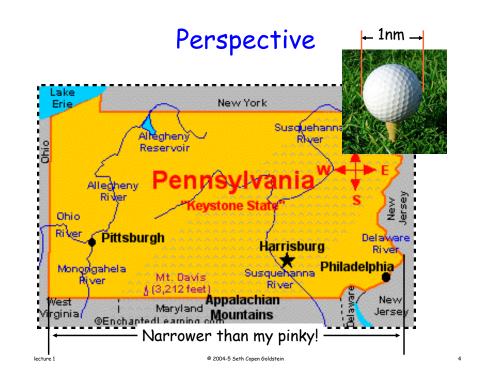
Introduction to Nanotechnology


Seth Copen Goldstein Seth@cs.cmu.Edu

CMU

lecture 1 © 2004-5 Seth Copen Goldstein

What is "nano" What is "nano" IOOM 10m 1m Milli 10-1m 10-2m 10-3m http://www.powersof10.com/ lecture 1 P 2004-5 Seth Cappa Goldstein

Nanotechnology, a definition

- American Heritage Dictionary "The science and technology of building electronic circuits and devices from single atoms and molecules."
- Wordnet "the branch of engineering that deals with things smaller than 100 nanometers (especially with the manipulation of individual molecules)"

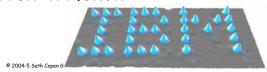
© 2004-5 Seth Copen Goldstein lecture 1

Ancient History of Nanotech?

- ~400BC, Atoms [Democritus of Abdera]
- ~500AD, glazes [artisan in Mesopotamia]
- 1661, elements [Boyle]
- 1803, atomic theory [Dalton]
- 1869, periodic table [Mendeleyev]
- 1915, Bohr Model [Bohr]
- 1920, carbon black

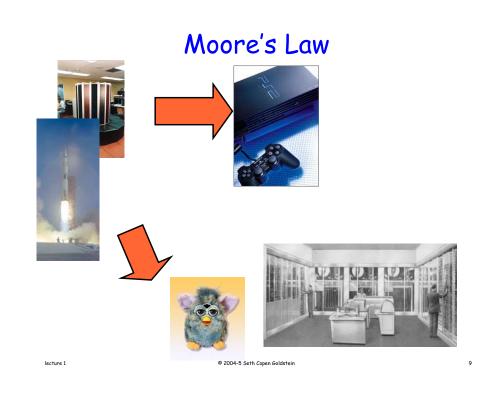
lecture 1

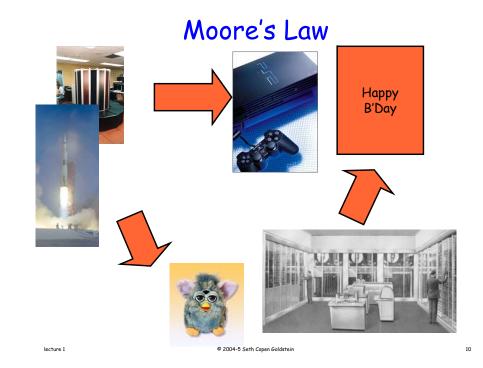
Definitions continued

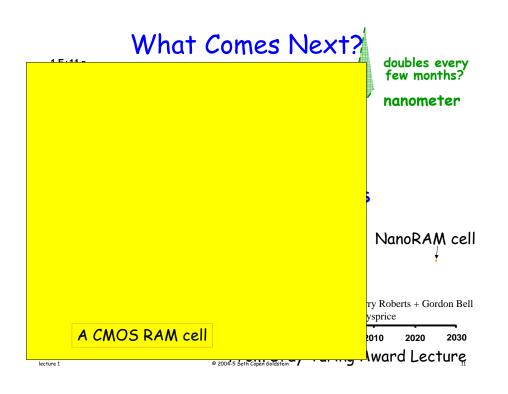

- · M. Rocco, NSF "the ability to work at the molecular level, atom by atom, to create large structures with fundamentally new properties and functions"
- · NASA

