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1 Introduction

The last 40 years have witnessed persistent exponen-
tial growth in computer performance. This incredible
rate of growth is a phenomenon known as Moore’s
law [Mo065]. Gordon Moore predicated in 1965 that
the density of devices on a memory chip would dou-
ble every 18 months. His prediction has proven true.
Moore’s law has also come to mean that processing
power per dollar doubles every year. The most in-
credible result of this success is that we have come to
count on it. In fact, we expect our computers, video
games, and cell phones to get smaller, lighter, more
powerful, and cheaper every year.

Advances in semiconductor fabrication have
brought smaller devices and wires, increased speed
and chip density, greater reliability, and decreased
cost per component. This remarkable success is
based largely on complementary metal-oxide semi-
conductor (CMOS) integrated circuits. Improve-
ments to CMOS technology-along with periodic,
but less predictable, developments in computer

architecture—have essentially cut the cost of proces-
sor performance in half every 18 months.

Today we can begin to see the limits of the growth
predicted in Moore’s law. The physics of deep-
submicron CMOS devices, the costs of fabrication,
and the diminishing returns in computer architec-
ture all pose important challenges. The strengths
of CMOS have been that its transistors and wires
have almost ideal electrical characteristics and that
the individual components are manufactured simul-
taneously with the end product. In other words, when
a computer chip is under construction, its transis-
tors and wires are manufactured on the final chip in
their final location. This differentiates semiconduc-
tors from all other complex manufactured products
and is responsible for their low cost. However, as the
size of individual components shrinks below 100 nm,
their behavior is no longer close to ideal and fabrica-
tion costs begin to soar. Further, computer architec-
ture, which constrains the performance of silicon, is
reaching limits of its own.

Chemically assembled electronic nanotechnology
(CAEN) is a promising alternative to CMOS-based
computing that has been under intense investigation
for several years. CAEN uses self-alignment to con-
struct electronic circuits out of nanometer-scale de-
vices that take advantage of quantum-mechanical ef-
fects. In this chapter we explore how CAEN can
be harnessed to create useful computational devices
with more than 10'° gate-equivalents per cm?. The
strategy we describe substitutes compilation time
(which is inexpensive) for manufacturing precision
(which is expensive). This can be achieved through a
combination of reconfigurable computing, defect tol-
erance, architectural abstractions, and compiler tech-
nology. The result is a high-density, low-power sub-
strate that will have lower fabrication costs than its
CMOS counterparts.

Using electronic nanotechnology to build com-
puters requires new ways of thinking about archi-
tecture and compilation. CAEN, unlike CMOQOS,
is not practical for constructing complex aperi-
odic structures. Thus CAEN-friendly architectures
are based on dense regular structures that can be
programmed after fabrication to implement com-
plex functions. For example, nanoBlocks [GBO1],
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nanoCells [HHPT01], cellular automata [LDKO1],
quantum cellular automata cells [NRKO02], and small
PLAs [DeHO02] are all programmable structures that
can be built out of nanoscale components. Each of
these combines nanoBlocks (or similar structures)
to form a computational fabric, such as a nanoFab-
ric [GBO1], that can be altered after manufacture.

Because CAEN-based devices have a higher de-
fect density than CMOS devices, they require built-
in defect tolerance. A natural method of handling
defects is to design the nanoFabric (or similar de-
vice) for self-diagnosis and then implement the de-
sired functionality by configuring around the defects.
Reconfigurability is therefore integral to the opera-
tion of any nanoFabric. Fortunately, many of the
nanoscale components used to build nanoFabrics are
well suited for reconfigurable computing.

In reconfigurable computing, the functions of pro-
grammable logic elements and their connections to
storage are changed during operation to create effi-
cient, highly parallel processing kernels tailored for
the application under execution. The network of pro-
cessing elements is called a reconfigurable fabric.
The data used to program the interconnect and pro-
cessing elements are called a configuration. Exam-
ples of current reconfigurable fabrics include com-
mercial field programmable gate arrays, for exam-
ple [Xil02, Alt02], and research prototypes such as
Chimaera [YMHBO00] and PipeRench [GSM™99].
As we show later, one advantage of nanoFabrics over
CMOS-based reconfigurable fabrics is that the area
overhead for supporting reconfiguration is virtually
eliminated. This magnifies the benefits of reconfig-
urable computing, yielding computing devices that
may outperform traditional ones by orders of mag-
nitude in many metrics, such as computing elements
per cm? and operations per watt.

In this chapter we take the reader from an informal
definition of a bit to the architecture of nanoFabrics.
We begin with an overview of some important fea-
tures of any computing-device technology. We ana-
lyze the evidence in favor of digital (as opposed to
analog) computation. We then discuss the benefits of
using electrons as the basis of information exchange.
Finally, we describe the features digital logic must
have in order to manage the complexity inherent in

computers with hundreds of millions of individual
components.

After describing the fundamental implementation
technology and its salient characteristics, we pro-
vide, in Section 3, an introduction to computer ar-
chitecture and its recent history, including an ex-
planation of how computers work and the methods
by which designers create reliable systems. This
overview explains what CAEN-based devices must
do to compete with CMOS devices. We conclude the
first half of the chapter, in Section 5, with a descrip-
tion of reconfigurable computing.

The second half of the chapter explores CAEN-
based computing in greater depth. We begin, in
Section 6, by describing the devices and fabrication
methods available to the computer architect. These
tools constrain the possible architectures that can
be built economically. For example, one constraint
around which to design an architecture is to disal-
low three-terminal devices. This simplifies fabrica-
tion but could reduce the efficiency of the resulting
chip because three-terminal devices appear essential
in the construction of restoring logic families.

In Section 8.3 we describe some circuit families
that could be supported with molecular electronics.
In particular, we describe how a restoring logic fam-
ily can be constructed from a molecular latch. The
latch is built using only two-terminal devices and
clever fabrication techniques. This latch provides
some of the benefits of three-terminal devices with-
out requiring a processing technique that can co-
locate three different wires in space. In Section 9
we describe the general space of molecular architec-
tures and in Section 9.5 we describe some of the con-
straints imposed on any molecular architecture. In
Section 9.1 we give, as a detailed example, a com-
plete nanoFabric architecture.

While we focus on computers, nearly everything
discussed applies to other electronic devices. In
fact, a computer can be considered a generaliza-
tion of all electronic circuits because it is a pro-
grammable device that can perform the task of any
circuit, though perhaps in a slower or less efficient
manner. If we ignore the amount of power, time,
and cost required, a programmable computer can of-
fer the same functionality as any electronic circuit.
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Thus, the ideas presented here are equally applica-
ble to general-purpose computers, cell phone con-
trollers, video game consoles, thermostats, radio re-
ceivers, and countless other devices.

2 The Switch

In this section we explore the basic building block
of a digital computer. We begin with an abstract
definition of information to show that using digital
circuits—and more specifically—binary digital cir-
cuits, is not arbitrary but rather makes such circuits
more robust and less error sensitive. We then de-
scribe the necessary features that logical operations
require to support the design and implementation of
complex digital circuits. We go on to show how logic
gates can be realized with transistors. Using the tran-
sistor as an example, we conclude the section with a
discussion of the essential characteristics that a fun-
damental building block must have to support digital
logic.

2.1 Information

In this section we discuss the two fundamental com-
ponents of a computer: switches and wires. Switches
are used to manipulate information and wires are
used to move information around. To meaningfully
discuss the switches and wires that comprise a com-
puter, we must establish a context for their use. Thus,
we define what a computer is and what it needs to do.
Computers are complex devices that serve a variety
of functions. Thus, there are numerous different, but
essentially equivalent, definitions of computers. For
our purposes we define a computer as a device that
manipulates information. The reason for this will be-
come clear.

Other sources also define a computer as an infor-
mation manipulation device. For example, Merriam-
Webster defines a computer as “a programmable
electronic device that can store, retrieve, and process
data” [MWOO0]. The Encyclopaedia Britannica like-
wise defines a computer as “any of various automatic
electronic devices that solve problems by processing
data according to a prescribed sequence of instruc-

tions” [Enc02]. Both definitions are unnecessarily
limited because they require the computer to be elec-
tronic; we show below that this is not a sine qua non
of computers. However, both definitions agree that a
computer is a device that “processes data” or, as we
put it earlier, a device that manipulates information.

Our definition of a computer begs two additional
questions: what is information and what does it mean
to manipulate information? Information, as an entity
that can be measured, is a relatively modern concept
introduced by Shannon in 1948 [Sha48]. To have in-
formation about a system is to be able to distinguish
something about the system. For example, if | have
a two-faced coin on a table, it can either be heads up
or tails up. If I tell you the coin is heads up, then you
can distinguish between the two possible states of the
system. If the system were, instead, a room with a
light and I told you the light was on, then you would
again be able to distinguish between the two possi-
ble states of the system, light and dark. The amount
of information in each of these systems is the same:
heads/tails for the coin, on/off for the light.

Suppose instead that there are two coins on the
table—a nickel and a penny to be precise. To distin-
guish the state of the entire system you would need to
know whether both coins are both heads up, whether
both are tails up, whether the penny was heads up and
the nickel was tails up, or vice versa. In this system,
there are four states. Similarly, if | have a light bulb
that can be off, or in one of three levels of brightness,
then to describe the state of the light bulb would re-
quire choosing between one of four states (off, dim,
normal, bright). As the number of states in a sys-
tem increases, the amount of information needed to
describe it also increases.

The smallest amount of information is the amount
needed to distinguish between one of two states. (If
there is only one possible state to the system, then
one cannot distinguish anything about it. Therefore
there is no information in describing it. For exam-
ple, when you ask a colleague how they are and they
reply, “too busy,” you get no information since they
are always too busy.) We call this amount of infor-
mation a bit.! One bit of information is enough to

!Bit is shorthand for binary digit. A binary digit is a digit in
base two (i.e., a one or a zero).
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distinguish between one of two states: heads or tails,
on or off, zero or one.

We now follow a common rule in computer engi-
neering: whenever possible build a system using the
simplest possible set of complete components. By
a “set of complete components,” we mean a set of
components from which all the desired functionality
can be obtained. For example, in this case, we want
to be able to manipulate any amount of information.
Since the smallest amount of information is a bit, can
we just manipulate bits? If so, then we have a very
simple system indeed. In fact, strings of binary dig-
its can be used as the form of information that will
be manipulated in a computer.

Thus, to keep the basic devices in a computer as
simple as possible we limit them to working on bits
of information, that is, they operate on binary dig-
its. If we need to distinguish between more than two
states we can use strings of binary digits. Two bits of
information are enough to distinguish between one
of four states. In general, log, n bits of information
is enough to distinguish between one of n states. A
string of n bits can be used to distinguish 1 out of 2*
numbers, apples, bank accounts, etc. In other words,
a string of n bits can be used to represent any num-
ber from 0 to 2" — 1. Of course, we can use numbers
to represent the letters in the alphabet and strings of
numbers can then be used to represent words, etc.

In a computer, everything is represented by strings
of binary digits. The strings of binary digits can be
interpreted as numbers, letters, dollars, or apples. In
the end, everything represented in the computer is
simply information. This is our first encounter with
abstraction, arguably the central concept of computer
science. Thus, whether the computer is manipulat-
ing your bank account, simulating the universe, or
displaying a video image, it is just manipulating in-
formation. To make this manipulation as easy as pos-
sible, the information is represented as a string of bi-
nary digits.

Another reason for using binary digits (and not
decimal digits, for example) is robustness. Infor-
mally, robustness is increased because it is easier to
distinguish between two things (e.g., a light is either
on or off) than between tens or hundreds of things
(e.g., if the light is on a dimmer it may be one-third

on or two-tenths on, etc.). Thus, we will require the
basic elements of our computer only to be capable of
manipulating binary information.

Information is an abstract notion but computers
are concrete entities that must manipulate concrete
entities. In other words, the abstract notion of a bit
must be implemented with a real world bit. What
attributes should this concrete bit have? It should al-
ways be in one of two states. When in one state it
should stay there until actively, but easily, changed.
It should be easy to distinguish between the two
states of the bit. It should be inexpensive. Finally, the
implementation of the bit should be separate from the
meaning of the bit. This last requirement is another
example of abstraction. It may be the fundamental
abstraction of computer science and the reason that
Moore’s law is possible [Ben02]. This requirement
means that the information carried by a bit should not
depend on the information carrier. Whether a bit is
implemented as the position of a relay (involving bil-
lions of atoms) or as the spin of a single electron, the
information content is the same. Itis eithera*“1” ora
“0.” Or, in the context of Moore’s law and electronic
chips, it means that the devices on a chip can shrink
and voltage levels can be scaled down. Yet it is still
possible to implement a bit (i.e., it is still possible to
distinguish between one of two states: a logical one
and a logical zero).

Many different information carriers have been
proposed: mechanical rods [Dre86], magnetic
moments [ES82], amino acids [RWB*96], pro-
teins [WBO02], voltage levels, etc. Voltage levels are
the traditional means for representing information in
computers. Thus, the definitions of computers in-
clude the word “electronic.” Essentially a digital
computer uses two voltage levels to represent the two
different values of a bit. One level, ground, repre-
sents a zero, and the other, V{4, represents a one.
The main reason voltage levels (which are just the
potential energy levels of electrons) are so useful is
that voltages can be changed quickly and with very
little energy. This is because electrons are light and
fast. However, it is hard to evaluate more thoroughly
how effective an information carrier is until we also
examine how we store and manipulate the informa-
tion.
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Figure 1: Some Boolean logic gates, their symbols, and how they can be implemented using a NAND gate. At the
top of each column is the logical symbol for the operation. Under that is its corresponding truth table. Below that is
an implementation of the truth table using only NAND gates.

2.2 Boolean Logic Gates

For the reasons noted above, computers manipulate
information using operators that act on binary values.
We call such operators Boolean logic gates. Boolean
logic was first studied by George Boole who showed
that all arithmetic computations can be synthesized
from a very small number of logical primitives, such

as logical AND and NOT. These two primitives are

a complete set, meaning that they are sufficient tc

implement all logical functions. Fig. 1 shows how

some common logic gates can be implemented using
just the logical NAND gate, which is an AND gate
followed by a NOT gate.

