
Assigned: Mon, Sep 23, 2019 11:59 PM
Due: Wed, Oct 9 2019 11:59 PM
Last Day to Handin: Sat, Oct 12 2019 11:59 PM

1 Overview

Before you begin, please take the time to review the course policy on academic
integrity:

Academic Integrity Policy

Download the Assignment 3 starter code from the course Github using:

$ git clone https://github.com/cmu15418/assignment3-f19.git

1.1 Assignment Objectives

In this assignment, you will implement an n-body simulation, which is a pre-
diction of the movements of a large number of particles that interact with one
another gravitationally. You will need to finish implementing a portion of the
sequential version of this simulation, and study the performance of the finished
sequential version. Then you will be directed to use OpenMP to improve the
programs’ performance through shared memory parallelism.

You will need to instrument your code to determine where the most time is
spent in computation and evaluate where optimizations are most valuable. You
will also need to focus on avoiding sequential bottlenecks, memory contention,
and workload imbalance.

1

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-s18/www/academicintegrity.html
https://github.com/cmu15418/assignment3-f19.git


1.2 Machines

The OpenMP standard is supported by a variety of compilers, including GCC,
on a variety of platforms. Programs can be written in C, C++, and Fortran. For
this assignment, you will be working in C++. You can test and evaluate your
programs on any multi-core processor, including the GHC machines.

For performance evaluation, we will be using the GHC machines for testing.

1.3 Resources

There are many documents describing OpenMP, including those linked from
the OpenMP home page at http://www.openmp.org. Like many standards,
it started with a small core of simple and powerful concepts but has grown
over the years to contain many quirks and features. You only need to use a
small subset of its capabilities. A good starting point is the document at
https://www.cs.cmu.edu/∼418/doc/openmp.pdf.

2 Introduction

In this problem, we will simulate the movement of particles with varying mass
and initial position. Each particle is defined as a tuple of id, mass, initial velocity
and initial position. Particles are affected by gravitational forces from nearby
particles.

Figure 1: illustration of gravitational force between two particles

2

http://www.openmp.org/
https://www.cs.cmu.edu/~418/doc/openmp.pdf


The n-body problem considers n point masses mi, i = 1, 2, . . . , n in an inertial
frame of reference in three dimensional space R3 moving under the influence of
mutual gravitational attraction. Each mass mi has a position vector qi. New-

ton’s second law says that mass times acceleration mi
d2∗qi
dt2 is equal to the sum

of the forces on the mass. Newton’s law of gravity says that the gravitational
force felt on mass mi by a single mass mj is given by

Fij =
Gmimj (qj − qi)

‖qj − qi‖3
,

where G is the gravitational constant and ‖qj − qi‖ is the magnitude of the
distance between qi and qj (metric induced by the l2 norm).

In the simulation you will write, particles only exist in a 2D world, with x and
y dimensions. We will also use an approximation; past a predefined radius,
particles will not affect other particles, since their gravitational force is almost
negligible.

2.1 Computing Gravitational Force

In this assignment, you do not need to implement the physical formula that de-
fines the amount of gravitational forces. We provide a function, computeForce(Particle
p1, Particle p2, float radius), in the file world.h that returns the grav-
itational force between particle p1 and p2. You are not allowed to modify this
function. It is summarized as the following;

computeForce(Particle target, Particle attractor, float radius) =

dist = distance between particles

dir = direction from target to attractor particle

force = dir * target mass * attractor mass * (Gravity / (dist *

dist));

return force

The radius parameter is a predefined input. The computeForce function is
guaranteed to return 0 if the distance between p1 and p2 are greater than
radius.

2.2 Simple Simulation Algorithm

We provide a simple sequential simulation algorithm, which has no performance
optimizations, called ‘simple simulator.’ It computes the total force on every
particle pi by summing the individual forces that result from the gravitational
interactions of pi and every nearby particle pj . However, it only considers

3

https://en.wikipedia.org/wiki/Inertial_frame_of_reference
https://en.wikipedia.org/wiki/Inertial_frame_of_reference
https://en.wikipedia.org/wiki/Newton%27s_second_law
https://en.wikipedia.org/wiki/Newton%27s_second_law
https://en.wikipedia.org/wiki/Newton%27s_law_of_gravity


particles that are within a certain radius of pi, because particles outside that
radius have a negligible force effect.

