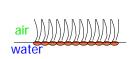

Lipids

- · Organic compounds
- Amphipathic
 - Polar head group (hydrophilic)
 - Non-polar tails (hydrophobic)
- · Lots of uses
 - Energy storage
 - Membranes
 - Hormones
 - Vitamins


lecture 5-sa 15-398 © 2004-5 Seth Copen Goldstein

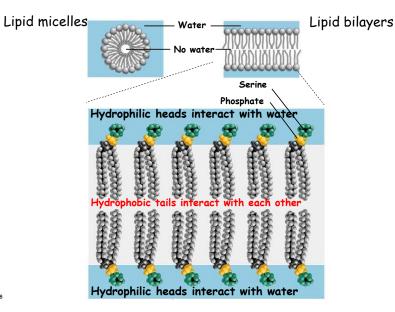
Some lipid structures

· Hydrophobic interactions are important

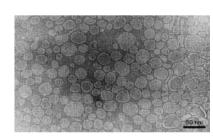
· Lipid is an amphipathic molecule, but rarely exists as a monomer.

monolayer

Micelle


Inside-out (in nonpolar solvent)

Lipid bilayer

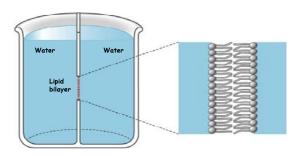

lecture 5-sa 15-398

© 2004-5 Seth Copen Goldstein

Micelles/Bilayers

Examples

Lipids and water form tiny compartments

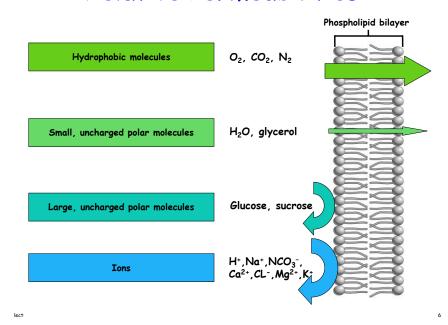


Red blood cells

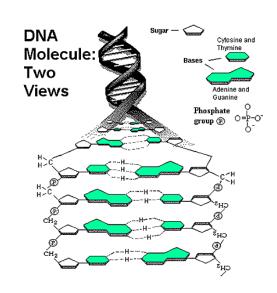
lecture 5-sa 15-398 © 2004-5 Seth Copen Goldstein

Using Lipids as Membranes

Planar bilayers: Artificial membranes


Membrane is selectively permeable

lecture 5-sa 15-398 © 2004-5 Seth Copen Goldstein


DNA/RNA/Proteins

- · Why study?
- · Here are just the basic basics
- · DNA
 - made up of double strands of adenine (A), guanine (G), cytosine (C) and thymine (T)
 - Pair up: C-G, A-T
- · RNA
 - Single stranded
 - U for T
- · Proteins do the work
- · DNA -> RNA -> Proteins

Relative Permeabilities

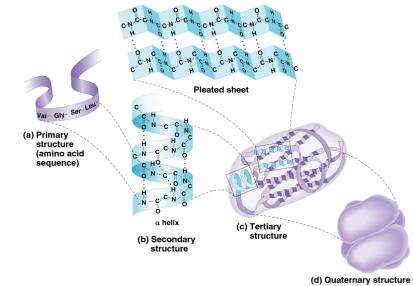
DNA

lecture 5-sa 15-398

H-bonds

lecture 5-sa 15-398 © 2004-5 Seth Copen Goldstein

8


Protein

- Linear polymer of amino acids linked by peptide bonds
- Average 200 amino acids, can be >1K
- Complex structure
 - Primary structure sequence of AAs
 - Secondary structure local arrangements
 - Tertiary structure how the local structures pack in 3D
 - Quaternary structure how chains fold

Forces determining structure

- Van der Waals .4 4 KJ/mol
- Hydrogen bonds 12-30 KJ/mol
- Ionic bonds 20 KJ/mol
- Hydrophoic interactions <40KJ/mol

Levels of Structure

©1999 Addison Wesley Longman, Inc.