While it is possible to construct any logical func-
tion out of NAND gates, it is certainly tiresome tc
do so. For example, Fig. 2 shows the implementa-
tion of a one bit half-adder using NAND gates. A
half-adder adds two binary digits and produces the
sum and carry of the addition as output. However,
by comparing the truth table, or the gate implemen-

a |b| carry sum
010 0 0
01 0 1
10 0 1
1|1 1 0

Figure 2: An implementation of a half-adder using

tations, we can see that a simpler representation is NAND gates.

available. The carry function can be implemented
with a two-input AND gate and the sum function
with a two-input XOR gate. Using an AND and
XOR gate instead of a collection of NAND gates is a
way of managing complexity. It is certainly easier to
confirm that the implementation of the half-adder is
correct by looking at two gates, the AND and XOR
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gates, than looking at nine. This is another example
of using the power of abstraction. In this case, we
only need to know the behavior of the XOR gate to
verify that sum is implemented correctly. It is not
necessary to know the implementation of it, since we
know how it behaves.

However, for abstraction to work, we must be able
to ignore the implementation and focus only on the
behavior of a gate. Furthermore, for abstraction to
be truly useful, we need to be able to predict the
behavior of the gate in many different and possibly
complex circumstances. For example, Fig. 3, shows
three different and functionally equivalent represen-
tations of a 1-bit full-adder. The ability to abstract is
the key to managing complexity. Since modern com-
puters require millions of gates, this is one require-
ment for the design and implementation of comput-
ers. This ability imposes certain requirements on the
implementation of the actual logic functions and the
information carriers.

The first requirement is that a logic gate needs to
ensure that its output can be used as the input of an-
other logic gate. The information produced must be
recognizably either a zero or a one by the input of
the next gate. Furthermore, the wire along which the
information is transmitted must also not destroy the
information. In a perfect world, each bit of informa-
tion produced by a gate or carried by a wire would
be either exactly at the level of a logic zero (ground
or zero volts in typical electronic systems) or a logic
one (Vjq)- In practice, various environmental factors
combine to degrade the voltage levels so that what
should be at zero volts is instead close to zero, but
not exactly zero. If we are to robustly perform cal-
culations in the presence of the noise introduced by
the environment, we must be able to recognize nearly
zero values as zero and nearly one values as one. Fur-
ther, we want to produce as output a value that is no
worse, and hopefully better (i.e., closer to its perfect
value), than the input. In other words, our elementary
computing devices should be able to restore nearly
perfect values back to perfect values. The more am-
biguous the input is allowed to be before giving an
incorrect answer, the more robust our system will be.
If each gate acts to restore the values closer to their
ideal values, we can compose many of them together

into a complex system without concern over where
in the circuit the gate is.

By examining the full-adder implementation it is
also evident that the output of a logic gate may have
to go to more than one input of another gate. For
example the ha-sum output (the output of the gate la-
beled “x™) of the “a+b” half-adder feeds three NAND
gates in the second half-adder. Furthermore, we do
not know how the gates will be arranged physically,
so we cannot know how long the wires are between
the gates. This means that the gates must be able
to drive many inputs (at least two from our example)
and that the gates must drive long or short wires. The
former notion is called fan-out. Any implementation
of logical gates must have a fan-out of at least two
(i.e., allow a gate to drive at least two other gates).

The final requirement we list here is that the in-
puts and outputs of a logic gate must be isolated from
each other. This requirement ensures that the output
of a logic gate is a function of its inputs and not the
other way around. Isolation of inputs and outputs al-
lows a circuit to be designed without concern about
how the output will be used. If, on the other hand, the
output could influence the input, then the designer
would have to know, in detail, how the output might
change. Otherwise, the output might change the in-
put that would cause changes to ripple throughout the
system. This is an essential feature if one intends to
build circuits with more than one level of logic.

If the logic gates fulfill these three requirements
(restoring logic, input/output (1/0) isolation, and fan-
out), a computer designer can create new logical op-
erations from previously designed operations with-
out regard to how the previously designed operations
were implemented. We gloss over the fact that the
logic operations do not have infinite fan-out. In other
words, there is a contract in the abstraction that says
how many devices a particular operator can drive.
The designer must stay within that contract. Of
course, if we have fan-out of two NAND gates, then
we can construct gates with any fan-out by building a
tree of NAND gates, where each level of the tree can
drive twice as many gates as the previous one. An au-
tomatic tool may do this for a designer. Likewise, an
automatic tool may analyze the contract for the logic
gates and ensure that wires being driven by the gates
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Figure 3: Several different representations of a full-adder.

never exceed the contracted length. Thus, the tools
the designer uses help to support the abstraction. In
fact, the complexity of modern computer design re-
quires tools to support the abstractions.

When designing a family of logical operations one
will want to ensure that they fulfill at least these re-
quirements. However, one will probably not want to
add too many other requirements to the contract. As
we will show later in Section 4, adding to the contract
may make it easier for the user of the component, but
often at a substantial cost. In other words, one cost
of abstraction is that the contract can be more gen-
eral than necessary. For example, if we required that
logic gates support a fan-out of 20, then every in-
stance of a logic gate would have to support such a
fan-out, even if most of them only needed to drive
one or two other gates. Another example of how
abstraction can incur overhead is present in the de-
sign of the full-adder in Fig. 3. The version built
from half-adders will include extra gates because the
designer is not allowed to peek into the half-adder
abstraction. The simplest example of this is that the
inverter gates (1, 17, 2, and 27 in the figure) at the out-
put of the carry out logic and the input of the OR gate
cancel out and are not necessary. This is an example
of how allowing optimization across an abstraction
layer can provide benefits.

So far we have only described combinational
logic. Any change on the inputs flows through the
circuit and appears at the outputs. However, even
the simplest of circuits often need some kind of stor-

age or synchronization.? When the storage elements
are small and part of the circuit they are often called
registers or latches. Registers allow information to
be saved over time and also allow different computa-
tions to synchronize together.

2.3 Transistors

There have been many robust implementation vehi-
cles for binary logic, but nothing has compared to the
transistor in terms of its overall economy, reliability,
speed, power usage, and all-around usefulness. The
MOSFET, or metal-oxide-semiconductor field-effect
transistor, was proposed in 1930 [Lil30], first demon-
strated in 1960, and in its current form, started being
used regularly in the 1970s. Since the 1980s it has
not had a serious rival for building complex comput-
ing devices [Key85].

Fig. 4 shows the circuit diagram and two graphs
that characterize a typical N-type MOSFET. Each
curve in the graph on the left indicates the amount
of current that flows from the source to the drain de-
pending on the voltage across the source and drain
for a particular voltage applied at the gate. As the
gate voltage increases, the amount of current al-
lowed to flow increases, as shown in the graph on
the left. The device acts like a voltage-controlled
switch. The graph on the right compares the output
voltage (Vgut) as a function of of the input voltage

2The vast majority of modern circuits use a clock signal, a
signal which arrives at regular intervals, to synchronize the ar-
rival or departure of signals from computation elements.
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Figure 4: Field effect transistor. The symbol for an N-
type MOSFET is on the left. A schematic of how it is
constructed is in the middle. On the lower right is a circuit
used to plot the two curves above.

. As long as the gate voltage is less than a thresh-
old voltage, the transistor is “off.” Then, the middle
region is reached and the transistor switches “on.”
Finally, there is a region where the transistor is “on.”
Depending on the threshold voltage and the shape
of the switching region, this device is (with respect
to the requirements we enumerated above) an almost
perfect building block for logical operations.

An ideal transistor would have its threshold volt-
age half way between zero volts and the voltage level
used to represent a one, Vq. This would give us the
most noise immunity. We also want the switching
region to be as narrow as possible (i.e., the slope of
the curve should be as close to infinite as possible).
This slope determines the gain of the device. The
gain of a device determines how much amplification
the device applies to the input signal. The higher the
gain the faster the switching speeds and the more the
allowed fan-out.

What is not characterized by these curves is the
isolation between input and output. We can see, by
looking at how a FET is built (see Fig. 4), that isola-
tion is inherent in the transistor. The gate of an ideal
transistor is in effect one plate of a capacitor (i.e., it is
not connected to the source or the drain). In practice,
particularly as transistors get smaller, there is some
“leakage” between the three terminals. This means
that as transistors get smaller, they never really turn
“off,” and there is some connection between the in-
puts and the outputs.

Figure 5: A NOT gate constructed out of CMOS transis-
tors.

MOSFETSs come in two basic flavors: N-type and
P-type. N-type transistors turn on as the gate voltage
increases. P-type transistors turn off as the gate volt-
age increases. The complementary nature of these
devices makes it easy to construct restoring logic
operations. For example, Fig. 5 shows the transfer
curve of a NOT gate built from a P-type and an N-
type transistor. Notice that even when the input volt-
age is quite far away from an ideal one or zero that
the inverter will output a nearly ideal complement of
the input. In other words, the output is “restored”
back to an ideal one or zero. The output is also
clearly isolated from the input.

If we take a closer look at this device we also see
that when it has fully switched, it uses no power. For
example, if Vj, is high, then the gates on the two
transistors will be charged up. Once they are charged
up there is no more current flow to the gates. Fur-
thermore, the N-FET is turned on and the P-FET is
turned off. Thus, there is very low resistance con-
nection between ground and Voyt. If Vgt is con-
nected to another gate, then it will discharge that gate
through this N-fet and then there will be no more cur-
rent flow. In general, logic built from complementary
MOSFETs (CMOS) only uses power when the de-
vices are switching. (As devices are getting smaller
and Viyq is getting lower this is changing and static
power consumption through leakage is becoming a
bigger share of the power budget.) What should also
be evident from the design of the inverter is that it
will switch from high to low as easily as from low to
high.

Finally, we can examine how one could create a
memory cell. If we connect two inverters together
such that the second one feeds back to the first one,
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Figure 6: A pair of connected inverters which can store
one bit (i.e., a memory cell).

o8

Figure 7: Logic diagram for a D-type latch.
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as shown in Fig. 6, we can create a memory cell. If
the input to the pair is low, then the first inverter will
output a high and the second will output a low, which
will feedback to the first inverter. Thus, even if the
original input is disconnected the pair will maintain
the low output indefinitely, or as long as power is
being supplied to Vi4. To change the state of the
cell, enough current has to be supplied to the input to
overcome the output from the second inverter. While
these two signals are fighting there will be current
flow from the input to ground through the lower right
transistor. There are, needless to say, better ways to
form storage cells. For example, Fig. 7 shows an ex-
ample of a D-type latch. These examples bring out an
important requirement for building stateful circuits
out of logic devices: power gain is required to build
a memory cell from logic gates. If the device has no
gain, then as the signal circulates through the gates it
will degrade, eventually becoming noise.

24 Manufacturing and Fabrication

In 1985, Keyes pointed out that the silicon-based
transistor, especially as it is manufactured in very-
large scale integration (VLSI) chips, is an almost
ideal computing device [Key85]. In his article he
describes the important attributes of a “good” com-
puter device. In addition to the technical aspects that
we have outlined here (e.g., I/O isolation, restoring

10

logic, fan-out, etc.), he goes on to describe how pho-
tolithographically produced CMOS also satisfies the
manufacturing requirements of a good computer de-
vice.

Computer systems currently contain anywhere
from thousands to hundreds of millions of transis-
tors. To remain affordable, the individual transistors
must be inexpensive to manufacture. For the past 30
years, the cost per transistor has been falling expo-
nentially. Even more important is that the cost of
connecting transistors together into entire circuits is
also inexpensive and has fallen. The method of mak-
ing chips, photolithography, is the key ingredient to
the ever-decreasing cost of computers. The reason
for this decrease is that photolithography combines
manufacturing and fabrication.

A raw silicon wafer is converted into a chip
with potentially millions of transistors through many
steps. Here we describe a gross simplification of the
process. After the initial wafer preparation, the struc-
tures on the chip are built up layer upon layer using
a combination of photomasking and etching. Pho-
tomasking involves treating the surface of the chip,
then shining ultraviolet (UV) light through a mask
onto the treated surface. This cycle is called an ex-
posure. The mask creates a pattern of UV light on
the treated surface that alters the surface. Then, some
form of etching takes place which affects the light al-
tered surfaces differently than those which were not
altered. Three key features of this process are: self-
alignment of the transistor gates, in-place manufac-
ture of the components, and integration of transistors
and wires. All these processes are similar to photo-
graphic development; the most important aspect of
this process is that all (up to hundreds of millions of)
components are created simultaneously.

There are three contacts that need to be made to a
transistor: gate, source, and drain. One goal in con-
structing a transistor is to keep the overlap between
the gate and the source (or drain) as small as possible.
The current manufacturing of the MOSFET guaran-
tees this because the gate (formed before the source
and drain) is used to create the source and drain. The
basic idea is that the outer boundary of the source and
drain is defined by the location of the polysilcon that
makes up the gate. This ensures that the source and
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drain do not overlap with the gate. Equally as impor-
tant is the fact that the wires that connect to the gate
(or source or drain) can also be manufactured at the
same time (or potentially at a later exposure) as the
transistor is being formed. Finally, notice that all the
transistors are made at the same time. In other words,
photolithography supports construction of all the de-
vices in parallel. Current chip technologies require
more than 20 separate exposures. The result is that
the wires and transistors are all fabricated together.
This all combines to make each transistor very inex-
pensive.

In addition to the fact that millions of components
are constructed in parallel and that the components
are fabricated into a complete circuit, lithography has
the advantage that the entire process is very reliable.
A chip with millions of transistors and millions of
connections will most often have every single one
working. Until recently, there has been very little
variability between two transistors at different loca-
tions in the chip. What little variability was present
was overcome by the high gain and use of restoring
logic.

The photolithographically manufactured silicon-
based transistor has been the dominant building
block for digital electronics over the past 30 years.
Alternative technologies have either failed to pro-
vide the necessary technical specifications (1/0 isola-
tion, restoring logic, gain, low-power, high packing
density, equal switching times) or the necessary eco-
nomic advantages (inexpensive to manufacture, reli-
able, inexpensive to fabricate entire devices). Fur-
thermore, the technology behind silicon-based tran-
sistors has been improving all the time, making it
increasingly harder for an alternative technology to
take hold.

25 MooresLaw

The combination of an excellent switch and inexpen-
sive robust manufacturing has led to constant tech-
nological advance since the introduction of the inte-
grated circuit. For the past 30 years the minimum
feature size that could reliably be created on a chip
has been roughly cut in half every 18 months. This
has allowed the transistors and wires that make up a
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computer to shrink in area by a factor of four ev-
ery 18 months. The feature size reduction is due
to continuous advances in manufacturing and qual-
ity control. The fact that we can use these smaller
devices is due to the abstraction we presented at the
start of this section—the bit. This relentless pace
of improvement was first observed and predicted by
Gordon Moore in 1965 [Mo065]. Since that time, the
semiconductor industry’s agenda has been set by this
“law.”