"the creation of functional materials, devices and systems through control of matter on the nanometer length scale (1-100 nanometers), and exploitation of novel phenomena and properties (physical, chemical, biological) at that length scale"

lecture 1

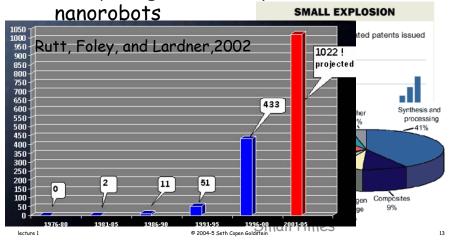

Modern history of nanotech


- 1959, Feynman's talk "There is plenty of room at the bottom"
- 1965, Moore's original paper
- 1974, "Nanotechnology" [Taniguchi.]
- 1984, invention of STM [Binning]
- · 1985, discovery of fullerens [smalley]
- 1986, Drexler, Engines of Creation
- 1990, IBM written in Xenon



© 2004-5 Seth Copen Goldstein

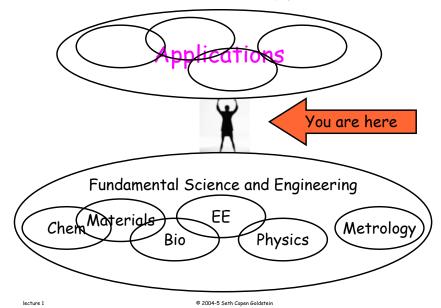
lecture 1


Technology Shifts

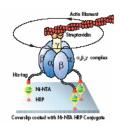
- · Size of Devices
 - ⇒ Inches to Microns to Nanometers
- Type of Interconnect
 - ⇒ Rods to Lithowires to Nanowires
- Method of Fabrication
 - ⇒ Hammers to Light to Self-Assembly
- Largest Sustainable System
 - \Rightarrow 10¹ to 10⁸ to 10¹²
- Reliability
 - ⇒ Bad to Excellent to Unknown

lecture 1 © 2004-5 Seth Copen Goldstein

Commercialization


- By 2015 predicted to be >10¹² dollars
- · Everything from nanoparticles to

One Course Goal


- Understand what is important to you
 - Read literature in related fields
 - Understand relevance to your research
- Understand importance to others

What Nanotechnology means to x

Biology

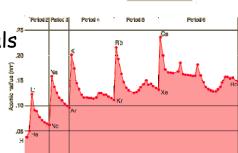
- · DNA/RNA
 - 2-3nm per base pair
 - 109 base pairs for human genome
- Proteins
 - 100K different in human
 - "self-assembles"
- · DNA-computing
- DNA-based self-assembly
- ATP motors

Chemistry

- Molecular diodes
- Molecular switches
- Block Polymers
- · Fluidic self-assembly
- Molecular design

http://www.chem.ucla.edu/dept/Faculty/stoddart/reserverserve [2]Rotaxane Complexation: Crown-Ammonium Conditions: Neutral Molecular Switch

lecture 1

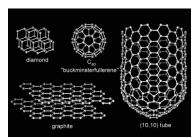

Physics

- Quantum mechanics
 - Confinement
 - De Brogli wavelength
 - tunneling

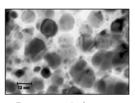
Scattering

Photonic Crystals

Basic forces



lecture 1

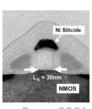

Materials

© 2004-5 Seth Copen Goldstein

- Carbon Nanotubes
- Multifunctional materials
- Smart materials
- Nanostructured catalysts

Azonano.com

QuantumSphere


Electrical Engineering

© 2004-5 Seth Copen Goldstein

· VLSI

Lithography

- Top-down assembly
- Easily to 65nm, controlled gates to 15nm,
- Thicknesses to sub-1nm!
- Transistor
- Electronic nanotechnology
- Nanocomputing

lyperPhysics, GSU,

180 nm Technology

Intel Tech J., 2002

Rusu, 2001

Robotics

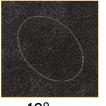
- Integration
- Actuation (e.g., surface tension)
- Power systems
- Sensing
- Emergent behavior

