-
tegrity of the transposition table can affect program correct-
ness, the integrity of the history table affects only running
time. At worst, a corrupt history table can cause bad moves
to be searched before good ones.

4. Results

This section presents preliminary performance and scala-
bility results and evaluates the effectiveness of the synchro-
nization decisions reached in the previous section. Unfor-
tunately, data are only available for an older version of the
engine which contained a major error: Searches at the root
node proceeded in the correct order (according to the itera-
tive deepening process), but parallel searches further down
the tree searched their subtrees inpessimisticorder. The

5

newest version corrects this problem, but suffers from unre-
solved concurrency bugs so meaningful numbers for it are
not yet available. Therefore, the numbers reported here re-
flect the performance of searching the left subtree of the root
serially then searching the remaining branches from the root
in parallel. Since the program expends about1

3 of its CPU
time searching the first subtree of the root, the maximum
possible speedup is3. Even assuming linear speedup on
the remaining subtrees, one would expect only(1

3 + 2
3p)−1

speedup onp processors or2 on four processors.
Two test cases are provided, both of which executed on a

Sun SMP system running SunOS 5.9 on 32 UltraSPARC-III
processors. In the first case, the human player makes the
nonsensical opening movea3 and records the time elapsed
before the computer completes a depth 8 search and re-
sponds withNf6 . The running times for the unmodified,
serial mscp-1.2 program appear under the label “original” in
Table 1alongside times for the parallel version with varying
numbers of threads. The second case, shown inTable 2tests
the equally senseless sequencea3 Nf6, b4 e6, Bb2
a5 . Note, however, that the stupidity of the sequence makes
no difference to theAlphaBeta algorithm, which does not
incorporate any positional knowledge.

Program Processors Time (m:ss) Speedup
original 1 0:54.7 1
parallel 1 0:56.4 0.97
parallel 2 0:36.0 1.5
parallel 4 0:28.6 1.9
parallel 8 1:24 0.65

Table 1. Time to respond to opening a3 .

Program Processors Time (m:ss) Speedup
original 1 5:19 1
parallel 1 5:56 0.90
parallel 2 3:37 1.5
parallel 4 2:53 1.8

Table 2. Time to respond to opening a3 b4
Bb2.

Despite the major flaw, these intermediate results do pro-
vide some valuable information. First, it is clear that the
parallelized code degrades performance only slightly. As
seen inTable 1, speedup scales roughly as expected (given
the broken move ordering) up to four processors, then falls
quickly below unity. Between four and eight processors lies
the point where transposition table lock contention comes
to dominate the computation.Table 3shows the amount
of program execution time spent in “system” mode as re-
ported by the UNIXtime utility. It is reasonable to as-
sume that almost all of the system time and some proportion

of the user time is due to lock contention. The contention
increases roughly exponentially with the number of proces-
sors. Clearly, an alternative to transposition table locking is
necessary for greater scalability, but sincePVSplit does
not scale well past four processors anyway, this is not a ma-
jor issue. Nevertheless, the following section does discuss
some alternatives to the current locking scheme.

Processors User CPU (s) System CPU (s)
4 80 8
5 97 27
6 110 66
7 114 100
8 130 168

Table 3. Transposition table lock contention.

5. Future Work

Resolving the concurrency bugs in the latest version of
mscp-parthat corrects the move-ordering problems is a first
priority. Porting thePVSplit algorithm to a stronger pro-
gram such asCrafty is the next logical step. Beyond that,
it is interesting to consider changes to facilitate better scal-
ability. Clearly, the transposition table locking is a limit-
ing factor. Fortunately, this issue has been well studied;
one innovative proposal for cluster implementation [1] has
even investigated reprogramming each node’s network in-
terface card to implement a fast distributed storage mech-
anism. As for shared-memory implementations, the au-
thors ofCilkChessignore transposition table locking, just as
mscp-pardoes for the history table. With an extremely large
hash table (32GB), they find that conflicts are rare. Without
locking, one can simply test the legality of any move read
from the table before playing it to ensure that board cor-
ruption does not result. Another lockless approach that ele-
gantly solves the corruption problem is due to Robert Hyatt
[5]. It hashes the data in each entry such that corruption
can be detected without the need to test the legality of the
retrieved move.