The result of this continuous advance is seen
mostly in that the number of components that can
be built on a chip grows exponentially with time
(see Fig. 8), enabling the construction of more pow-
erful and sophisticated circuits. As the number of
components per chip increases, systems which used
to require multiple chips now only require a sin-
gle chip. This collocation dramatically shortens
the communication lines between subsystems and
causes a boost in performance and a decrease in sys-
tem cost. For example, until the introduction of the
Intel 80386 microprocessor, the floating-point oper-
ations of Intel processors were carried out on a sep-
arate slave chip, called a floating-point coprocessor.
The next generation integrated the two on a single
die, achieving a performance boost. Power consump-
tion per performance also decreases with feature re-
duction, because smaller circuits can use lower sup-
ply voltages and thus dissipate less power when car-
rying the same computational task.

Surprisingly, despite the exponential feature re-
duction, the actual total chip size and total dissipated
power of microprocessors have kept increasing with
time. The main reason is the integration of more and
more of the functionality on the same die. Another
reason is that microarchitects have used the avail-
able real estate to implement more computational
and support structures for the execution of multiple
operations simultaneously.

All of these effects arise because as chipmakers
decrease feature size they also maintain yield. Yield
is defined as the percentage of manufactured chips
which are defect-free. The importance of defect con-
trol in integrated circuit manufacturing cannot be
overemphasized: higher defect rates translate into
higher unit costs. The cost of an integrated circuit
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is proportional with the manufacturing cost, but in-
versely proportional to the yield. As we discuss more
fully later, the nature of digital integrated circuits
makes them very brittle: even one minute defect can
make the whole circuit unusable. In consequence, a
high yield is extremely important for keeping costs
low. Because of the microscopic size of the elec-
tronic devices, a speck of dust or a tiny misalignment
in the photolithographic masks can create irrecover-
able defects. These requirements drive up steeply the
cost of production plants: modern clean room facili-
ties, using extremely precise mechanical and optical
equipment, cost several billion dollars.

Despite the microscopic size of the basic compo-
nents, extreme care in manufacturing has managed
to maintain the yield practically constant in the last
decade. However, two factors make it unlikely that
this trend will continue for too long: (1) as the num-
ber of components on the same area grows exponen-
tially, the probability that none is flawed decreases;
and (2) as the size of the individual components de-
creases, they become increasingly sensitive to impu-
rities (e.g., minute dust particles, radiation, etc.).

2.6 TheFuture

Impressive as these results have been, in the near fu-
ture further increases in the performance of silicon-
based, lithographically manufactured transistors will
be difficult to achieve. Never before has there
been so much doubt in the industry about how ad-
vances three-generations in the future will be accom-
plished [Sem97, Semte]. There are several major
reasons for this. First, the small linewidths neces-
sary for next-generation lithography require the use
of increasingly shorter wavelength light, which in-
troduces a host of problems that are currently be-
ing addressed [Pee00]. In addition, as the number
of atoms that constitutes a device decreases, manu-
facturing variability of even a few atom widths can
become significant and lead to defects.

More important, however, is the economic barrier
to commercial nanometer-scale lithography. New
fabrication facilities orders of magnitude more ex-
pensive than present ones will be needed to produce
chips with the required densities while maintaining
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acceptably low defect rates. The increasing cost of
chip masks, which must be manufactured to single-
atom tolerances, precludes commercially viable de-
velopment of new chips except for the highest vol-
ume integrated circuits. It is entirely possible that
further reduction of transistor size will be halted by
economic rather than technological factors.

This economic downside is a direct consequence
of the precision required for deep-submicron litho-
graphic fabrication. Using lithography, construction
of devices and their assembly into circuits occur at
the same time. Keyes pointed out that this is a
great advantage of silicon because mass fabrication
of transistors is extremely inexpensive per transis-
tor [Key85]. However, as Keyes also highlighted, it
produces a set of constraints: each element in the
system must be highly reliable, and individual de-
vices on a chip cannot be tested, adjusted, or repaired
after manufacture. These constraints force the de-
sign of a custom circuit to be tightly integrated with
manufacture, since no additional complexity can be
introduced into the circuit afterward. Lithography
is perfectly tuned to deal with these constraints, but
at small scales the precision required to obey these
constraints becomes the obstacle to further improve-
ment. Any technology hoping to displace lithograph-
ically produced CMOS integrated circuits must over-
come such obstacles without sacrificing performance
or the low per-unit cost made possible by mass pro-
duction.

2.7 A New Regime

As we have already suggested, we are entering a
new regime—a regime where the transistor, and par-
ticularly the photolithographically produced transis-
tor, may not be king. Since all the attributes of a
good computing device have not changed, we need
to examine the assumptions on which the transistor’s
dominance is based. For example, one of the key as-
sumptions made by Keyes in 1985 is that the individ-
ual devices cannot be tested nor altered after fabrica-
tion. This assumption is what leads to the need for
high noise margins, high gain, reliable construction,
and low manufacturing variability.
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Figure 8: Moore’s law describes the exponential increase of the number of transistors per unit area. This graph depicts
the size of successive microprocessor generations of Intel’s x86 family.

Current chip manufacturing is based on the idea
that the functionality of the chip is fixed at manu-
facturing time. In other words, the chip is designed,
masks are made, and the chip is fabricated, tested,
and then put in a package. If there is an error at any
stage in the process, the final device is inoperable.
This means that every transistor and wire in the fab-
ricated chip needs to be highly reliable as a single
point of failure can cause the entire chip to be defec-
tive. An alternative system would be to draw on the
idea of general purpose computers, allowing a chip
to have its functionality altered after it is fabricated.
In other words, we envision a chip as a piece of re-
configurable hardware (see Section 5).

Reconfigurable hardware reduces the need for re-
liable components because if a particular component
on the hardware is faulty, we can simply avoid us-
ing it when the hardware’s final functionality is de-
termined. In other words, we configure around the
faulty component, allowing chips with many defec-
tive parts to perform their desired functionality. In
Section 5 we also show how such hardware can test
itself, eliminating the requirement that we are not al-
lowed to probe the components.
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Relating to the information theory description at
the start, we can talk about when information is
added to the system to create a working chip. The
current method adds all the information at or before
manufacturing time. Our method allows information
to be added after the time of manufacture. This re-
duces the cost of manufacture substantially. It also
increases flexibility and reduces design and testing
costs.

If we are going to replace photolithography and
the CMQOS-based transistor, we need to keep in
mind the qualities that any computer requires in it
switches. Ideally we hope that they:

e support restoring logic

e isolate the inputs from the outputs

e provide gain

e allow a complete logic family to be constructed

e are inexpensive to manufacture

e use little power (particularly when not switch-

ing)
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e pack densely

e are reliable

Furthermore, it should be inexpensive and reliable to
connect them up into a complete circuit.

Let us examine these “requirements” in turn.
Restoring logic is necessary in order to support ab-
straction and the design of complex, yet, reliable sys-
tems. Similarly, input/ouput isolation is necessary to
support the design of large systems. This require-
ment could, however, be too stringent. For example,
imagine a system in which some elements are restor-
ing and others are not. If the elements that restore
logic levels are used frequently then it would be pos-
sible for some of the switches to not restore logic
levels, similarly for isolating the inputs and outputs.
In other words, the granularity of the restoring logic
component could be raised from one to a few without
sacrificing the ability to abstract. Similarly, as long
as there is some element that can isolate elements of
the circuit from each other the designer can safely ig-
nore the effect of the rest of the circuit on a localized
structure.

Gain is required to build memory devices and to
tolerate noise and manufacturing variability in the
environment. If we can construct a system which
has a memory element as an atomic element, then
gain becomes less crucial (i.e., other fault-tolerance
mechanisms can be used to overcome a lack of sig-
nificant gain). We discuss fault tolerance in Sec-
tion 4.

Earlier we described a system of complete
Boolean logic. For example, an AND and a NOT
gate form a complete system. Actually, this as-
sumption is also too stringent if we require that all
inputs to the system appear in both their true and
complemented form. That is, instead of computing
just f(a,b) we compute functions f(a,b,a,b) and
f(a,b,a,b), then a complete system is one which
includes only an AND and an OR gate2 In other
words, if we consider a system which includes in-
verters on the inputs to the system, the internal parts
of the system do not need to have any inverters.

3This can be shown by using de Morgan’s law: aANDb
equals GORb. @ should be read as “Not a.”
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From this analysis it appears that what we abso-
lutely need are devices that pack densely, are low
power, and are inexpensive to manufacture. Also,
the fabrication of entire devices should be inexpen-
sive as well. Luckily, these requirements are met by
chemically assembled electronic nanotechnology.

3 Processor Architecture

In this section we briefly present basic concepts of
computer architecture, with an emphasis on proces-
sor architecture. We discuss the evolution of proces-
sors and identify some hard problems faced by fu-
ture designers of computer systems. CAEN has the
potential to efficiently solve some of these problems.

3.1 Computer Architecture
3.1.1 Computersas Universal Machines

Computers are universal machines because they can
be “taught” (i.e., programmed) to implement any
task we can describe algorithmically. Computers
were not always this way: the first computers were
just collections of functional units which were wired
together manually to implement the desired compu-
tations. For example, if you wanted to subtract two
numbers and then square the result, you would hook
the wires fetching the numbers into a box which sub-
tracts them, and you would wire the output of the
subtracter to both inputs of a box doing multiplica-
tions, as in Fig. 9a. If you wanted a different compu-
tation, you had to unhook the cables connecting the
units and plug them in a different way.

Eventually a great insight occurred: a computer
can be made to carry out different computations
each time without any modifications to the under-
lying hardware. This finding is attributed to John
von Neumann, although the idea existed in abstract
terms long before. Von Neumann realized that the
way a computer should behave can be described by a
program, which can be stored in the memory of the
computer [VN45]. By changing the program, you can
change what the computer was doing.
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fetch b’s value in local storage r2
r3=rl1-r2

r4 =r3*r3

store r4’s value as output
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Figure 9: (a) Hardware implementation of a circuit computing (a — b)2. (b) Software program performing the same

computation.

Programs are sequences of simple instructions
which direct the way data is routed through the com-
putational units of the machine. For example, the
previous computation would be implemented by a
program having instructions to fetch the two data val-
ues from storage, feed them to a subtracting arith-
metic unit, and feed the result to a multiplier, as in
Fig. 9b.

Most modern computers are based on von Neu-
mann’s idea. Their instructions are stored in a mem-
ory, which is also used to store data and interme-
diate computation results. Computers thus consist
of: memories, storing data and programs, peripheral
units, interfacing the computer to the outside world,
and a central processing unit, the computer’s brain,
which manipulates the data according to the program
instructions (see Fig. 10). In modern computers the
central processing unit consists of one (or sometimes
multiple) microprocessors.

Von Neumann architectures have the tremendous
advantage of flexibility, as the functionality of a com-
puter can be changed just by loading a different pro-
gram, without any hardware modifications. How-
ever, this flexibility results in a weakness, called the
“von Neumann bottleneck” [Bac78]: there is inher-
ently a sequential flow of information between mem-
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data & data
Memory
programs
instructions
Control Arithmetic
,,,,,,,,,,,,,,,,,,,,,, Processor...........
commands
Peripherals

Figure 10: In von Neumann architectures, programs and
data are objects of the same kind and are stored in mem-
ory. The program is composed of instructions which indi-
cate how data is to be processed.
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ory and processor. Instructions and data are brought
essentially one-by-one from memory and processed
by the processor. Computer architects have enlarged
somewhat the width of the communication channel
between memory and processor. But the bottleneck
exists in today’s computers and has become one of
the major limiting factors of computer system per-
formance.

3.2 Instruction Set Architectures

In 1964, the IBM System/360 introduced the idea
of a family of computers that would all execute the
same instructions. The instruction set constitutes an
interface between the microprocessor hardware and
software. This interface is called the instruction set
architecture (ISA). It is a contract between the two
worlds. This interface is similar to the electrical plug
in our homes: the electricity can be produced in var-
ious ways (using coal, atomic energy, or renewable
resources) and can be consumed in countless other
ways. However, the interface delivering the electric-
ity is precisely standardized, enabling an indepen-
dence between producer and consumer.

This independence is also true for the hardware
and software worlds: for example, all Intel proces-
sors, starting from the Intel 8086 built in 1978, until
today, have implemented practically the same ISA
called the x86 ISA.*

The ISA standardization is very important eco-
nomically, because it decouples the software and
hardware producers: as long as the ISA is precisely
specified, different manufacturers can compete to
produce hardware implementing it and software us-
ing it. For example, today Intel, Advanced Micro
Devices, and Cyrix all produce implementations of
the x86 ISA, while countless software producers cre-
ate programs using it. The existence of an ISA
makes hardware and software development indepen-
dent processes.

*In truth, the ISA has changed slightly from processor to pro-
cessor, but in a backward-compatible fashion, by always adding
new features. This is much like how the method of adding a third
prong to a wall outlet extends the functionality of the outlet, but
continues to allow you to use two-pronged devices.
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In this section we describe briefly the components
and implementation of a modern ISA.

3.2.1 Instructions

Modern ISAs differ from one another more in details
than in general structure. We can distinguish several
types of instructions: arithmetic and logic, memory
access, control flow, and input-output.

Basic arithmetic and logical operations do not re-
quire further elaboration. Arithmetic is carried out
on finite value integers, usually 32 or 64 bits long.

Another important type of operation is memory ac-
cess. The memory of the computer is viewed like a
large array of data words, each having a numeric ad-
dress. Memory access operations allow the processor
to compute memory addresses and retrieve the con-
tents of the specified memory cells.

A special class of instructions, called control in-
structions, indicates to the processor which instruc-
tion to execute next. When executing these instruc-
tions, the processor can branch to one or another in-
struction, depending on the outcome of a previous
computation.

Basic arithmetic operations, control instructions,
and memory access are the only required ingredi-
ents for building a truly universal computational ma-
chine. Any computational task can be described as a
sequence of these operations.

However, the computer must also carry out non-
computational tasks, such as “talking” to the periph-
eral devices. The peripherals are accessed through a
special class of input/output instructions, similar to
memory access instructions. However, these instruc-
tions write and read data from external devices rather
than to memory.

