15-398 Introduction to Nanotechnology

Molecular Devices

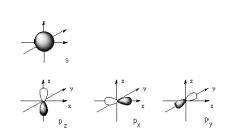
Seth Copen Goldstein seth@cs.cmu.edu

CMU

lecture 7 15-398 © 2005 Seth Copen Goldstein

Where it all started

- Aviram & Ratner
 Chem. Phys. Lett. 29, 277 (1974)
- Donor-bridge-acceptor model for a molecular diode
- Synthesized and verified in 1997 by Metzger


Why Molecules?

- Molecules are small
- · Molecules can be engineered
 - Many different ones!
 - Engineer band gaps, electron confinement, tunneling, pi-bonds
- Molecules can be self-assembled
- Molecules are identical

lecture 7 15-398 © 2005 Seth Copen Goldstein

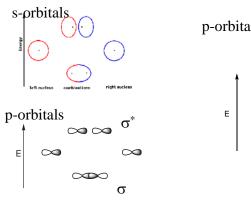
Orbitals

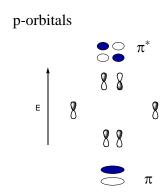
- · N atomic orbitals lead to N molecular orbitals
- Most of the time, bonds are formed from combining one orbital from each atom
- * We care about valence electrons outermost orbital $$_{\mbox{\sc Anti-bonding orbital }\sigma^*}$$

lecture 7 15-398

 H_2 H_2 H_2 H_2 H_3 H_4 H_5 H_6 H_8 H_8 H_8 H_8 H_8 H_9 H_9

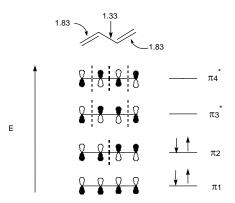
lecture 7 15-398 © 2005 Seth Copen Goldstein

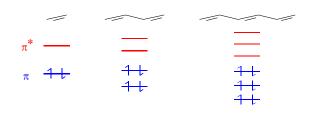

© 2005 Seth Copen Goldstein


4

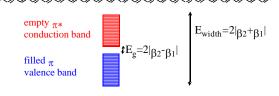
Sigma vs. Pi Bonding

Sigma bonding


Pi-Bonding

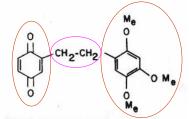

lecture 7 15-398 © 2005 Seth Copen Goldstein

Extended Pi Bonding


 lecture 7 15-398
 © 2005 Seth Copen Goldstein
 6

Conjugated Polymers

long chain limit


lecture 7 15-398

© 2005 Seth Copen Goldstein

Line diagrams

Sigma bonded segment

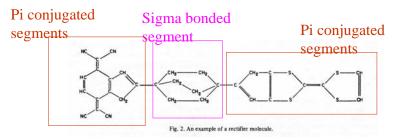
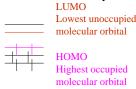

Pi conjugated segments

Fig. 1. An example of a hemiquinone.

- •Unlabelled vertices are carbons
- •Add Hydrogens as needed to satisfy valence
 - C \rightarrow 4 lines N \rightarrow 3 lines O \rightarrow 2 lines F \rightarrow 1 line

7 lecture 7 15-398 © 2005 Seth Copen Goldstein 8

Another Rectifier Molecule

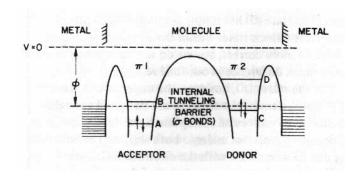

- Their molecules consist of two pi-conjugated segments, with sigma bonded region in between
- Pi-conjugated regions have different energies due to electron donors and acceptors

 lecture 7 15-398
 © 2005 Seth Copen Goldstein
 9
 lecture 7 15-398
 © 2005 Seth Copen Goldstein

Electron Donors and Acceptors

- Electronegative elements like negative charges on themselves and so tend to withdraw (accept) electrons
 - Decrease the pi density
 - Raise electron affinity (Lower the LUMO)
- Electropositive elements like positive charges on themselves, and so tend to donate electrons
 - Increase the pi density
 - Lower ionization potential (Raise the HOMO)

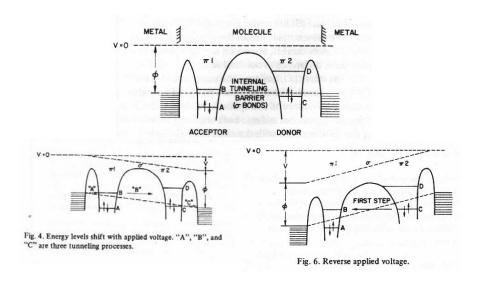
For a metal, the HOMO and LUMO are degenerate, so the ionization potential= electronic affinity = work function


Electronegativity

- Ability of an atom to attract electrons to itself, when participating in a covalent bond
- Periodic trends
 - Increases from left to right across periodic table
 - Decreases as you move down the periodic table

H 2.1

C 2.5 N 3.0 O 3.5 F 4.0 S 2.5

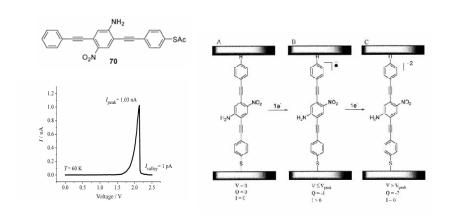

Energy Level Diagrams

- •Acceptor will take electron into its LUMO
- •Donor will lose electron from its HOMO

 lecture 7 15-398
 © 2005 Seth Copen Goldstein
 11
 lecture 7 15-398
 © 2005 Seth Copen Goldstein
 12