Amino Acids

- · 20 natural ones
- Formed from
 - Central carbon
 - Amino group
 - Carboxyl group
 - H
 - Side-chain
- Only difference is side-chain
- Polar/non-polar

```
Alanine
                      Ala A
    Cysteine
                      Cvs C
    Aspartic AciD
                       Asp D
    Glutamic Acid
                       Glu E
    Phenylalanine
                       Phe F
    Glycine
                      Gly G
    Histidine
                       His H
    Isoleucine
                       lle I
    Lysine
                       Lvs K
    Leucine
                       Leu L
    Methionine
                       Met M
    AsparagiNe
                      Asn N
    Proline
                      Pro P
    Glutamine
                      Gln Q
                  carboxyl
                  end
amino
end Ha+N-
                     α carbon
         side
```

 lecture 5-sa 15-398
 © 2004-5 Seth Copen Goldstein
 11
 lecture 5-sa 15-398
 © 2004-5 Seth Copen Goldstein

Secondary structures

- Alpha helix
- · Beta Sheet
- · Loop regions
 - Often binding sites
 - Often hydrophilic
 - Come between alpha's and beta's
- Represented as ribbon diagrams
 - Coiled alpha
 - Arrow beta

VHL protein

- Thin - loops

Stebbins et al, Science, 284:455.

lecture 5-sa 15-398

© 2004-5 Seth Copen Goldstein

13

Using all this info

- Protein-based memory
- · DNA as wires
- DNA-based assembly
 - Templates
 - Smart-glue
 - tiles

 lecture 5-sa 15-398
 © 2004-5 Seth Copen Goldstein
 14

DNA as wires

- DNA is conducting, 1986 and on
 - π -bonding
 - D-A, holes, Hopping
- DNA is insulator, 1999 and on
 - λ -bridge between oligos on gold
 - Insulator
 - Lower T -> more insulating
- DNA is semiconductor, 2000 and on
 - Consider series of quantum dots
 - Maybe difference in fermi-level with contacts
- · Conclusion?

DNA-templates for wires

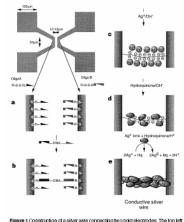
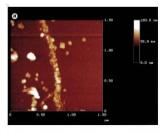
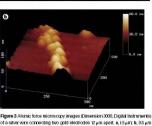
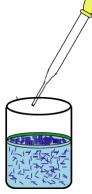




Figure 1 Construction or sinter whe connecting wood of electrose. Fire top-left mage shows the electrode pattern (55 × 65mm) used in the experiments. The two50 µm long, parallel electrodes are connected to four (100 × 100 ml) conting posts. a. (Eligonal collection of the connected to the electrodes, connected to the electrodes, b, LPCNA bridge connecting the two electrodes, c, Sheri-pin-loaded PICNA bridge, d, Melatics shere agreegates bound to the DIAA seldent on, e, Fully developed silver wire. A full description of the preparation steps can be found in the Melhod's section.


field sizes. Note the granular morphology of the conductive wire.

Ian Publishers Ltd 1988 NATURE Vol. 391 | 19 FEBRUARY 199

 lecture 5-so 15-398
 © 2004-5 Seth Copen Goldstein
 15
 lecture 5-so 15-398
 © 2004-5 Seth Copen Goldstein

Interfacial Nanowire Assembly

- · Challenges:
 - Gravity
 - High interfacial tension
 - Incompatible with DNA, high salt

lecture 5-sa 15-398

© 2004-5 Seth Copen Goldstein

17

DNA as "glue"

Au surface

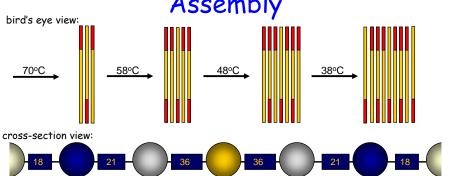
Selectivity - 4" unique

- 4^n unique sequences for oligo of length n
- base pairing determines thermodynamic stability

Versatility

- sequence
- 5' or 3' terminal –SH, –NH $_{\rm 2}$, biotin, etc

- temperature, base



lecture 5-sa 15-398

© 2004-5 Seth Copen Goldstein

Temperature-programmed Ratt

Assembly

Deterministic rafts will be assembled at the aq/aq interface via sequential assembly of nanowires harboring decreasing lengths of oligonucleotides A and A´ as the sample is cooled.