For reasons of efficiency, some common complex
tasks have been encoded in single instructions; for
example, modern ISAs also deal with:

e floating point computations, which are per-
formed on finite-precision representations of
real numbers
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e special “media extension” instructions, used by
algorithms manipulating digitally encoded me-
dia such as speech or images

e instructions aiding the implementation of the
operating system, which offer help in creating
the virtual machines protecting programs from
one another

e exceptions and interrupts, which are events
through which programs or peripheral devices
signal to the CPU that something unpredicted
has happened, requiring immediate attention
and the interruption of the currently running
computation

Instructions are represented in the computer mem-
ory by binary numbers and programs are sequences
of instructions. To help humans create and manipu-
late programs, a set of software tools helps translate
programs written in textual form to and from these
binary representations. One form of textual pro-
gram representation is “assembly language.” Assem-
bly language instructions stand in one-to-one corre-
spondence with the ISA operations: each machine
instruction is represented by a corresponding textual
description.

To illustrate, the program in Fig. 11 computes the
sum of the numbers between 1 and 10 is written in
the x86 assembly language. At the end of each line
is a comment, human-readable description of the in-
struction and its indented action. This program fea-
tures arithmetic and control operations. Data values
are stored and manipulated in internal microproces-
sor registers; in this code fragment we see two reg-
isters called eax and edx. We also see a branch in-
struction, which uses the result of a previous compar-
ison to decide whether to re-execute a code fragment.
As long as register edx has a value less or equal
to 10, the j1le instruction steers execution at the
add instruction. This will happen exactly 9 times—
causing the add to be executed 10 times.

3.2.2 Microprocessor Operation

A microprocessor starts executing a program when
the computer is started and stops only when the com-
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puter is shut down. The processor continuously re-
peats the same tasks [HP96], depicted in Fig. 12,
which can be described as follows:

Fetch: Obtains the next instruction to execute from
memory.

Decode: Determines the instructions desired func-
tionality: which data is to be operated upon,
what operation is to be carried out, where the
results should be sent. Decoding generates sig-
nals which steer the data through the processor.

Read: Retrieves the data to be operated upon by the
instruction, either from memory or from regis-
ters.

Execute: Performs the main action of the proces-
sor, which consists of generating a result value
based on the combination of operands and the
selected functionality. In this step “new” infor-
mation is generated.

Writeback: Commits the result of the instruction.
Once the result is known, it is sent to the des-
tination indicated by the instruction: either a
memory location or a register. The result over-
writes the previous contents of the storage loca-
tion.

3.3 Processor Evolution

In this section we briefly overview the evolution of
microarchitecture since 1971, when Intel introduced
the first microprocessor. It is impossible to do jus-
tice to such a broad subject in this short space, so we
simply identify the major paradigms used in building
processors today.

The evolution of computer architecture has been
driven by the insatiable need for more computing
power. The truth is that we will never have enough
computational power, because important classes of
practical problems are very hard in a computational
sense [GJ79]; that is, they require a very large
amount of computation, which grows rapidly as we
increase the amount of manipulated data (e.g., expo-
nentially or even faster).
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mov 0, eax # register eax is initialized with zero
mov 1,edx # loads the value 1 in register edx
L34: # label used for branching
add edx,eax # add contents of register edx to register eax
inc edx # increment (add 1) contents of register edx
cmp edx, 10 # compare contents of register edx with 10
jle L34 # 1if result is less or equal jump to label L34
Figure 11: An assembly language program to calculate the sum of the first ten integers.
(1)Fach ................................................ (5) Wr ite
§ address of next : 3
Instruction :
memory ... Tesutdata
pc | (3 Read Registers

‘source | source data

destination

Figure 12: The phases of execution of an instruction: fetching instruction from memory, decoding, reading the
operand data, executing the indicated operation, and writing the result.
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Our discussion of microarchitecture evolution will
therefore be centered on its impact on performance.
Most of the microarchitectural innovations were ac-
tually introduced for increasing the system perfor-
mance. The performance of a processor is measured
in the number of instructions it can execute in a time
unit. It is thus a measure of the instruction through-
put of the processor. The unit of measure is mil-
lion instructions per second (MIPS) [HP96]. MIPS
is an imprecise unit because instruction throughput
depends on the executed instruction mix (i.e., a pro-
cessor may be capable of performing many more ad-
ditions than multiplications in a given time interval).
Nevertheless, it is still informative.

3.3.1 Clock Speed Increase

One of the most publicized marketing wars of the
last few years has been the “war of the megahertz.”
The clock of a processor is used to synchronize the
computation of all the components on the die; it is
therefore a coarse measure of performance® Indeed,
the performance increase derived from speeding the
clock signals is truly impressive: in 31 years since
the introduction of the first microprocessor, the clock
speed went from 740 kilohertz to 3 gigahertz, which
is an increase of 4000 times!

Clock speed increase is driven by miniaturization:
as the components shrink, the distances traveled by
the electrical signals in a clock cycle also decrease,
allowing the use of clocks with shorter periods. Sig-
nificantly, however, clock speed has already reached
some fundamental limits. Given the propagation
speed of the electromagnetic signal through the logic
gates and wires, at current clock speeds the signal
can barely cross from one side of the chip to the
other. If clock speed increase continues to keep the
same pace, in 10 years a clock cycle will permit the
electrical signal to reach less than 1% of the whole
chip surface [HMHO1].

5There is no intrinsic number of cycles required for a compu-
tation: for example, on some processors a 32-bit multiplication
is implemented in 4 clock cycles, while on others, it takes 16.
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3.3.2 Pipelining

Pipelining is the name used in computer architec-
ture for the assembly-line method of manufacturing.
When building cars on an assembly line, car frames
are moved from worker to worker. Each worker
is specialized in only one operation: adding doors,
checking the engine, etc. More importantly, a car
can have its doors mounted while another one is hav-
ing the engine checked. The two activities can thus
be performed at the same time. While the time to
make a single car is unchanged, the time between
the completion one car and the next is significantly
shortened.

As mentioned in Section 3.2.2, the “work” to be
carried out on each instruction usually consists of
five phases: fetching, decoding, reading, executing,
and writing.® If we associate the hardware doing
each operation with a worker and the instructions
with cars, an implementation of the assembly line
gives us a pipelined processor (see Fig. 13).

Pipelining is a straightforward concept, providing
great benefits with relatively little effort. It was first
investigated in the 1960s and has been universally
used since the beginning of the 1980s. In pipelin-
ing, instructions enter and exit the pipeline in the or-
der they should be executed. However, a “clumsy
worker” at the beginning of the pipeline can reduce
the performance of the whole system because all
later stages must wait for it. Unfortunately, while ex-
ecuting programs the instruction flow may be inter-
rupted for a number of reasons. For example, when
a control instruction (branch) is executed, the proper
following instruction to execute will not be known
until the branch completes. When a branch enters
the pipe normally no other useful work can be per-
formed until its result is known.

To address the events which prevent the pipeline
from working at full capacity, microarchitects resort
to very complicated techniques, some of which are
described below.

®For some instructions, some phases may be missing, while
for other instructions, some of the phases may be further decom-
posed in subphases.
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instr X+4 || instr X+3 || instr X+2 || instr X+1 || instr X
time =n
fetch decode read execute write
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instr X+5 || instr X+4 || instr X+3 || instr X+2 || instr X+1
time = n+1
fetch decode read execute write
instr X+5 || instr X+5 || instr X+4 || instr X+3 || instr X+2
time = n+2
fetch decode read execute write v

(@) (b)

Figure 14: (a) Two consecutive dependent instructions.
(b) The first two instructions are independent.

3.3.3 Parallelism

It is generally accepted that computer programs con-
tain many operations which are not interdependent.

To illustrate, let us consider two examples. If we
want to compute (a—b)? (for some given values for a
and b), we need to make a subtraction and a squaring,
and the squaring cannot begin until we know the re-
sult of the subtraction. We say that these operations
are dependent. However, when we want to compute
a® — b?, we can give each squaring to a different per-
son to compute at the same time (as in Fig. 14).

Exploiting independent instructions by executing
them simultaneously (as in Fig. 15) is the most im-
portant trend in microprocessor architecture in the
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Figure 15: (a) Some of the instructions in Fig. 14b can
be executed in parallel because they are independent.

last 20 years. This type of execution exploits instruc-
tion level parallelism (ILP) [RF93].

There are other types of parallelism which are ex-
ploited in computer systems to increase parallelism:
for instance, data width increase is a form of bit-level
parallelism, where computations occur on more bits
in a word at once. Another type of parallelism, ex-
ploited in a system having multiple microprocessors,
is process-level parallelism’ because multiple pro-
grams are executed simultaneously, one using each
Processor.

In this section we briefly overview several tech-
niques used for the exploitation of parallelism.

Word Width Increase Microprocessors can be
characterized by the basic word size they operate on,

A running program is called a “process.”
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measured in bits. Intel 4004 is a 4-bit microprocessor
because an addition computes the sum of two 4-bit
numbers in one operation.

A word has two important uses: it is the basic unit
of data on which the processor operates and it is also
the basic value used to specify a memory address
(when using indirect addressing). As a consequence,
the size of the memory attached to a computer is lim-
ited by the word size. A processor with a word of 16
bits cannot express binary numbers larger than 26,
which puts a limit of 64 kilowords on the address-
able memory.® The latest processors supporting the
x86 ISA are 32-bit processors. The quick increase in
memory capacity makes 32 bits too limiting, capping
the addressable memory to 4 gigabytes. Workstation
microprocessors already have 64-bit words and there
are proposals (most notably by Intel’s rival, AMD)
for extending the x86 ISA to 64 bits as well.

It has been empirically noted that miniaturization
permits the growth of memory sizes with about 1 1/2
address bits every two years, keeping cost constant.
At this rate, the jump from 32 to 64 bits should buy
computer architects about 48 more years before 64-
bit address spaces become insufficient. Widening the
word size implicitly grows the computational power
of the machine: adding two 64-bit numbers requires
two 32-bit operations but is workable using a single
operation on a 64-bit processor.

Despite the fact that memory capacities have
grown at an exponential pace, the size of the prob-
lems we are solving and the nature of current appli-
cations have always immediately taken advantage of
the increased capacities. For example, today’s com-
puters manipulate not just text and graphics, but also
sound and video, which are huge storage consumers.

Very Large Instruction Word To return to the
auto manufacturing example, another natural way to
speed up car production is to assign several workers
at once to each car. Each worker is given an indepen-
dent task, they all work in parallel, and before any-
one starts on a new task, they wait for all the other

8Vfery old processors used tricks to express addresses as com-
binations of multiple words to overcome the word size limita-
tion.
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workers to complete their task. As long as the work-
ers are independent, and the tasks assigned are all
fairly equal in the time they take, then the presence
of more available workers results in the production
of more cars per hour. One can see that for the fac-
tory to run smoothly the scheduling of the tasks to
workers is essential.

To apply this idea to processors, we just need
to have multiple processing units (workers) avail-
able. However, because not all instructions can be
processed in parallel due to the dependencies, we
must first group independent instructions together.
When this grouping must be done by the compiler—
because the multiple units all work in lock step—
the processor is called a very long instruction word
(VLIW) machine. The terminology indicates that
the machine really executes superinstructions, which
comprise several normal independent instructions.
VLIW machines are widely used in signal process-
ing tasks, for example, most cellular telephones have
such microprocessors. Compilers for VLIW not
only group together independent instructions but also
choose the groupings based on the expected execu-
tion time of each instruction, planning ahead to best
utilize the processing units. The compiler operation
which selects the instruction order is called schedul-
ing. Just as in the factory above, the scheduling
done by the compiler is an essential of an effective
VLIW processor. In practice, VLIW machines are
also pipelined, having multiple parallel pipelines.

Superscalar Processors VLIW processors work
very well as long as the compiler can predict how
long each job will take. Then the available work-
ers can be assigned very efficiently to the available
tasks. However, real life is always more complex and
in a processor unpredictable events may occur. Fur-
ther, the duration of each instruction may not be easy
to predict. In such a case the carefully constructed
VLIW schedules become inefficient.

To overcome the scheduling difficulties introduced
by unpredictable latencies, computer architects have
proposed superscalar processors: these processors
dynamically compute dependencies and schedule in-
structions as soon as all their operands are available.

DRAFT! do not distribute



October 10, 2003-10: 41

Much of the work of the compiler scheduler is moved
in hardware in these machines.

Like VLIW machines, superscalar microproces-
sors have multiple processing units (workers). Un-
like VLIW machines, each idle worker can begin a
task as soon as there is something available to per-
form. The length of time each worker takes to pro-
cess each instruction, or which worker will deal with
which operation, does not need to be and in general
cannot be predicted in advance. Most desktop and
workstation processors today are superscalar.

To implement dynamic instruction scheduling in
hardware, the processors use a series of very com-
plex hardware structures. These structures keep track
of the status of each instruction. The status includes
which ones have completed execution, which are
waiting for data, which are currently in execution,
and which ones have not started yet. The instructions
waiting for inputs monitor the instructions under ex-
ecution. When these complete and write their results,
instructions waiting for these results fetch them and
update their state correspondingly. If all of their in-
puts have become available, they are marked as ready
for execution.

Prediction and Speculation No matter how many
computational resources we use, if there are many
dependent instructions in a program, there is not
much that can be done: we must wait for an instruc-
tion to complete its computation to give the result to
the dependents. Or do we?

Actually, we can do even better! Instead of keep-
ing the functional units idle, we can simply guess
what the result of a long latency instruction is and
start executing its dependents immediately, using the
guessed value as input. When the instruction ac-
tually terminates, we check whether we correctly
guessed its output. If the guess was correct, we have
saved time because we have already started the de-
pendents. If the guess is incorrect, we must unfortu-
nately discard the work of the dependents. We start
them again, using the correct value of the output this
time. This strategy has been shown to be beneficial
because correct guesses occur frequently enough to
achieve important speed-ups.
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Microarchitects have incorporated this technique
in processors in multiple guises—qguessing is offi-
cially called predicting and executing ahead of time
is called speculating. The most frequently used pre-
dictors are used to guess which way branch instruc-
tions will go [MH86] to be able to start execution
from the target instruction early.

One way of using speculation in order to remove
control dependencies is depicted in Fig. 16. In this
example there is no prediction because both possible
branches of a conditional are executed.

While we noted earlier that there is not much to
lose by guessing, speculation does have a downside:
it requires very complicated hardware resources to
track the predictions and to flush out the speculative
results when predictions are wrong.

