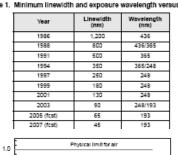
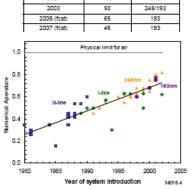
15-398 Introduction to Nanotechnology

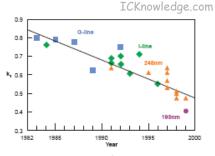
Nanoscale Lithography

Seth Copen Goldstein Seth@cs.cmu.Edu

CMU


ecture 4 © 2004-5 Seth Copen Goldstein


Pushing The Limits of Photolithography

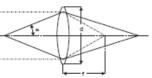

- Reduce wavelength (λ)
- Use Reducing Lens
- Increase Numerical Aperture (NA) of Lens
 - E.g., Immersion optics
- Hacks (k_1)
 - PSM, OPC, RET, off-axis illumination
- Rayleigh eqn: min-feature-size= $k_1\lambda/NA$

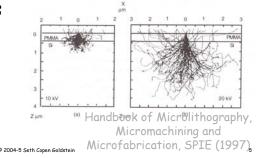

lecture 4 © 2004-5 Seth Copen Goldstein

Trends in λ , NA, k_1

NA & Immersion

- NA = n sin α = d/(2f)
 - N is index of refraction of medium
 - α is angle of acceptance ____
- Air, n=1
- Water, n≅1.47



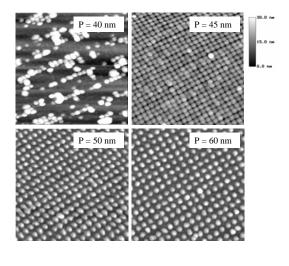

Figure 3 Numerical aperture

Result -> improve min linewidth 30%!

lecture 4 © 2004-5 Seth Copen Goldstein

E-Beam? FIB?

- Use high-energy electrons to alter/ablate a resist
- · Issues:
 - Secondary electrons
 - Scattering in resist (or off substrate)
 - Serial process
 - alignment



lecture 4

Microelectronics isn't everything

- Reactive organics
- · 3-D structures

Example of E-beam patterning

Uof A, Nanolithography

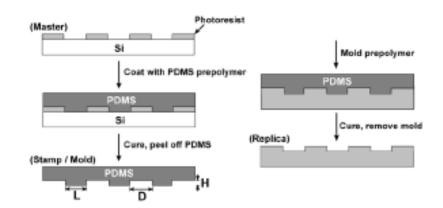
© 2004-5 Seth Copen Goldstein

Today

- Soft Lithography/Nanoimprint
- Scanning Probe Lithography
- Edge Lithography
- Top-down fabrication to create nanoscale features using a physical mold or tip for patterning.

 lecture 4
 © 2004-5 Seth Copen Goldstein
 7
 lecture 4
 © 2004-5 Seth Copen Goldstein

Soft Litho


- Replica Molding transfer features from master to replica by curing a liquid
- Embossing transfer of features from master to replica by pressing
- Microcontact Printing transfer of material on master to replica by stamping

lecture 4 © 2004-5 Seth Copen Goldstein

The Mold

- Some important features:
 - Master should be reusable many times (self-cleaning)
 - Create fine features
 - Flexible
 - Stable
 - Optically transparant (for some processes)
 - Thermally stable
 - Inert
 - Low adhesive forces

Basic Example

Unless otherwise notes, pictures from Unconventional Nanofabrication, Gates et al, ARMR 2004

lecture 4 © 2004-5 Seth Copen Goldstein 1

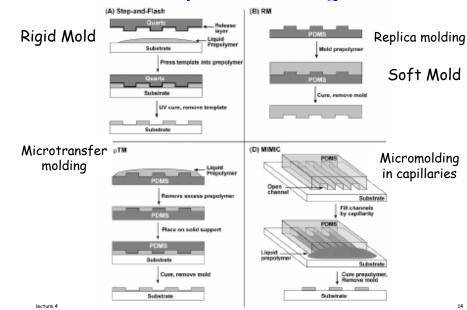
Causes of Distortion

- Differences in thermal expansion between master and replica
- Shrinkage during curing
 - x-linking
 - Evaporation
- Adhesion at time of separation
- Collapse at separation

 lecture 4
 © 2004-5 Seth Copen Goldstein
 11
 lecture 4
 © 2004-5 Seth Copen Goldstein
 12