The pseudo-code for this implementation is as follows:

for each iteration

for each particle p:

find nearby particles whose distance to this particle is less

than ‘radius’.

// compute the sum of gravitational forces that need to be

applied to this particle:

force = 0;

for each nearby particle p1

force += computeForce(p, p1);

update the position and velocity of this particle using the

computed force.

This algorithm is implemented in src/simple-simulator.cpp, and is available
for your reference. The accuracy of you quad-based sequential and parallel
implementations will be checked against output generated by this code.

The interesting part of this problem, is to find the nearby particles of a given par-
ticle efficiently. A näıve approach, implemented in src/simple-simulator.cpp,
is to test the distance of all particles in the scene. This yields an implementation
with O(n2) computational complexity, where n is the number of particles in the
scene. When n is very large (e.g. 1 million), the naive approach will take a very
long time to finish. We can improve this significantly.

3 Quad-Tree Simulation Algorithm

To more efficiently find the number of ‘near’ particles to a specific particle pi, we
can create a tree structure to quickly determine which particles are potentially
in the ‘radius’ of pi. In this case, we will be using a simple tree structure called
a ‘quad-tree’.

3.1 Quad Tree

A Quad Tree is a tree data structure in which each node has exactly four chil-
dren. They are useful because they can be used to partition a two-dimensional
space by recursively dividing into 4 sub-spaces.

For this n-body simulation, we are interested in partitioning our 2D space into
rectangles, such that each ‘leaf’ of the tree contains at most ‘QuadTreeLeafSize’
particles. Given a list of particles and their positions, we can build this quad
tree by recursively bisecting the space containing those particles into nodes,

4



Figure 2: A Quad tree with ‘QuadTreeLeafSize’ = 1

while keeping track of bounds of the current square of space used. For each
node, we must store the following:

1. isLeaf: whether the node is a leaf

2. particles: What particles that node contains

3. children: The four child nodes of that node

For your reference, the tree building process for particles in a 2D space might
look something like this:

QuadTreeLeafSize = max number of particles per node

buildQuadTree(particles, range_min, range_max){

if num(particles) >= QuadTreeLeafSize:

return leaf node

else:

result = non-leaf node

pivot = (range_min + range_max) * 0.5f;

<assign particles to appropriate children of result>

return result

}

Note that in this algorithm, a leaf node may contain 0 particles. The pseudo-
code is purposefully vague, as the implementation of the 2D version is left to
you in Task 1.

5



3.2 Simulation Algorithm

When using a quad tree structure, each simulation iteration is separated into two
stages: building the quad-tree, and using the quad-tree for simulation:

for each iteration

1. build quad-tree

2. for each particle p:

find nearby particles using the quad-tree

compute the sum of gravitational forces that need to be applied

to this particle:

force = 0;

for each nearby particle p1

force += computeForce(p, p1);

update the position and velocity of this particle using the

computed force.

In this assignment, you will first finish implementing a sequential version of
the simulation by completing a function building a quad tree, then parallelizing
both the tree construction and simulation stage on a Intel R© Xeon R© Processor
E5-1660 v4.

4 Starter Code

We provide starter code, which includes the simple simulator and an incomplete
version of the sequential tree-based algorithm.

4.1 Building the Starter Code

After cloning this repository, you can make the started code using:

$ make all

This will build an executable named nbody-release. To perform a debug build,
run:

$ make all CONFIGURATION=debug

4.2 Running the Startup Code

To run a simulation, use the following command:

6



$ ./nbody-release -i 10 -n 100

This will create a scene with 100 randomly positioned particles and run for 10
iterations. The resulting particle positions and velocities will be dumped to
out.txt by default. You can use -o out1.txt command-line option to change
the output destination.

4.3 Visualization

You can have nbody-release output a visualization of the particles after each
iteration. This visualization will be a 2D image of particle positions, formatted
as a bitmap image file (.bmp), which is viewable in most image editors. To
create a visualization, use the command-line option -fo:

$ ./nbody-release -i 10 -n 100 -fo ./

This informs nbody-release to output bmp files to the current directory that
visualize each simulation iteration. By default, the visualization represents a
viewport of -10≤ x ≤10 and -10≤ y ≤10. To change the viewport size, use -v

option:

$ ./nbody-release -i 10 -n 100 -fo ./ -v 20.0

This changes the viewport to visualize the -20≤ x ≤20 and -20≤ y ≤20 range.