Speculation also interferes with other tasks of the
processors: for example, instructions executed spec-
ulatively cannot simply complete until it is known
whether they should have been executed in the first
place. This raises many issues if these instructions
trigger exceptional events (such as a division by
zero): the treatment of these events must be post-
poned until the prediction has been validated.

Thread-Level Parallelism  Instruction-level paral-
lelism is not the only type of parallelism that can be
exploited to speedup execution. What if we could
decompose an application into multiple relatively in-
dependent activities which can be carried out in par-
allel? A typical example is a web server: it has to
do some work for each request coming from a web
client. The entire work for several clients can be
done completely in parallel because the clients’ ac-
tions largely do not interfere with each other. This
type of parallelism is called thread-level parallelism:
one way we can view a threaded program is as being
composed of a multitude of identical programs, all
executing the same code, but manipulating different
values.

The newest processors have architectural support
for multithreading. Multithreading is used to cover
for the periods of inactivity caused by long-latency
instructions: when a thread has to stall, for example
because a long-latency instruction did not retrieve its
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Figure 16: (a) Program fragment, (b) normal execution, (c) speculative execution. In the speculative version, both
targets of a conditional branch and the condition itself are executed simultaneously. This removes the requirement for
serializing the execution of the branch and of the target code.

data fast enough, another thread can use the idle pro-
cessor to run its own computation [TEL95].

The problem of multithreading is compilation. Al-
though we can write compilers to extract ILP from
programs, the quest for a compiler which decom-
poses a single application into multiple threads au-
tomatically is much farther from fruition. Moreover,
manually writing programs with multiple threads is
a very cumbersome task; it is difficult for humans
to think about multiple simultaneous activities that
might interfere with eachout.

Multiprocessors When computers have several
different jobs to perform, they can benefit from the
existence of multiple microprocessors. While mul-
tiprocessor systems are presently a high-end feature,
with the pace of feature shrinkage we can expect in
the near future that such systems will be common in
ordinary desktop computers.
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3.3.4 Caches

In the beginning of this section we mentioned the
von Neumann bottleneck: the fact that the processor
has to bring instructions and data from memory and
to store computation results in memory. We further
noted that memory access must inherently be done
sequentially. To compound this bottleneck, the rela-
tive speed of memory versus processor has been de-
creasing at an exponential pace [HP96]. However,
processor and memory access speed have both grown
exponentially with time. While the processors boast
a respectable 55% increase per year, the time taken
by a memory chip to service a request shrinks only
about 10% each year. This means that relative to the
processor, the memory is slower and slower.

The memory commonly used in a computer sys-
tem is of a type called Dynamic Random Access
Memory (DRAM). DRAM is relatively cheap and
compact, but is slow (and relatively slower with
each new generation). Computer architects have an-
other type of memory at their disposal, Static RAM
(SRAM). SRAM is bulky and much more expen-
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sive than DRAM, although its performance increase
keeps pace with the speed increase of the processor.

The first microprocessor generations were slow
enough to use just plain DRAM: their clock cy-
cle would allow memory accesses to complete dur-
ing the time of one processor operation. However,
the speed increase disparity soon led to a crossover
point, which happened at the beginning of the 1980s.
Since then processors are faster than memory. To-
day, a memory access can take as many as 500 pro-
cessor cycles. This means that the processor wastes
499 cycles for every access to DRAM. Computer ar-
chitects came up with a compromise solution which
trades cost for speed by creating an intermediate
static RAM layer between the processor and the main
memory. This intermediate layer is called a cache.

The cache is used much like students use their
short-term memory before an exam when they cram
and memorize the information required for the exam.
The information is then discarded the following day,
when they start cramming for the next test.

Whenever the processor needs data from mem-
ory, the data is automatically brought into the cache
by some helper circuitry and served to the proces-
sor from there. This is not much benefit unless the
processor asks again for the same data item soon:
the second time it will be brought directly from the
cache, much faster than from memory (see Fig. 17a).
This goes on until the cache gets full (which eventu-
ally happens since it is much smaller than the main
memory). Afterwards, when even more data is ac-
cessed, something must be evicted from the cache to
bring in the new data.

Caches are beneficial when data access exhibits a
lot of “reuse,” or locality in computer terminology.
Empirically it has been noted that most programs in-
deed have a high degree of locality and therefore ben-
efit highly from caches. However, some applications
(of which media processing is an important class) ex-
hibit little reuse, so they cannot really benefit from
caches. For example, viewing a movie on the com-
puter displays each frame and then never uses that
data again.

The importance of caches has grown steadily with
time. As memory size grows, and the speed disparity
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widens, the trend is to add yet another layer of cache
between processor and memory, the “outer” layers
(i.e., closer to memory, in Fig. 17b) being larger,
cheaper, and slower. When miniaturization pro-
gresses enough, system integration moves the caches
on the same integrated circuit with the processor and
inserts new cache layers outside. Modern worksta-
tion processors have three layers of cache: the first
two reside on the processor die. Access times to
main memory can be several hundred processor cy-
cles, so performance in the absence of caches would
be abysmal.

Creating more and larger caches is not the only
evolutionary trend: new caches are also substantially
more sophisticated than the original ones. For exam-
ple, modern caches can continue to serve requests
for data even after some data has not been found
(because it did not reside in the cache). The cache
then simultaneously communicates with the proces-
sor and to the memory, maintaining queues of pend-
ing requests from either side and handling all of them
in any order.

A complication arises when we build computers
having multiple microprocessors, as is increasingly
customary. Then each processor will have its own
caches, which can lead to confusion when one pro-
cessor intends to change data: the changes should not
be confined to the copy of the data in the local cache,
but propagated to the remote processors as well, and
all this should be done without incurring too much
overhead. This is called cache coherence and is the
main reason for which computer systems with many
processors are very hard to build. The commonly
used cache coherence protocols simply cannot ac-
commodate too many participants without incurring
prohibitive performance penalties.

Caching is a technique used very frequently in
computer system design, at all levels. For exam-
ple, there are caches between the main memory and
the even larger, slower, and cheaper disks. With the
emergence of the Internet, caches are also used to
maintain local copies of data brought from the net-
work. There are many other examples of caching in
use today.
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Figure 17: (a) Caches offer the same operations as memory: reading and writing of data. However, they are faster
and smaller in capacity for two reasons. Their small size allows electrical signals to traverse them faster. Also, they
are smaller because they are more expensive per storage unit. (b) Modern systems feature multiple layers of cache;

the ones closer to the processor are faster and smaller.

Conclusion Modern superscalar processors use all
of the above techniques simultaneously to increase
performance: they contain multiported register files
(which allows multiple instructions to access regis-
ters at once), level 1 and level 2 caches for instruc-
tion and data, issue logic (which dynamically com-
putes dependencies between instructions), forward-
ing logic (used for bypassing dependencies between
instructions simultaneously in the pipeline), branch
prediction logic (which monitors the execution of the
program and tries to guess the direction of the fol-
lowing branches, to pre-fetch the destination instruc-
tions), and many others that consume most of the
area and energy, while only supporting the compu-
tation.

For example, the newer processors can execute
multiple operations in parallel, while the old ones
had only one arithmetic unit, so they could execute
at most one instruction at a time. Most resources
in the new processor are devoted to the cache. The
complete removal of the cache would not change the
functionality of the processor in any way but it would
adversely impact its execution speed.

Describing the way the processor computes was a
relatively straightforward task for the 4004. How-
ever, it is an extremely complicated process for the
Pentium 4. While the 4004 would basically carry the
five-step process described in Section 3.2.2, the Pen-
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tium 4 simultaneously reads multiple instructions,
checks if they depend on each other, tries to obtain
the operands of all of them (some of them may need
to be obtained from the cache, some may be in mem-
ory, some may be in registers, while others may be
in the middle of the pipeline), dispatches them to
multiple functional units whenever their inputs have
arrived, checks the completion of each instruction,
and launches other instructions even if the previous
ones have not yet completed. In all, Pentium 4 can
have more than 100 instructions “in flight” at any one
time.

3.4 ProblemsFaced by Computer Architec-
ture

Despite the amazing progress of computer system
performance, the horizon is darker for computer ar-
chitects. The “easy” methods for performance en-
hancement have been exploited almost to their limits
and we are now left facing very hard problems. In
this section we discuss briefly some of these prob-
lems. The last half of this chapter is devoted to de-
scribing a CAEN-based solution in detail.

We believe that change in computer architecture
has historically been wrought by reversals of bal-
ance in the overall system structure. For example, we
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have seen in Section 3.3.4 that memory performance
grows more slowly than processor performance. At
the point where the two performance curves inter-
sected and processors overtook memories in speed, a
change of balance occurred. This change warranted
the introduction of caches. We will call such points
crossover points.

Moore’s law has been equated with a guaranteed
stream of good news, bringing higher speeds and
more hardware resources in each new hardware gen-
eration. However, if we extrapolate the technology
graphs using the historical growth rate, we rapidly
approach some important crossover points which
spell trouble for conventional architectures.

3.4.1 Billion Gate Devices. Complexity Becomes
Unmanageable

According to Moore’s law, the feature size of CMOS
integrated circuits decreases exponentially with time:
every three years designers have four times more
transistors available in the same area. In addition
to the miniaturization of the basic components, the
historic trend has been toward a steady increase in
silicon-die size. Current microprocessors already
have 30 million transistors and, in a few years, will
reach 1 billion. Nanotechnology promises to push
this number even higher, to 10'° gates per square
centimeter [CWB*99, GB01]. The wealth of re-
sources has enabled designers to create more and
more complex circuits, harnessing extra circuitry to
exploit the parallelism in programs and to overcome
the latency bottlenecks. The downside of such huge
sizes is the enormous complexity of designing, test-
ing, verifying, and debugging such circuits. Most
processors today are shipped with bugs [Col].

3.4.2 Low Reliability and Yield

When feature sizes become on the order of a few
molecules, minor imperfections in the manufacturing
process, random thermal fluctuations, or even cosmic
rays can invalidate a circuit temporarily or perma-
nently. Although some of the modern circuits con-
tain error detection and correction capabilities (see
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Section 4), these solutions are still not universally
applied to all parts of processor design.

3.4.3 Skyrocketing Cost of CM OS Manufactur-
ing

The cost of manufacturing an integrated circuit can
be separated into two components: the cost of the
manufacturing plant and the non-recurring engineer-
ing (NRE) cost, which is on a per-design basis. The
NRE cost includes testing and verification costs.

Moore’s “second law” describes the exponential
increase of the cost of a manufacturing plant with
time. A state-of-the-art installation now costs more
than 3 billion dollars. This cost comes mostly from
the very precise mechanical and optical lithographic
devices and masks. Another problem compounding
cost is the yield, as devices with very small features
are more prone to defects.

3.4.4 Diminishing Returnsin the Exploitation of
ILP

Only a small fraction of the area of modern micro-
processors is dedicated to actual computational units.
Upon close scrutiny, the only parts of the micropro-
cessor which do actual computation are the func-
tional units; on Pentium 4, for example, these make
up less than 10% of the entire chip surface. All other
structures on the chip only store and move informa-
tion, they do no actual computation.

There is a tension in the design of the proces-
sor pipeline: on one hand, designers add enough re-
sources to support program regions that can use them
(with high ILP, unpredictable branches, etc.); on the
other hand, most of the time these resources switch
idly. For example, 4-wide issue processors seldom
can sustain 1.5 instructions per cycle [HP96].

Processors cannot exploit ILP behind the limited
issue window® [CGO1]. However, the complexity
of superscalar processors increases quickly with the

The issue window is a set of consecutive instructions con-
sidered by the processor to be executed in parallel. A proces-
sor will not launch in execution instructions outside of the issue
window, even if they are independent.
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size of the issue window, with some hardware struc-
tures growing quadratically.

3.45 Power Consumption

The power consumed by a CPU cannot be thermally
dissipated in an efficient way. Despite the fact that
the supply voltage is decreasing for each chip gener-
ation, the total power consumption is skyrocketing.
Modern CPUs have reached more than 100 W, exac-
erbating the difficulty of cooling [Aza00] and of sup-
plying power (especially for mobile devices). More
than half of the power is consumed just by the clock
signal, which spans the whole chip surface [Man95].
Power density, which impacts directly the cooling ef-
ficiency, also grows with each generation.

3.4.6 Global Signals

The time between two clock ticks is not enough for
a signal to cross the whole chip. A major problem
engendered by the quickly increasing clock rate is
that the electromagnetic signal does not have enough
time to cross many levels of logic. Deeper pipelining
is a partial solution but provides diminishing returns
due to the overhead of the pipeline registers (the time
for the information to cross the synchronizing latches
starts to dominate computation time) [KS86].

Moreover, many structures on a modern CPU re-
quire global signals or very long wires (e.g., the for-
warding paths on the pipeline, the multi-ported reg-
ister files, the instruction wake-up logic). Wires con-
necting different modules tend to remain relatively
constant in absolute size from one architectural gen-
eration to the next [HMHO01, AHKBOO0], so they will
be unable to function at higher clock rates.

4 Rédiability in Computer System
Architecture

4.1 Introduction

In this section, we discuss computer system architec-
ture from the standpoint of reliability. Our treatment
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will be neither comprehensive nor formal; we mostly
use examples to show how reliability considerations
influence the design of computer systems.

The main topic of reliability theory is the con-
struction of reliable systems out of unreliable com-
ponents. If the correct behavior of a system as a
whole relies on the correct operation of all its com-
ponents, the reliability of the system decreases expo-
nentially with the number of components. Without
special measures designed to increase the reliabil-
ity of the ensemble, no complex system would ever
work.

Computers are extremely complex systems: a
modern microprocessor contains more than 30 mil-
lion transistors, while a 16 megabyte memory has
more than 100 million. Computers themselves are
aggregated in even more complex constructions,
such as computer networks. The Internet is com-
prised of more than 125 million computers.

The main tool in the design of the complex sys-
tems is abstraction: high-level functionality is com-
posed of low-level behaviors. The emerging high-
level functionality is regarded as atomic for the con-
struction of yet higher layers. This process is anal-
ogous to the use of theorems and lemmas in mathe-
matical proofs: once a theorem is proven, it can be
used wherever its conditions are satisfied.