^{5'} HS-C₁₂H₂₄-TTG AGA CCG TTA AGA CGA GGC AAT CAT GCA ATC CTG ^{3'}

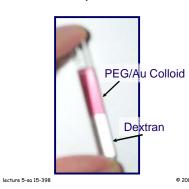
_ength	T _m
36-mer	75°C
21-mer	61ºC
18-mer	51°C
15-mer	41°C
9-mer	28°C

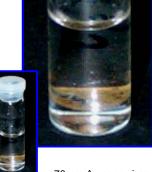
Necessary components of raft assembly:

- Hybridization-compatible interface
- · DNA-coated nanowires at the interface
- · Hybridization-driven nanowire assembly
- Thermal control over assembly process

 lecture 5-sa 15-398
 © 2004-5 Seth Copen Goldstein
 19
 lecture 5-sa 15-398
 © 2004-5 Seth Copen Goldstein
 2

Aqueous-aqueous interfaces


polymeric solutes, few weight %


· particles collect at interface

· low, tunable interfacial tensions

compatible with DNA, high salt

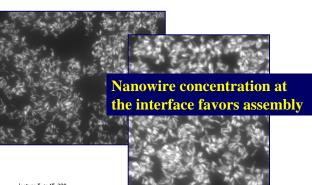
• stable up to 95°C

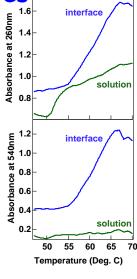
- 70-nm Au nanowires
- MESA-derivatized
- PEG/dextran ATPS
- hybridization buffer

© 2004-5 Seth Copen Goldstein

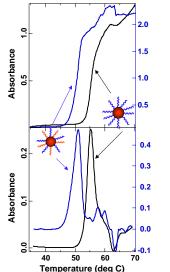
DNA-directed assembly at the interface?

interface - form reflective interface after gentle agitation


mior face after genine agricultur

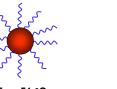

 lecture 5-sa 15-398
 © 2004-5 Seth Copen Goldstein
 22

Melt curves for interface and solution assemblies


Nanowire rafts removed from interface

- Higher T_m than solution-prepared counterparts
- Large aggregates lead to high scattering
- Observe greater change upon melting
 - · more DNA was hybridized
 - interface concentrates nanowires for assembly

Controlling T_m by surface dilution

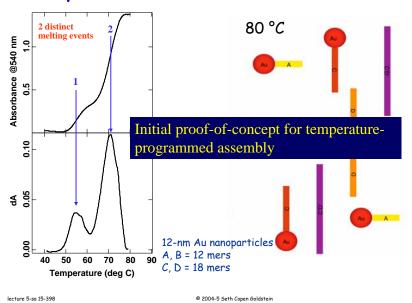


Surface dilution of proper DNA sequence decreases T_m

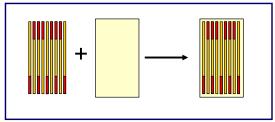
We can control coverage from 1-5 \times 10¹³ strands/cm² (40-150/particle)

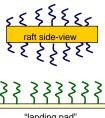
This approach can be used to tailor T_m 's for temperature-programmed assembly

surface diluted w/ polyA

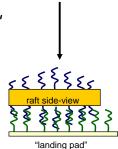


T_m = 51 °C

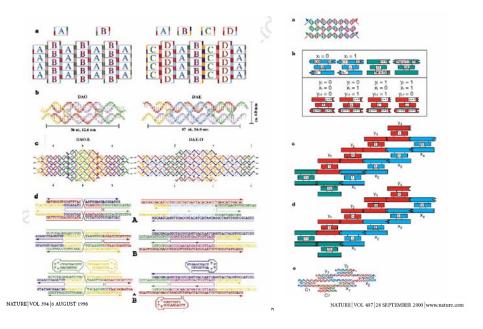



lecture 5-sa 15-398 © 2004-5 Seth Copen Goldstein

Temperature-controlled Dissociation



Potential-Assisted Raft Positioning



- · lithographically-defined "landing pads"
- derivatize with complementary DNA
- · hold at positive potential
- · allow rafts to hybridize to pads
- · reverse potential for stringency

lecture 5-sa 15-398 © 2004-5 Seth Copen Goldstein

DNA Tiles