Sociology

- Disruptive technology
- Changes in social fabric
- · Work habits
- Life expectancy
- Understanding fear

 lecture 1
 © 2004-5 Seth Copen Goldstein
 21
 lecture 1
 © 2004-5 Seth Copen Goldstein
 2

Policy


- · Controlling & aiding research
- · Risk of accidental or intentional harm
- Training and education
- Environmental impact
- · What to fund

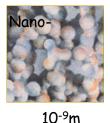
What is Nanotechnology?

- Is the question important?
- Another goal of the course, understand what nanotech is
- Two perspectives
 - Size
 - Number

 lecture 1
 © 2004-5 Seth Copen Goldstein
 23
 lecture 1
 © 2004-5 Seth Copen Goldstein
 24

What is "nano"

10⁹m


108m

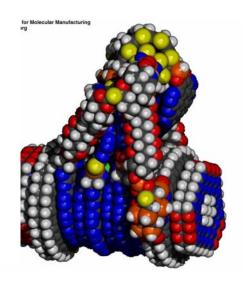
 10^{7}m

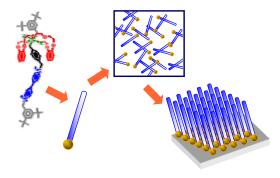
10⁻⁷m

http://www.powersof10.com/

© 2004-5 Seth Copen Goldstein

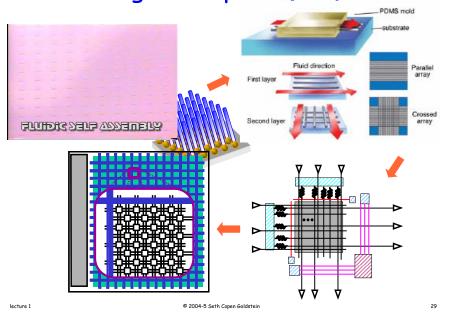
What is "nano"


- · Surface to volume ratio is different
- Individual atoms are important
- Forces/effects are new
 - Quantum
 - Van der Walls
 - Brownian
 - Electrostatic
- · E.g., how fast is the speed of sound


© 2004-5 Seth Copen Goldstein lecture 1

Is this nano?

 A motion controller for nanoassembly


Building a Computing Crystal

Or, is this nano?

lecture 1 © 2004-5 Seth Copen Goldstein © 2004-5 Seth Copen Goldstein lecture 1

Building a Computing Crystal

The Nano design space

- Length scale
- · Dimensions controlled
- Types of materials used
- Dynamic or static end-product
- Forces harnessed
- · Assembly method
 - bottom-up
 - Top-down
 - Deterministic or self-assembly

© 2004-5 Seth Copen Goldstein 30

Controlling Complexity

- What are the limits to self-assembly?
- How do we engineer 10²³ of anything?
- · What is the role of computer science?
- Understand the tradeoffs in manufacturing at the nanoscale
 - Precision
 - Randomness
 - programming

Course Structure

Lectures

lecture 1

- Participation
- Readings
- Reviews
- homework
- Project

Topics Covered

- General nanotechnology
 - Materials
 - Science background as needed
- Tools
- Electronic nanotechnology
- Fabrication
 - Top-down
 - Bottom-up/self-assembly
- Nanorobotics
- Self-organization

For Next Time

- Read Feynman's lecture "There is plenty of room at the bottom" www.zyvex.com/nanotech/feynman.html
- Write $\frac{1}{2}$ page about above
- Email pdf to seth@cs.cmu.edu before Wed Midnight
- · Email me
 - brief background and
 - what you want to get out of this course

 lecture 1
 © 2004-5 Seth Copen Goldstein
 33
 lecture 1
 © 2004-5 Seth Copen Goldstein
 34