Taking a much broader view, it would be interesting to
investigateautomaticmethods for uncovering parallelism in
the chess search. Since parallelizing alpha-beta reqired re-
laxing true data dependencies, it would be extremely diffi-
cult for compilers to produce parallel code from the sequen-
tial alpha-beta specification. On the other hand, a good deal
of parallelism is hidden in theEvaluate function which
assigns scores to board positions. A typical evaluation func-
tion loops over each piece on the board, computing threats,
mobility, and board control. These functions account for
approximately half ofmscp’s execution time.

Interestingly, the evaluation functions can be imple-

6

mented very efficiently in hardware as bit-vector operations
— a fact whichDeep Blue’s256 custom ASICs exploited
[3]. The evaluation function is further suited for implemen-
tation in a hardware coprocessor because a relatively small
amount of data must be communicated between the evalu-
ation function and the rest of the (software) program, but
large amounts of computation take place on that data. The
entire board state can be transferred in 24 bytes, while the
evaluation function may execute the equivalent of tens of
thousands of general purpose instructions on that data to re-
turn only a one-byte score.

Unfortunately, great effort is usually required to design
such hardware. Luckily, the relatively new field of Recon-
figurable Computing (RC) might provide a simpler way to
realize the benefit of custom hardware. One goal of RC is
to automaticallygenerate hardware designs from high-level
source code and install them in reprogrammable logic (i.e.
FPGAs) where they can assist a traditional CPU in compu-
tation. Numerous efforts, including theAmalgamproject
from UIUC have produced tools capable of generating such
hybrid hardware-software implementations from C source.
In fact, one ofAmalgam’s demo applications is a solution to
then-Queens problem, a simple chess puzzle that computes
attacks among several queens on the board.

6. Conclusions

Thus far, the development ofmscp-parhas been some-
what of a toy project; it is certainly not breaking any new
ground. In fact, it is not even working correctly yet. One
small benefit of the project is the development of a simple,
freely available, albeit very weak, parallel chess program.
Additionally, studying chess tree search has suggested some
future investigations whichwould contribute new results.
Specifically, the prospect of automatically extracting par-
allelism from the chess program’sEvaluate routine is
compelling. It is already known that more powerful eval-
uation functions significantly increase the effectiveness of
the search. With the nearly unbounded parallelism avail-
able in reconfigurable hardware, it may be possible to exe-
cute these more complex functions even faster than execut-
ing the simpler function in software. Thus, althoughmscp’s
evaluation function only accounts for half of the compute
time, huge speedups and stronger play might be realized
with more thoughtful evaluation functions.

References

[1] R. A. F. Bhoedjang, J. W. Romein, and H. E. Bal. Opti-
mizing distributed data structures using application-specific
network interface software. InICPP.

[2] R. Feldmann, B. Monien, P. Mysliweitz, and O. Vornberger.
Distributed game tree search. 12(2):65–73.

[3] F. Hsu. IBM’s deep blue chess grandmaster chips. 19(2):70–
81, March 1999.

[4] R. M. Hyatt. The dynamic tree-splitting parallel search al-
gorithm. 20(1):3–19.

[5] R. M. Hyatt and T. Mann. A lockless transposition-table
implementation for parallel search. 25, March 2002.

[6] C. Joerg and B. Kuszmaul. Massively Parallel Chess. In
Third DIMACS Parallel Implementation Challenge Work-
shop, Rutgers University, 1994.

[7] D. E. Knuth and R. W. Moore. An anlaysis of alpha-beta
pruning.Artificial Intelligence, 6(4):293–326, 1975.

[8] V. Manohararajah. Parallel alpha-beta search on shared
memory multiprocessors. Master’s thesis, University of
Toronto, 2001.

[9] T. A. Marsland and M. S. Campbell. Parallel search of
strongly ordered game trees.ACM Computing Surveys,
14(4):533–551, 1982.

[10] A. Newell, H. Simon, and J. Shaw. Chess playing programs
and the problem of complexity.IBM Journal of Research
and Development, 2:320–335, October 1958.

[11] J. Schaeffer and A. Plaat. New advances in alpha-beta
searching. InACM Conference on Computer Science, pages
124–130, 1996.

[12] C. E. Shannon. Automatic chess player.Scientific American,
182, 1950.

7

	Introduction
	 Background
	Game Tree Search
	Alpha-Beta Pruning
	Heuristic Enhancements
	Parallel Alpha-Beta

	 Implementation
	Architectural Considerations
	Threading Model
	Reentrancy and Shared Data

	 Results
	 Future Work
	 Conclusions