PDMS

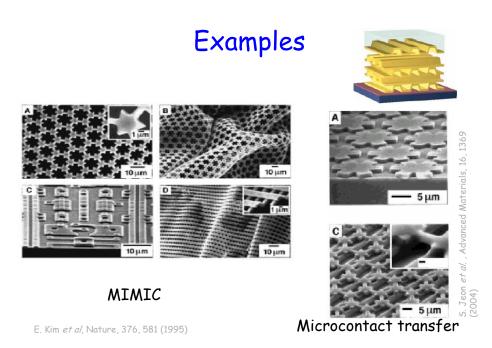
- Poly(dimethylsiloxane) silicone rubber
- · Very common mold material. A resist
- Inert to materials being patterned
- Low surface energy (eases release)
- · Optically transparant
- Thermally stable
- Tough
- Flexible
- No solvent evaporation
- Low-temp curing


lecture 4 © 2004-5 Seth Copen Goldstein

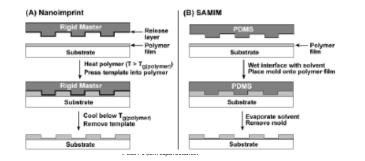
Rigid Molds

into UV-cured 1,3-bis(methacryloxypropyl)tetramethyldisiloxane as patterned by stepand-flash lithography (22) (reprinted with permission, © SPIE 2002). The image in

- E.g., Step-and-flash
 - Add Liquid pre-polymer
 - Press master
 - Expose to UV
- · 30nm features
- High-aspect ratio of lines
- Rapid cycle-time
- Alignment of master and replica
- · Replica needs to be planar
- · Multi-layer structures hard


Replica Molding

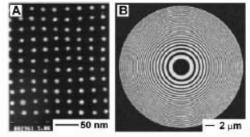
Soft Molds


- Can pattern non-planar and soft surfaces
- Photo- or thermal curing large range of materials can be molded
- Potential for large surface area molds

 lecture 4
 © 2004-5 Seth Copen Goldstein
 15
 lecture 4
 © 2004-5 Seth Copen Goldstein

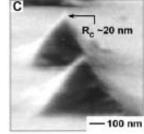
Embossing

- Press mold into replica to create structures
- · Generally, thermally assisted
- Used at microlevel commercially (e.g., DVD)
- Nanoscale features <50nm


lecture 4

Embossing - rigid molds

© 2004-5 Seth Copen Goldstein

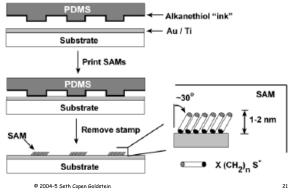

- Nanoimprint lithography (NIL)
- Press mold, heat polymer, cool, release
- Features 10nm, high-aspect ratio
- Long exposure times (5 10 min)
- Hard for large A areas

lecture 4

Embossing - soft molds

- SAMIM, solvent-assisted micromolding
- Reduces pressure and temp needed due to solvent
- Eliminates trapped air pockets
- · 60nm features, low aspect ratio
- Non-planar surfaces
- Large areas

lecture 4 © 2004-5 Seth Copen Goldstein


lecture 4

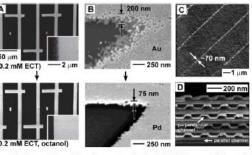
© 2004-5 Seth Copen Goldstein

Mircocontact Printing

- Transfers "ink" from master to replica
- Ink is a self-assembled monolayer (SAM)
- 50nm features

lecture 4

Soft Lithography


Pluses and minues?