Here we look at the interplay between layering and
reliability. Layers can be designed which:

e enhance the reliability, offering the appearance
of a reliable mechanism constructed of less re-
liable components. The main technique used
for this purpose is redundancy in computation
or storage of information. This approach is
most frequently used in computer system de-
sign. Section 4.3 is devoted to examples of this

type.

expose the unreliability to the upper layers, al-
lowing them to address the imperfections. The
advantage of such a scheme is that it may be less
expensive to implement. The higher layers have
more knowledge about the environment and can
then implement only as much reliability as is re-
quired for dealing with the errors likely to occur.
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The architecture of the Internet is based on this
paradigm, as described in Section 4.5.

e partition a system into (mostly) independent
parts, which operate in isolation from one an-
other. The effect of partitioning is the isola-
tion of faults (fault containment) in parts of the
system, leaving parts unaffected by the fault in
working order. This paradigm is used in the de-
sign of operating systems and computer clus-
ters.

The manufacturing of very large scale integrated
(VLSI) circuits has achieved extraordinary reliabil-
ity for the basic computer components. This en-
ables computer engineers to treat most layers of a
computer as perfect and to concentrate on synthe-
sizing high-level functionality, without regard to re-
liability. Special classes of applications which re-
quire extremely high reliability (e.g., air-traffic con-
trol systems, nuclear power plant control) force sys-
tem architects to introduce additional fault-tolerance
providing layers. In general, increasing reliability
comes at a cost. Such cost should be weighed against
the benefit provided by the more reliable computer
system.

The use of electronic nanotechnology as a basic
component of computer systems will have a huge
impact on their design methodologies. One of the
factors that will dominantly alter computer system
design is the intrinsic unreliability of chemically as-
sembled components. Nanodevices will provide a
building block with totally different reliability prop-
erties than the ones traditionally used by computer
engineers. This is due to the uncontrolled nature of
self-assembly,’® along with the minute size of the
nanodevices, which makes them very sensitive to
thermodynamic fluctuations and high-energy parti-
cles. In this chapter, we argue that alternative means
of increasing system reliability will be required for
electronic nanotechnology.

42 Réliability

This section introduces some basic terminology.

1ORelative to optical lithography, which is the technology used
for the construction of VVLSI integrated circuits today.
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4.2.1 Definition

While this discussion is informal, we begin with a
precise definition of the notion of reliability. We
quote from [VSS87]:

The term “reliability” has a dual meaning
in modern technical usage. In the broad
sense, it refers to a wide range of issues
relating to the design of large engineering
systems that are required to work well for
specified periods of time. It often includes
descriptors such as quality and dependabil-
ity and is interpreted as a qualitative mea-
sure of how a system matches the spec-
ifications and expectations of a user. In
a narrower sense, the reliability is a mea-
sure denoting the probability of the opera-
tional success of an item under considera-
tion. [...]

Definition The reliability, R(¢), of an item
(a component or a system) is defined as
the probability that, when operating un-
der stated environmental conditions, it will
perform its intended function adequately
in the specified interval of time [0, ¢).

Note the probabilistic nature of the definition of
reliability. We should realize that there are no sys-
tems with perfect (R(t) = 1) reliability. A more
appropriate notion is “good enough” systems, whose
reliability is satisfactory for the intended usage and
under specified budgetary constraints. We will see
various methods that can be used to boost the re-
liability. However, these methods are not free and
the systems built using them are reliable but not per-
fect. Ideally a system should be no more reliable than
needed, balancing cost with benefits.

4.2.2 Redundancy
The key ingredient for building reliable systems is
redundancy. We can distinguish between two types

of redundancy, spatial and temporal (see Fig. 18).

Spatial redundancy uses more devices than strictly
necessary to implement certain functionality.
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Figure 18: Spatial (left) and temporal (right) redundancy. Spatial redundancy replicates the computing element S,

while temporal redundancy repeats the computation.

The additional devices are used to carry re-
dundant computations whose results are cross-
checked. If the reliability of each part is above a
minimum threshold, the overall system will be
more reliable than any of its parts. Using even
larger amounts of redundancy allows a system
not only to detect failures, but also to mask
them.

Temporal redundancy involves the repeated use of
a device for the same computation, followed by
a comparison of all the produced results.

4.2.3 Transent and Permanent Faults

According to their duration, we classify faults of a
system into two broad categories:

Transient faults occur when the system temporarily
malfunctions but is not permanently damaged.
In today’s computer systems, the vast majority
of faults are transient in nature [SS92].

Permanent faults happen at some point and never
go away, included in this category are manufac-
turing defects. We explicitly allow the use of
partially functional components (i.e., having de-
fects which affect only parts of the component)
for building systems.
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Temporal redundancy can only be used to cope
with transient faults. Strong spatial redundancy,
which enables error-correction (masking), can be
used to tolerate the effect of permanent faults. We
can expect the number of both permanent and tran-
sient faults to increase in future systems, due to the
miniaturization of the basic electronic components.
Small components use reduced electric charges to
represent logic values and therefore are more sensi-
tive to thermodynamic fluctuations, alpha particle ra-
diation from the environment or even the chip pack-
age, or high-energy cosmic gamma rays.

4.2.4 Rédliability Cost and Balanced Systems

When designing a complex system it is important to
balance the reliability of the various parts. For exam-
ple, if both memory and processor must be fault-free
for a system to be functional, it is wasteful to use a
memory with a much higher reliability than the pro-
cessor: the system will break down frequently from
processor failures, so the increased memory reliabil-
ity does not contribute substantially to the reliability
of the system.

A more complete picture should factor in the sys-
tem maintenance cost: what is the cost of the sys-
tem downtime required for replacing the failed parts?
Using an overly reliable part increases system costs.
Using parts with high failure rates requires excessive
maintenance costs. The context of use and the envi-
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ronment of the system dictate how reliable it should
be. For example, in safety-critical applications the
cost of downtime is very large, so it makes sense to
invest in extremely reliable components.

4.3 Increasing Reliability

In this section, we illustrate several techniques used
for building reliable computer systems. Systems that
recognize the inevitability of faults, and are designed
to cope with them, are called fault tolerant.

4.3.1 Votingand Triple Modular Redundancy

A simple but expensive approach to fault tolerance
is the complete replication of the computing system.
Duplication and comparison of the results of the two
copies permits the discovery of faults that occur in
just one of the computing elements.

Triplication together with a majority vote can be
used to recover the correct result in the presence
of a faulty component. Triple modular redundancy
(TMR) was the first fault-tolerance scheme. It was
introduced in 1956 by John von Neumann [vN56]. It
is sometimes used in computing systems for which
maintenance is impossible, such as on-board com-
puters for space probes. If each component has a
sufficiently high reliability (above 50%), the result
of the majority is more reliable than each individ-
ual component. The voting subsystem, which selects
the result computed by a majority of the components,
can itself be a single point of failure. Schemes have
been devised which use replicated voters.

\Voting can be naturally generalized to using n
identical computations in parallel and a majority
vote. Another generalization, which is more robust
against permanent faults, disregards the vote of com-
ponents after they produce a wrong result.

4.3.2 Error-Detecting and Error-Correcting
Codes

Duplication can be used to detect wrong results,
while triple modular redundancy can recover from
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one faulty computational element and voting meth-
ods permit operation after multiple faults. The cost
of these schemes is considerable: duplication re-
quires a complete replication of all critical compu-
tational elements, while TMR and voting have an ef-
fective resource utilization of less than 33%.

It is worthwhile to explore if we can achieve the
same degree of robustness using fewer resources.
The pioneering work of Claude Shannon [Sha48] and
Richard Hamming [Ham50] in the 1940s has shown
that we can indeed do better.

Let us consider the duplication method of fault tol-
erance. To make matters concrete, we start with the
premise that we want to store a piece of data in a
safe way. We assume that the data is encoded in bi-
nary and that a data word has n bits. If we just store
two identical copies of the data (i.e., 2n total bits)
what kind of robustness do we obtain? Let us as-
sume that one bit is damaged, being flipped by noise.
In this case, the values of the bit in the two copies
will differ, so we will detect the fault. However, we
have no way to discern which of the two values is the
correct one. Duplication allows us to perform error
detection, but not error-correction. Moreover, some
two-bit failures can pass undetected by this system,
if they occur in the same bit position in both copies.

Intuitively, this happens because the bits in the
representation are rather fragile: each stored bit en-
codes information coming from exactly one original
bit. We can build more robust encoding schemes if
we “mix” the input bits and we use each stored bit
to encode multiple input bits. In this case we may
be able to detect or correct errors in a stored bit by
extracting the lost information from other stored bits.

To obtain error resilience we need to add redun-
dancy to the encoding. This is accomplished by en-
coding n-bit data using m bits, where m > n. The
larger m, the more resilient the code can be. We call
the m-bit encodings “code words.” Note that not all
mm-bit words are code words.

There are many coding methods, each with differ-
ent properties, suitable under different assumptions
about the noise in the environment, the independence
of the errors, and the complexity of the encoding
and decoding algorithms. The interested reader can
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learn more about this topic in the following resource
[LC83].

In general, error-detecting methods are used when
the information can be recovered from other sources.
For example, in data transmission networks, the sent
data is only encoded using error-detecting codes be-
cause if an error occurs the information can be re-
sent by the source. When there is only one copy of
the data, it must be protected with error-correcting
codes. Such codes are used for example in computer
memories and disk storage systems.

Main Memory If you have ever needed to up-
grade the memory of a PC, you probably have faced
the dilemma of the kind of memory to buy. Three
main types of memory chips are sold today: un-
protected, parity-checked, and error-correcting code
(ECC) memory. These types of memory differ
greatly in reliability.

Unprotected memory uses one bit of storage for
each bit of information. It offers no protec-
tion whatsoever against transient or permanent
faults and it essentially relies on the reliabil-
ity of the underlying hardware. However, main
memory capacity has grown exponentially over
time, and the amount of storage in a computer
today makes the likelihood of faults a much
more probable event now than 10 years ago.

Parity-checked memory uses a very simple
method to detect one bit errors It works
by storing for each eight bits of data a code
word of nine bits. The ninth bit is set such that
each code word has an even number of “1”
bits, hence the term “parity.” Whenever data is
read from memory, the hardware automatically
checks the parity. When the parity is not even,
a fault has been detected, and an exception
is triggered. The software will handle this
appropriately. A common course of action is
to terminate the program using that piece of
data (because there is no way the data can be
recovered) and to mark that particular memory

"This method will also detect any involving an odd number
of bits.

31

region as faulty, which will prevent further
usage. Parity checking is simple and can be
done quickly, so it does not slow down the
memory operation.

ECC memory uses a more sophisticated encoding
scheme that allows automatic correction of any
1-bit error occurring in a 64-bit word. For this
purpose, the memory encodes 64 bits of data
using a 72-bit code word. The overhead of
the scheme is therefore the same as for parity-
checked memory (9/8 = 72/64), but it is more
robust than parity-checked memory since the
latter can only detect a single fault in every 8
bits, while ECC can actually correct a single
fault and detect 2 faults in every 64 bits. On
each memory access the read data is brought
to the closest code word. The code word is
next decoded to obtain the original informa-
tion. These operations are substantially more
complex than a simple parity check. There-
fore, ECC memory incurs a slight performance
penalty compared to the other two types of
memory.

Disks The most common support for persistent in-
formation storage is the disk. While disks come
in many types (floppy disks, hard disks, removable
disks, optical disks, compact disks, etc.), the facts
presented in this section apply to most of them.

Disks use two different spatial redundancy tech-
niques simultaneously. These are necessary due to
the high storage capacity and to the harsh environ-
mental conditions under which disks operate: unlike
solid-state devices, disks feature moving parts which
are far more likely to exhibit failures. A close ap-
proximation of a disk system is a turntable, which
has a rotating disk and a head that can choose a cer-
tain track on the disk through lateral “seek” move-
ments.

Information on disks is stored in units called sec-
tors. The size of a sector depends on the disk but
is relatively large (compared to the storage unit for
memories, which is a 72-bit word for PCs), on the
order of a kilobyte. Data inside of a sector cannot
be changed: if even a single bit is modified, the sec-
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Figure 19: Redundant encoding of information on a disk:
both error-detecting codes and spare sectors are used.

tor has to be rewritten entirely because mechanical
imprecision makes it impossible to position the read-
write head precisely enough for a single bit.

In addition to the stored data, a sector contains ex-
tra information to compensate for the imprecision of
the mechanical parts and the high unreliability of the
medium (see Fig. 19). For example, each sector has
some servo information, which is used by software to
check the head alignment and to synchronize the data
transfer with sector boundaries. Traditionally each
sector has an associated sector identifier, the usage
of which will be described later. The data is stored
following the servo and ID information, and is fol-
lowed by an error-detecting code!? The codes used
for disks are usually from a class called cyclic redun-
dancy checks (CRCs).1® Sectors are separated from
one another with gaps, which give the head some
freedom in setting the sector boundaries when a sec-
tor is rewritten. On rewrite, a sector may not start in
the exact same spot as before due to imprecision in
positioning.

Some events can damage sectors: for example,
cutting the power of a computer while it is still op-
erating can cause a crash of the heads on the disk
surface, which causes physical damage to the mag-

2More precisely, the data plus the following information
form together a code word of an error-detecting code.

13\ CRC summarizes the data using a checksum. The term
“cyclic” comes from the property that the same checksum is ob-
tained if the input data is permuted cyclically.
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netic layer used to store information. If this happens
then, with very high probability, the checksum of the
data residing on the damaged sector will not match.

To keep disks operational even after damage oc-
curs, and also to allow some slack in the manufactur-
ing quality, disks use a second type of spatial redun-
dancy in the form of spare sectors. Regularly spaced
on the disk surface are spare sectors that are nor-
mally unused under normal operation. When a sector
is damaged, it is marked and replaced with a spare.
The sector ID of the spare indicates which original
is represented. Upon manufacture, disks are tested
for surface defects and for each disk a defect map
is created and stored within the disk system (either
on the disk or in a nonvolatile memory). The defect
map is used when formatting the disk to replace the
defective sectors with spares. The defect map grows
during the disk lifetime, as newly damaged sectors
are added.

4.4 Formal Verification

Formal verification is an umbrella name for a vari-
ety of sophisticated techniques used for certifying the
correctness mostly of hardware systems, but increas-
ingly for software systems as well. Formal verifica-
tion is used for finding bugs and in this sense can be
seen as a reliability-enhancing technique.

The crux of formal verification methods is speci-
fying precisely the behavior of the systems’ compo-
nents (in terms of mathematical formulas) and check-
ing formally the properties of the overall systems.
These properties are precisely expressed using some
form of mathematical logic and are proven by a se-
quence of derivations.