4.4 Running the Benchmark

Running the following command will start a benchmark of your sequential and
parallel implementation:

$ ./nbody-release -b

The benchmark will time your implementation on a variety of scenes ranging
from 100 to 100,000 particles. It will also check the correctness of your simula-
tion by comparing your simulation result to the reference results.

4.5 Usage

nbody-release has both testing capabilities and ‘custom run’ capabilities. A
custom run creates a scene with 10 clusters of particles, with a number of
options. The full usage of nbody-release is as follows:

7



Custom Run Options:

• -i <int>: This flag specifies the number of iterations, a positive integer
1 or greater, for a custom run. The default value is 1 iteration.

• -n <int>: Specifies the number of particles to generate.

• -s <float>: This flag specifies the space size that the particles for a
custom run will be generated in. The default is 10.0, for which particles
may have x positions in the range -10.0, 10.0 and y positions in the range
-10.0, 10.0.

• -in <string>: Specifies an input file to read particle positions from
in a custom run. The file must be a .txt type file with the format mass,
x position, y position, x velocity, y velocity, space separated,
with one line corresponding to each particle.

• -o <string>: Specifies the output file to write results to. The default
is out.txt.

• -fo <string>: When this flag is included, a .bmp visualization file will
be created for each step of the simulation, labeled by step number, in the
directory <string>. For example, -fo "./" will create bmp files in same
directory as nbody-release.

• -v <float>: Specifies the viewport size, which is the range of space
the visualization file will use. Defaults to 10.0; in general try to keep this
value to the space bounds specified with -s.

• -seq: Runs the sequential quad-tree version of the simulation.

• -par: Runs the parallel quad-tree version of the simulation.

• -simple: Runs the provided simple version of the simulation.

•

• -c: The addition of this flag specifies to run the correctness check suite
for the specified implementation (-seq or -par). If none are specified, the
correctness of the sequential implementation is checked by default

5 Your Tasks

Your tasks will be to complete the sequential tree-based implementation and to
implement a parallel simulation implementation.

The file simple-simulator.cpp provides the naive implementation that checks
all particles for proximity. Make sure you understand this code before proceed-
ing to Step 1.

8



5.1 Task 1: (20 Points) Implement Sequential Quad-Tree
Based Simulation

The file seq-simulator.cpp provides the function definitions for the sequential
simulation. You need to implement the buildAccelerationStructure(..)

and simulateStep(..) function.

The buildAccelerationStructure(..) function takes a vector of current par-
ticles, and should return a QuadTree object. See quad-tree.h for the definition
of QuadTree class. You may not delete or modify the contents of this
file, but you may define new functions or structures if you believe
them to be useful.

A QuadTree has the following properties:

• root: A QuadTreeNode

• bmin: A Vec2 with <x,y> minimum bounds on the locations of particles
in the tree

• bmax: A Vec2 with <x,y> maximum bounds on the locations of particles
in the tree

• getParticles: A function that assigns the list of particles in this tree to a
pointer provided as a parameter.

A QuadTreeNode has the following properties:

• isLeaf: Boolean labeling if this node is a leaf

• children: Array of 4 QuadTreeNode pointers representing the children of
this node

• particles: List of particles at this node

The simulateStep(..) function implements stage 2 of the simulation. It
reads particle information from the particles parameter, and stores the new
particle status in the newParticles vector. It should be very similar to the
simple implementation.

Evaluation

Your sequential program will be evaluated based off of correctness. You can
check the correctness of your sequential quad-tree build implementation and
simulateStep function by running:

$ make

$ ./checker.pl -s

9



Figure 3: Diagram of children mapping of quad tree

5.2 Task 2: (60 Points) Implement Parallel Quad-Tree
Based Simulation

For this task, you need to implement the buildAccelerationStructure(..)

and simulateStep(..) functions in parallel-simulator.cpp. You may find
it useful to start from your sequential implementation from Task 1.

Your implementation must perform well even in scenes with imbalanced particle
distribution. It will be tested against a total 7 scenes, each shown in the gallery
at the end of this writeup. It will benefit you to look at these scenes and consider
them when writing your implementation.

Tips and Tricks

• Consider the use of task-based instead of data-based parallelism. What
task best suits which type of parallelism? Blindly creating #pragma omp

parallel for loops will not serve you well in this task.