Microcontact printing

- Planar and curved surfaces
- Many different kinds of "ink"
- Min resolution affected by diffusion of molecules

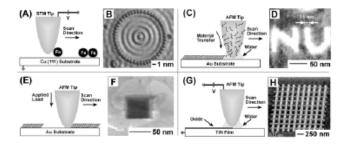
Organics supported

Multilayers ok

lecture 4

Soft Lithography

- Advantages
 - Avoids complexity of photolithography
 - Inexpensive
 - Some 3-D possible
 - Organics can be patterned
- Disadvantages
 - Heat, pressure can be harmful
 - Still experimental (low yield)
 - Limits due to lift-off?


 lecture 4
 © 2004-5 Seth Copen Goldstein
 23
 lecture 4
 © 2004-5 Seth Copen Goldstein
 24

SPL

- Scanning Probe Lithography
 - STM tip
 - AFM tip

lecture 4

- Dip-Pen lithography

lecture 4 © 2004-5 Seth Copen Goldstein 25

DPN

- AFM tip is "inked" with material to be deposited
- Material is adsorbed on target
- · <15nm features

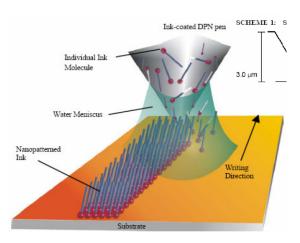
• Arrays of DPN in production

A 15 mm

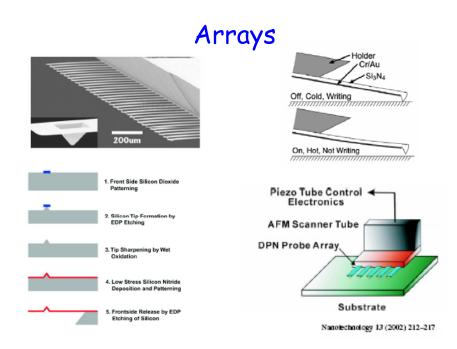
B Washington

C 60 mm

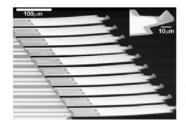
A 15 mm

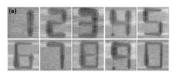

C 1

http://www.chem.northwestern.edu/~mkngrp/dpn.htm


lecture 4 © 2004-5 Seth Copen Goldstein

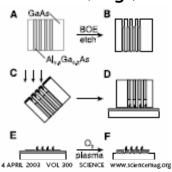
180 0

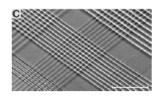

Schematic of DPN



www.nanoink.net
© 2004-5 Seth Copen Goldstein

Array Example

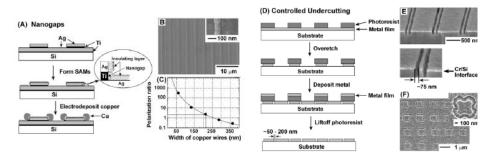

Ten different DPN patterns written simultaneously by the ten probes of a TA-DPN array. Deposited ODT shows up dark in these 8 um x8 um LFM scans.


JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 13, NO. 4, P 594, 2004

lecture 4 © 2004-5 Seth Copen Goldstein

SNAP

- Create a stamp by using the cleaved edges of a layered material formed through MBE
- Then, e.g., transfer SAMS



8nm Pt nanowire array

Edge Litho

- Using Edges produced in another process to double pitch
- Using Edges in material as a stamp (more like NIL)

lecture 4 © 2004-5 Seth Copen Goldstein 30

SNAP V. Other

- EBL can make 20nm patterns, but ...
 - Lift-off for small wires at low pitch or high-pitch limits final result
 - Result is min pitch much higher (~60nm?)
 - Pitch is everything?
 - FBL serial
- Soft-litho master how created?

 lecture 4
 © 2004-5 Seth Copen Goldstein
 31
 lecture 4
 © 2004-5 Seth Copen Goldstein
 32

Summary

- Top-down litho can get to fine features and fine pitches.
- What about complexity of the pattern?
- Keep in mind:
 - Master manufacturing
 - Alignment, imprinting, releasing
 - resist/solvent/material chemistry

lecture 4 © 2004-5 Seth Copen Goldstein 33