One particular technology which we believe will
play a very important role in future computer sys-
tems is translation validation [PSS98]. Using this
technique, a compiler can produce proofs that the
result of the compilation process faithfully imple-
ments the source program. Because modern com-
puter architectures are extremely complex, they rely
more and more on compilers. Translation validation
can therefore be used to certify an essential building
block of computer system architecture.
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45 ExposingUnréliability toHigher Layers

The first part of this section was dedicated to a dis-
cussion of techniques used to enhance the reliability
exposed to the upper architectural layers. We noted
that hardware is much more reliable than the soft-
ware layers because it is virtually fault-free.

In this section we discuss the opposite approach
used in two very successful systems. These systems
start from the assumption that the underlying layers
are essentially unreliable and that unreliability must
be exposed to the upper layers.

This seemingly paradoxical design can be de-
fended by several arguments:

e The cost of providing reliability may simply
be too high. Moreover, the cost grows with
the number of abstraction layers. The overhead
may be unacceptable for some classes of appli-
cations.

e The upper layers may use their own fault-
tolerance scheme. The designer faces a trade-
off between the probability of failure and the
effectiveness of a fault-tolerance scheme. Each
reliability scheme we present works under cer-
tain assumptions about the environment. For
instance, the memory parity scheme in Sec-
tion 4.3.2 stores one bit of parity for each byte.
This scheme works well as long as there are
not multiple errors within a same byte (i.e., the
error probability of a bit is relatively low). A
lower layer may forgo providing a reliable ap-
pearance for the layer above if the latter uses
an error-correction scheme powerful enough to
withstand the combined error probability.

e In some cases, the upper layers need only a sim-
ple form of reliability, and not a perfect underly-
ing substrate. For example, some interactive ap-
plications such as telephony would rather have
the data delivered timely than perfectly: a miss-
ing piece of data generates a glitch at the re-
ceiver, which is often tolerable by the human
ear. By contrast, the late arrival of the complete
data is of little value for creating the illusion of
an interactive conversation.
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451 Internet Protocol

The Internet is a computer network, designed ini-
tially to link military computer networks. One of the
design goals of the Internet was to make it robust
enough to withstand substantial damage without ser-
vice loss. The Internet has evolved into a highly suc-
cessful commercial network spanning all continents,
with over 125 million active computers.

The Internet was created more than a century after
the deployment of the telephone network, therefore
one would expect the Internet to build upon the prin-
ciples developed during the construction of its ante-
cessor. However, particularly with respect to reliabil-
ity, nothing could be further from truth: the Internet
architecture is almost the complete opposite of the
telephone network.

In order to contrast the two networks, we first dis-
cuss some details on the architecture of the telephone
networks.

Telephone Network Architecture The telephone
network was designed to have an exceptional relia-
bility. The downtime of a telephone switching ex-
change must be under three minutes per year. Only
under truly exceptional circumstances is a conversa-
tion already initiated interrupted due to a network
failure. The phone network will let a conversation
proceed only when it has secured all the required re-
sources to timely transmit the voice signals between
the parties. Strict standards dictate the length of
time allocated for the connection negotiation phase,
which establishes an end-to-end circuit through all
the intermediary telephone exchanges. The failure
to secure all necessary resources is signaled to the
end user through a busy tone. Sophisticated ca-
pacity planning based on detailed statistics about
phone user behavior are used to size the carrying and
switching devices, which results in a very low prob-
ability of a busy tone due to insufficient network re-
sources.

A crucial factor guaranteeing the quality of the
phone connection is the allocation of all necessary
resources before the call is connected. These re-
sources are preallocated and reserved for the whole
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duration of the connection [Kes97]. Based on the
number dialed, the path connecting the source and
destination is calculated using carefully precom-
puted routing tables. Each exchange negotiates with
the next one on the path using a sophisticated sig-
naling protocol carried on special circuits, allocating
bandwidth and switching capacity for the new call.
After all point-to-point connections are successfully
established, a ring tone is generated. Once the con-
versation begins, the voice signal is sampled and dig-
itized at the first telephone exchange. Each bit of
data has preallocated time slots in each of the trunks
it will traverse. The data bits traverse all trunks in the
order they were generated and arrive at the destina-
tion at the right time to enable the recreation of the
analog voice signal. For each incoming bit, switch-
ing tables maintained in each exchange indicate the
outgoing circuit and precise time slot where the bit
should be steered. Once a connection has been estab-
lished, there is a very high probability that the data
entering the network will emerge at the other end in
the right order and with the same delay for each bit.
On disconnection, the signaling protocol tears down
the resources allocated during the call.

The Internet Architecture One of the aspects
where the Internet philosophy fundamentally differs
from the telephone network is reliability. Not only is
there no guarantee about the latency taken to transit
the network, but there is no guarantee that the data
will not be lost or corrupted during transit. The end
users of the Internet get a very weak service defini-
tion, which could be stated as: “You put data in the
network tagged with some destination address. The
network will try to deliver your data there.”

The way data travels in the Internet is completely
different from the telephone network: data is divided
into packets that are injected in the network in the or-
der they are generated. Each packet may travel a dif-
ferent route to the other end point. Some packets may
be lost, some may be duplicated, and the receiver
may receive the packets in the wrong order and per-
haps even fragmented into smaller packets [Kes97].

The packets are moved by the Internet protocol
(IP). IP works roughly as follows (see Fig. 20): when
an intermediate computer (a router) receives a data
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packet, it reads the destination address contained
within. Next the router makes an informed guess
about the direction the packet should travel (i.e., the
directly connected neighbor closest to the final desti-
nation). The packet is then forwarded to that neigh-
bor.

When a router receives data faster than it can
send on the output links, it buffers them in its inter-
nal memory for later processing. When the internal
memory becomes full, the router simply starts to dis-
card the packets. Such dropped packets constitute
the major source of performance degradation in the
Internet.

The structure of the Internet changes widely from
day to day and from hour to hour, as new computers
get connected, new users dial-up, accidents disrupt
the connectivity of some networks, and new commu-
nication links are installed or upgraded. Routers con-
stantly exchange information about their local view
of the network: each machine tells its neighbors
the information it currently has about the topology.
Constant information exchange leads to distribution
of network topology information to all participating
routers. Given this infrastructure, it is amazing that
the Internet works at all and that information flows
through it without corruption. How is this possible?

The answer comes from two key aspects of the
Internet architecture: the core network is redundant
and self-healing, while the upper layers are designed
to tolerate information loss.

The core network achieves reliability using the fol-
lowing ingredients:

e Rich, uniform, and redundant core:
The Internet “backbone” is not a simple
linear structure; commonly between any
pair of nodes there are multiple disjoint
communication paths. Moreover, there is
no single point of failure whose destruc-
tion can disconnect the network. An im-
portant factor is that all nodes in the net-
work are more or less functionally equiva-
lent: there is no privileged node on whose
health the whole system depends.
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Figure 20: Left: In the Internet there are end nodes (which initiate the communication) and routers (which only move
data). Right: Routers use routing tables to decide which interface to use for each destination address. This example
shows router X’s table.

e Statelessness. The routers in the Inter-
net do not store information about the data
traffic flowing through them. (In contrast,
a telephone exchange stores much infor-
mation about all phone connections that
traverse it.) A router receives a packet,
computes the best output link, and for-
wards the packet. The internal state of the
router after forwarding is the same as be-
fore the arrival of the packet. The lack of
stored state enables the network to with-
stand the crash of routers (i.e., a crash does
not cause loss of information which can-
not be recovered through other means).

e Self-testing and healing: The routing
protocol constantly exchanges informa-
tion about the topology of the network. In
the event of network outages, this proto-
col quickly propagates information about
backup routes, allowing communication
to resume.

User applications use a robust communication pro-

tocol that makes use of temporal redundancy to
tolerate errors in the underlying network. The
transmission control protocol (TCP) is a com-
munication protocol executed only by the end
nodes participating in communication. This
protocol ensures that all packets are delivered
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in the order they were sent, without gaps or du-
plicates. TCP achieves this feat by using the
following ingredients:

e numbering the sent packets
e acknowledging packet reception

e using timers to detect packets which re-
ceived no acknowledgements for a long
time

e retransmitting packets deemed lost in the
network

Because acknowledgments are sent using or-
dinary packets themselves, they may be lost
too. Lost acknowledgments cause the injec-
tion of duplicate packets in the network by the
source which retransmits the packets not ac-
knowledged.

The whole Internet is built on the unreliable IP
core: not only are data and acknowledgment packets
sent unreliably, but also the control communication
between routers (describing network topology) and
the network maintenance traffic use the same unreli-
able forwarding mechanism.

Despite its apparent weak structure, the Internet
is a formidable competitor to other specialized me-
dia distribution networks: radio, television, and tele-
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phone. The cost of voice transmission (telephone-
style) in the Internet (dubbed “voice over IP” or
“MolIP) is much lower than in telephone networks.
Many major phone carriers are already investing
heavily in using VoIP in parts of their networks.

Why is the Internet more successful despite its un-
reliability?

The answer lies, at least in part, in the fact that the
Internet does not offer a costly service (e.g., fault-
free time sensitive communication primitives). In-
stead, it offers a cheap but useful service (e.g., best
effort delivery of bits). The telephone network goes
to great lengths to provide the reliable voice service
but uses an extremely inflexible, specialized system
and wastes a huge amount of resources. Basically,
the reliability of the phone network comes at a high
cost.

The Internet moves the fault tolerance problem to
a higher layer, from IP to TCP. TCP provides fault
tolerance perfectly adequate for many applications.
TCP is executed only by the end hosts and not by
the routers who relay the information. The compli-
cated processing entailed by TCP does not place any
burden on the core network, which scales to global
sizes.

Applications that do not need the reliable data de-
livery offered by TCP can forgo using it. For instance
Internet radio protocols use strong error-correcting
codes and no retransmissions. Lost or misplaced
packets are simply ignored. This is acceptable be-
cause the human end user tolerates the low reliability
of the signal.

452 Teramac

In this section we present briefly Teramac, a com-
puter system developed by researchers at Hewlett-
Packard, which exhibits another unconventional ap-
proach to the problem of system reliability. This
computer is built out of defective parts: more than
70% of the circuits composing it have some kind
of fault. Despite this, the system works flawlessly.
Many papers have described Teramac. One arti-
cle which underlines the connections between this
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architecture and nanotechnology-based computing
is [HKSW98].

It must be noted that Teramac deals only with per-
manent faults. Electronic nanotechnology circuits
are very likely to exhibit a large number of such
faults.

Teramac is built out of reconfigurable hardware
devices, described extensively in Section 5. The re-
configurable hardware feature exploited by Teramac
is the fact that the basic computational elements are
essentially interchangeable.

Teramac implements circuits on a reconfigurable
substrate. Much like how disks use spare sectors
to replace the faulty ones (see Section 4.3.2), Tera-
mac uses spare computational elements to replace the
faulty ones. In Section 5, we describe the mechanism
for accomplishing this after we present the main fea-
tures of reconfigurable hardware and describe how
such devices are programmed.

One of the main contributions of the Teramac
project is showing that unreliability in hardware can
be exposed and addressed by higher software lay-
ers, without incurring a large overhead. This is a
complete paradigm shift in computer system design,
which will very likely have many applications in the
future.

4.6 Rdiability and Electronic-
Nanotechnology Computer Systems

4.6.1 Summary of Reliability Considerations

In this chapter we surveyed many ways in which
reliability considerations impact the construction of
computer systems.

Computer systems are built from a series of ab-
stract layers, which offer increasingly powerful ab-
stractions. Each layer has different reliability prop-
erties and uses different reliability-enhancing tech-
niques. In general, the view exposed by the hardware
to software is that of a practically perfect, fault-free
substrate.

We have seen that reliability can be enhanced
through the use of redundancy: spatial redundancy
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uses more hardware components to carry supplemen-
tary computations, while temporal redundancy re-
peatedly computes results to ensure their robustness
against transient faults.

While temporal redundancy is expected to reduce
the overall system performance (expressed in num-
ber of computations per unit time), even spatial re-
dundancy comes at a price: for example, we have
seen that using powerful error-correcting codes for
memories can cause performance degradations due
to the complexity of the additional computation of
the code.

One important message of this discussion is that
reliability is a desirable feature but it comes at a cer-
tain cost, which must be taken into consideration by
the designer. The designer faces a trade-off between
the cost of reliability of each layer and the fault tol-
erance that upper layers can provide by themselves.
The deep layering translates into a multiplicative ef-
fect of the overheads.

4.6.2 A New Computer System Architecture

The design of future computer systems, based on
CAEN, will very likely be fundamentally con-
strained by the dramatically different reliability
properties of the new medium. We can expect both
very high permanent defect rates from the nonde-
terministic manufacturing process and a high rate
of transient defects at the lowest layers, due to the
thermodynamic fluctuations and the minute size of
the currents carrying information in CAEN circuits.
(Note that the latter issue, transient errors, is not
unique to CAEN, but will be common in any technol-
ogy which measures individual features in handfuls
of nanometers.)

The use of CAEN devices will require a complete
rethinking of the basic architecture of a computer
system. In this section we sketch features of a plau-
sible proposal. We speculate that by diminishing the
cost paid for reliability we can reduce dramatically,
even by orders of magnitude, the cost of complete
computing systems. We advocate:
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e removing the illusion of perfect reliability from
the hardware layer, exposing the imperfections
of hardware to the software, and dealing with
the imprefections on as needed basis

e using as a basic building-block reconfigurable
hardware circuits (see Section 5), whose config-
uration and reliability are completely handled
by software programs

e using defect-mapping and spares for dealing
with manufacturing defects

e using computation in encoded spaces (i.e., com-
puting on data encoded using error-correcting
codes) for transient and permanent fault-
tolerance

e using formal verification techniques, most no-
tably of translation validation, to ensure that the
compilers correctly translate programs into ex-
ecutables or configurations

e offloading most of the computation from the
microprocessor and instead using a reconfig-
urable hardware substrate on which application-
specific circuits are synthesized by compilers.
Compilers will generate hardware configura-
tions matching the application’s needs and re-
liability requirements

decribe program V. configuration somewhere

5 Reconfigurable Hardware

In Section 3 we briefly presented the main paradigms
exploited in the architecture of modern computer
systems. We have seen that fast-evolving technology
constantly changes the balance between the com-
puter system components, which in turn requires
constant redesign and tuning. We have concluded
that computer architects face several difficult prob-
lems, engendered by the enormous design complex-
ity, increasing power consumption, and limitations of
the materials and manufacturing processes.