• Research the different types of scheduling OpenMP provices, and choose
the type that best suits the problem at hand. The following article has
great resources explaining how different types of scheduling handle work.

http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

10

http://jakascorner.com/blog/2016/06/omp-for-scheduling.html


• You may find tuning constants involved in your implementation useful.

Evaluation

The benchmark shows the performance for your parallel implementation, in-
cluding speedup information and correctness errors. It also displays the target
speedup for each scene.

$ make

$ ./checker.pl -p

You will be evaluated both on correctness and speed; an implementation that is
not correct with not receive any points, so ensure that correctness does not fail.
Although you could improve the apparent speedup by detuning the single-core
performance, that will not lead to an optimal overall score, as we will look at
your code. As a special case, if your single-core performance exceeds the target
performance, then the target performance will be used as the denominator in
the speedup calculation. This means that you don’t need to artificially slow
down a fast, single-threaded version in order to maximize the speedup measure-
ment.

Scoring of your performance is broken down as follows:

Table 1: Breakdown of Points.

Function Performance Points
buildAccelerationStructure 40
simulateStep 20

Your performance for different scenes will be weighted in your overall score.
Below are the percentage weights for each scene. As an example; random-1000
will contribute .05 ∗ 20 = 1 point to your total score.

Table 2: Percentage weight of different scenes.

Scene Percent
random-1000 5
random-10000 15
random-50000 20
corner-1000 5
corner-10000 15
corner-50000 20
repeat-10000 20

11



6 Write-up

In your writeup, please include the following:

1. Briefly describe your sequential implementation and explain your parallel
implementation in your write-up.

2. Include your reasoning for your implementation choices, including any
graphs or tables that helped you make your decisions.

3. Include timings for different parts of the program, for at least the buildTree
and simulateStep functions in the parallel implementation.

4. Include the benchmark output as a result of running

$ ./checker.pl -p

7 Hand-in Instructions

You will submit your code via Autolab and your report via Gradescope. For
the code, you will be submitting all C++ header and source files in the src
folder.

1. Submitting your code:

(a) If you are working with a partner, form a group on Autolab. Do
this before submitting your assignment. One submission per group
is sufficient.

(b) Make sure all of your code is compilable and runnable. We should be
able to simply run make, then execute ./checker.pl -p. Please remove
excessive print statements, if they were added.

(c) Run the command “make handin.tar.” This will run “make clean”
and then create an archive of any C++ source code in /src. If you
find it absolutely necessary, you may modify the Makefile to include
other files you have added.

(d) Submit the file handin.tar to Autolab.

2. Submitting your writeup:

(a) Please upload your report as file report.pdf to Gradescope, one sub-
mission per team, and select the appropriate pages for each part of
the assignment. After submitting, you will be able to add your team-
mate using the add group members button on the top right of your
submission.

12



8 Gallery

Your implementation will be tested against the following scenes. They all have
different distributions of points, different space sizes. Taking into account pos-
sibly uneven distributions may help your implementations’ performance.

The red lines overlaid on the following images visualize the quad-tree based
partition of the particles.

N = Number of particles in Scene

S = Space Size, where particles can take any position with x coordinate in (-S,
S) and y coordinate in (-S, S).

Figure 4: Random-1000: N=1000, S=10.0, randomly distributed points

Figure 5: Random-10000: N=10000,S=100.0, randomly distributed points

13



Figure 6: Random-50000: N=50000, S=500.0, randomly distributed points

Figure 7: Corner-100: N=1000, S=10.0, Corner associated points

14



Figure 8: Corner-10000: N=10000, S=100.0, Corner associated points

Figure 9: Corner-50000: N=50000, S=500.0, Corner associated points

15



Figure 10: Repeat-10000: N=1000, S=100.0, Random distributions with many
iterations (50)

16


	Overview
	Assignment Objectives
	Machines
	Resources

	Introduction
	Computing Gravitational Force
	Simple Simulation Algorithm

	Quad-Tree Simulation Algorithm
	Quad Tree
	Simulation Algorithm

	Starter Code
	Building the Starter Code
	Running the Startup Code
	Visualization
	Running the Benchmark
	Usage

	Your Tasks
	 Task 1: (20 Points) Implement Sequential Quad-Tree Based Simulation
	Task 2: (60 Points) Implement Parallel Quad-Tree Based Simulation

	 Write-up
	Hand-in Instructions
	Gallery