Mechanism for Rectification

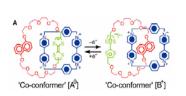
 Molecular Devices

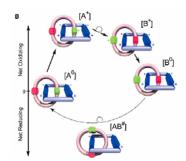

- Wires
- Rectifiers
- Tunnel Junctions
- Transistors
- · Stateful Switches

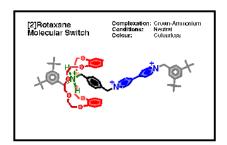
 lecture 7 15-398
 © 2005 Seth Copen Goldstein
 14

Mechanisms

- Pi-conjugation
- Tunneling
- Diffusive charge transport
- · Conformational change
- Schottky Barrier


Negative differential Resistance

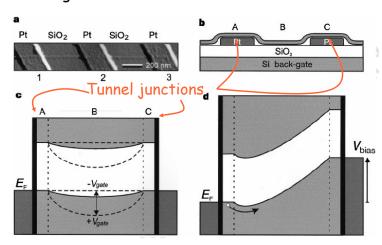



Tour&Reed 1999, Science 286(5444)

 lecture 7 15-398
 © 2005 Seth Copen Goldstein
 15
 lecture 7 15-398
 © 2005 Seth Copen Goldstein
 16

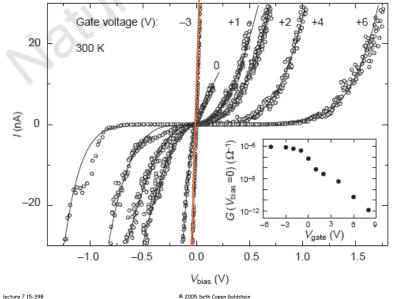
Molecular Switch

lecture 7 15-398 © 2005 Seth Copen Goldstein


What role contacts? What role contacts? Heath, Stoddart JACS 2001

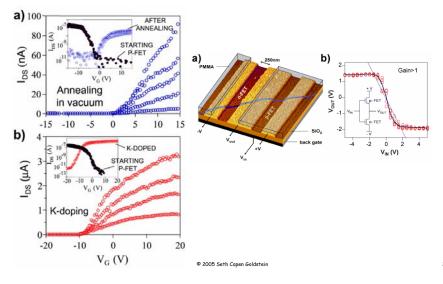
Proposed mechanism

CNT FET

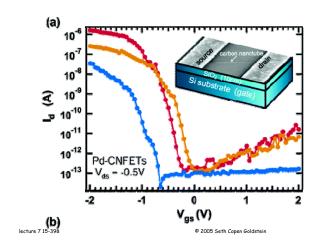

- Tans, etal Nature 1998
- · Back-gated CNT FET

lecture 7 15-398

© 2005 Seth Copen Goldstein

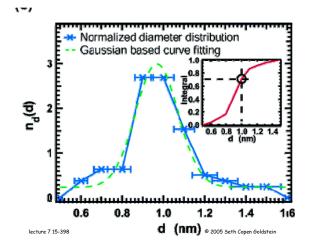

Transistor-like behavior

19 lecture 7 15-398 © 2005 Seth Copen Goldstein 20

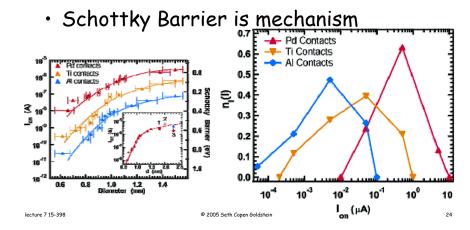

P and N-type CNT FETs

Avouris, NanoLetters 2001

Variance between tubes?


•
$$V_{th}$$
, V_{gs} , $V_{ds} = V_{gs} - V_{th} = 0.5V$

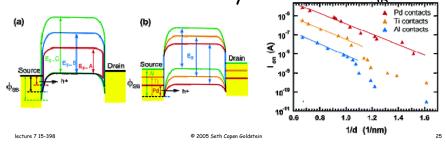
22


Tube Diameter?

 Diff diameter have different energy gap. Vary from 0.6eV to 1.4eV

Contacts?

 Measure I_{on} for different contact metals. Work functions increase from Pd->Ti->Al



23

Schottky Barrier

- Tube diameter effects E_q (larger d -> smaller E_g)
- \cdot Contact metal effects $\Phi_{\sf SB}$
- · SB height function (for p-type) of the difference between the valence band max of the tube and the fermi level of the metal

• Total current is linearly related to Φ_{SR}

Why Molecules?

Molecules are small

- (g)
- Molecules can be engineered
 - Many different ones!

- Engineer band gaps, electron confinement, tunneling, pi-bonds
- Molecules can be self-assembled
- Molecules are identical

How many?

But contacts?

Bottom Line

- Molecular devices
 - Are diverse
 - Can produce different I-V curves
 - Have significant potential
 - Still a research area
 - Use different mechanisms
- The device-contact system is what is important
- So... back to slide 1

lecture 7 15-398 © 2005 Seth Copen Goldstein

lecture 7 15-398 © 2005 Seth Copen Goldstein