In this section we describe a computational
paradigm which has accumulated momentum during
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the last decade and may ultimately solve some of
these problems. This paradigm is embodied in the
reconfigurable hardware (RH) circuits [CH99]. RH
is an intermediate model of computation with fea-
tures between special-purpose hardware circuits and
microprocessors. Its computational performance is
close to hardware, yet its flexibility approaches that
of a processor, because RH is programmable.

5.1 RH Circuits

As described in Section 2.2, ordinary digital cir-
cuits are composed from simple computational ele-
ments called logic gates, connected by wires. The
logic gates are themselves assembled from transis-
tors. Each logic gate performs computations on one-
bit values.

RH devices have a similar structure. However, the
logic gates of an RH device do not have a priori fixed
functionality and the wires do not connect specific
pairs of gates but are laid out as in a general net-
work. Each gate is configurable, which means that
it can be programmed to perform a particular one-bit
computation. Likewise, the connectivity of the wires
can be changed by programming switches that lie at
the intersections of the wires.

Each logic gate and each switch has a small as-
sociated memory that is used to store the config-
uration. By loading different data in each mem-
ory, the gate functionalities and wire connections are
changed (see Fig. 21a). Because configuration can
be changed repeatedly, these devices are called “re-
configurable.” A second interconnection network is
used to send configuration information to each pro-
grammable element.

RH circuits ordinarily have a regular structure and
are composed of a simple tile replicated many times
along the horizontal and vertical direction. This sym-
metry has an important role in some RH applications.

RH is as powerful as standard hardware because
any circuit that can be built in regular hardware can
also be synthesized using RH. The price paid by RH
for its flexibility is relative inefficiency: the pro-
grammable gates and switches, and the associated
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Wires and switches

v
Configuration RAM Computational gates

Figure 22: Relative area occupied by the components of
a reconfigurable hardware device. The actual computa-
tional devices take just a small fraction of the chip (around
1%).

configuration memories, are much larger than the
custom gates and wires in a normal circuit.

The limiting resources on RH are not the gates, but
the wires, because it is not known beforehand which
connection will be made. The chip must have enough
wires for the worst case [DeH99]. Any particular im-
plemented circuit ordinarily uses just a fraction of the
available wires. To handle the peak demand, RH cir-
cuits are oversupplied with wires, which ultimately
take most of the silicon resources: normally 90%
of the chip area is devoted only to wires and their
configurable switches. Fig. 22 illustrates the on-chip
area dedicated to the wiring, configuration memory,
and actual computational devices on a typical RH
chip.

As a consequence, a circuit implemented in RH is
larger (in area) than the corresponding custom hard-
ware circuit. Because RH integrated circuits have
approximately the same absolute size limitations as
ordinary digital circuits, large circuits do not fit into
one RH chip. However, today’s RH devices have
capacities on the order of a few million gates, an
amount greater than advanced microprocessors from
a decade ago.

Besides the density handicap, RH devices also
have a speed disadvantage when compared to cus-
tom hardware: electrical signals in custom hardware
travel on simple wires between two gates; in RH
signals frequently have to cross multiple switches
from a source to a destination. The switches increase
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Figure 21: (a) Reconfigurable hardware contains programmable logic gates and an interconnection network. (b) The
connections between the logic gates can be set up by configuring the switches in the interconnection network. Each
switch is controlled by a one-bit memory. (c) Programmable logic gates can be implemented as look-up tables using
small memories. In this example, the contents of the memory indicate that the gate performs the AND computation.

the power consumption and decrease the propag:
speed of the signal.

The overwhelming majority of digital circuit
synchronous (i.e., use a clock signal to coordi
the action of the various computational units sp

on the chip surface). This is also true of RHAABECT

vices, although the peak clock frequency they
typically use effectively is approximately one-fif
one-tenth of a microprocessors’ clock. The main ica-
son for this disparity is that the electrical signals must
cross several switches on almost any path.

5.2 Circuit Structures

The implementation of RH circuits described above
is just one possible method of implementing pro-
grammable logic. Here we describe three other ap-
proaches that could be used. The simplest of the
methods is to use a single monolithic memory. A
memory with n locations (i.e., log, n address lines
of m bit words can implement any m functions of
log, n inputs). In Fig. 21c, a memory of four loca-
tions of one-bit words is shown. It implements one
function of two inputs. If we increase the word width
we can add an additional truth table. If we increase
the number of words, we can increase the number of
inputs. One of the primary reasons RH devices, like
field-programmable gate arrays (FPGAS), are com-
posed of many small memories (instead of one large
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Figure 23: A schematic of a PLA which can implement
a subset of all logical formulas of four inputs. The single
line into each AND gate represents six wires coming from
the three inputs and their complements. The AND gate
to the left of the figure shows all six input lines going
into the Py AND gate. The single line into each OR gate
represents four wires, one each from the AND gates. The
OR gate to the right shows all four input lines for the Fy
output.

memory) is the exponential growth in the size of the
memory in terms of the number of inputs to the func-
tion.

Historically, programmable logic devices were
implemented more like monolithic memories than
FPGAs. To avoid the scaling problems with a sin-
gle memory, another common implementation ap-
proach is to use a programmable logic array (PLA).
A PLA directly implements two-level logic func-
tions. A logical function can be written in many dif-
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Figure 24: Example programming of a PLA to imple-
ment the sum output for a full-adder. This example uses
only one of the two output functions.

ferent but logically equivalent ways. One of the most
common is to represent a logical function in either a
sum of products (SOP) form or a product of sums
(POS) form. A sum of products form of a function
is constructed by summing a set of product terms.
Each product term is the AND of some of the inputs
or their complements. Each sum term is the OR of
some of the product terms. For example, the SOP
representation of the sum output of the full-adder in
Fig. 3 is sum = @bc + abe + @bc + abc. The idea
behind a PLA is to directly implement SOP by hav-
ing a programmable product plane that feeds into a
programmable sum plane.

Fig. 23 shows an example PLA which can com-
pute two different functions (one each on the hori-
zontal lines) of four product terms (computed on the
vertical lines). The central figure is a common form
of abbreviation for a PLA. It avoids drawing all the
lines that enter each AND and OR gate. On either
side we show a single example of the AND and OR
gates in their unprogrammed form. Programming a
PLA involved removing some of the connections into
the AND or the OR gate. The PLA shown in the fig-
ure can implement only a subset of all possible three
input functions. For only three inputs the PLA is con-
siderably more expensive to implement than a look-
up table (in this case it would be an eight-word mem-
ory of two bits per word). However, PLAS can quite
efficiently implement functions of 16 inputs, whereas
such a memory would be highly inefficient.
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Fig. 24 shows how the sum output of the full-adder
might be implemented in a PLA. We represent each
wire that should remain connected to the AND or OR
gate with a star on the intersection of the signal and
the wire going into the gate.

While PLAs are more efficient than single mem-
ories, they still have significant overhead to support
the programming of the AND and OR planes. Pro-
grammable array logic (PAL) was introduced to re-
duce this overhead. In a PAL, the inputs to the OR-
plane are fixed so that only the AND-plane can be
programmed. This restricts the outputs to the sum of
a fixed set of product terms. This decrease in flexi-
bility is offset by a large reduction in the area of the
device.

5.3 UsingRH

The RH industry had a revenue of 2.6 billion dol-
lars in 1999 and its growth is accelerating. The same
trends that affect the architecture of computer sys-
tems are shaping the use of RH hardware today. We
are witnessing an important change in the role rele-
gated to RH devices in computing systems.

53.1 GluelLogic

RH was originally developed as a flexible substi-
tute for circuits used to “glue logic,” connecting the
custom hardware building blocks in a digital sys-
tem. RH was used for fast prototyping: new cir-
cuits could be designed, tested, and deployed with-
out the need for a manufacturing cycle. Even today,
glue logic is the most important segment of the RH
market. The prototypical RH device of this kind is
called a field-programmable gate array (FPGA). The
architecture of FPGAs is profoundly influenced by
their usage: because they are used mostly for imple-
menting “random” control logic, FPGAs favor one-
bit logic elements. This can be contrasted to micro-
processors, which are designed to process numeric
data and therefore feature a wide datapath process-
ing wide data values as atomic units.
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5.3.2 Computational RH Devices

Feature shrinkage enables the manufacturing of RH
devices with more and more computational elements.
When large enough, they can accommodate com-
putational tasks usually relegated to microproces-
sors. Intense research has been conducted in the last
ten years on this subject, leading to many proposals
for integrating RH devices into computing systems
[Har01]. RH devices have an enormous potential
as computational elements. They can successfully
complement—and even supplant—the microproces-
sor as the main computational core of a computing
system [BMBGO2]. In the remainder of this text we
will address RH devices only as computational de-
vices.

5.3.3 Computational Applicationsfor RH

RH as a computational device has drawn attention
due to some impressive early results [Hau98]. For
some application areas, RH still holds performance
records, even occasionally when compared to cus-
tom hardware solutions. Even when they do not hold
the performance crown, RH devices are substantially
cheaper to manufacture and program than other com-
puting systems with large peak performance, which
feature either custom hardware or a large number of
Processors.

In Section 5.5, we investigate the source of the RH
advantages. Here we will list some of the successes
of RH computational engines.

Computational applications exhibiting extreme
performance on RH hardware include: text search
and match, including DNA string search; encryption
and decryption; digital signal processing, such as fil-
tering; and still and video image processing. These
applications are all “streaming”-type applications in
which the same operation is applied to vast quan-
tities of data repeatedly. Such applications exhibit
substantial amounts of data parallelism (i.e., many
pieces of data can be processed simultaneously). The
speed-ups obtained using RH systems (compared to
conventional computing systems) range from one to
several orders of magnitude.
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Recently, problems with more complex structures
have been substantially accelerated, such as graph
searches and satisfiability of Boolean formulas!*
Performance increases of lesser magnitudes have
been reported even for less regular applications.

5.4 Designing RH Circuits

The tool chains used today for configuring RH de-
vices reflect their inheritance from the random logic
domain: the RH programming tools are mostly bor-
rowed from the hardware design tools. These tools
are substantially different in nature from the regu-
lar software design tools because they have differ-
ent optimization criteria: hardware design tools tend
to have very long compile times, extremely complex
optimization phases, and very stringent testing and
verification constraints. Much of the effort of the
hardware design tools is directed toward addressing
the constraints of the physical world: examples in-
clude laying out wires with few crossings and work-
ing with the actual geometry of the devices and elec-
trical constraints (e.g., electrical wire resistance).

In contrast, software tools are more interactive:
making small changes in software programs and re-
building the whole executable in a matter of seconds
is customary. Unlike hardware, software programs
are frequently upgraded in the field.

The major steps in programming RH devices
follow quite closely the design of digital circuits
(see Fig. 25): the desired functionality is described
using a program written in a hardware description
language (HDL). Using this representation, the cir-
cuit can be simulated using computers for testing and
debugging. Next, the program is processed by a se-
ries of sophisticated software tools, computer-aided
design (CAD) tools, which first optimize the circuit,
then place the logic gates on the two-dimensional
surface, and finally route the wires connecting the
gates (see also Fig. 26). In the case of RH devices,
placement associates each logic gate in the circuit
with one of the programmable logic gates of the RH

Ysatisfiability is the problem of deciding whether a given
Boolean formula can be made “true” by some assignment to its
variables. Many important practical problems can be reduced to
satisfiability computations.
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Figure 25: Compiling for RH devices is a complex process involving several complex optimization phases. Floor-
planning, place and route must take into consideration the constraints of the chip geometry.

device, while routing selects wire segments and con-
figures the switches to connect the gates linked in the
implemented circuit.

RH CAD tools output a stream of bits, which con-
stitute the configuration of each gate and switch. At
run-time this configuration is loaded onto the chip.
After configuration loading, the RH device starts
behaving like the circuit whose functionality it im-
plements. Using RH is therefore a two-stage pro-
cess: loading the configuration and running the de-
vice. Because of the large number of gates and
switches, the configuration of a chip tends to be very
large. As a consequence, configuration loading is
quite lengthy. Evaluating the performance of a RH
device must always factor in this overhead, which is
not present in either processors or custom hardware.

To shorten the configuration time, novel designs
incorporate special features. As an example, some
RH devices have local memories which can be
used to cache several frequently used configura-
tions [LCHOO]. In this case, switching from one
configuration to another can be achieved somewhat
faster. Other designs can switch quickly between
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configurations; these are called “multicontext FP-
GAs” [DeH96]. Some other proposals allow only
parts of the chip to be configured, while other parts
compute, allowing the computation and configura-
tion to overlap [GSM*99].

5.5 RH Advantages

In this section we discuss some of the advantages
of RH devices over other hardware or software so-
lutions. We also analyze the features of RH which
enable it to exhibit very high computational perfor-
mance. We defer to a later section (5.7) a discussion
of reliability of RH.

Compared to custom hardware solutions, RH-
based implementations have a shorter design and
fabrication time and substantially lower costs. The
fabrication time and costs advantages result from the
reuse of the same integrated circuit: there is no need
to physically manufacture new chips. Development
and debugging are expedited, as the discovery of
bugs results in configuration patches, which are gen-
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erated by a chain of software tools and require no
physical manufacturing.

The principal advantage of RH over pure software
solutions is increased execution speed, at least for
some types of applications. In examining these ap-
plications, we realize that they exploit four main RH
qualities:

e Parallelism: These applications feature a large
amount of intrinsic parallelism (i.e., many op-
erations can be performed simultaneously). RH
can exploit virtually an unbounded amount of
parallelism. A microprocessor is outfitted by
the designers with a certain number of func-
tional units. Each of these units is unable to
produce more than one fresh result in each clock
cycle. The computational bandwidth of a pro-
cessor is therefore bounded at the time of man-
ufacture. Moreover, very rarely can a processor
reach its peak performance because the paral-
lelism available in the program rarely has the
exact same profile as the available units. This is
discussed in Section 3.4.4.

In contrast, by using RH one can synthesize
a virtually unbounded number of functional
units.® For example, if the program contains 10
independent additions, one can build a configu-
ration featuring 10 parallel adders. Not only can
we build highly parallel computational engines,
we can do so only after we know the applica-
tion requirements—a luxury that a microarchi-
tect cannot afford.

Two main types of parallelism are successfully
exploited by RH devices: parallelism between
independent operations (multiple data items can
be processed simultaneously) and pipeline par-
allelism, described in Sections 3.3.2 and 3.3.3.
As an example, let us consider a program pro-
cessing a digital movie, for instance, by de-
creasing the brightness and next thresholding
(i.e., displaying in white everything above a cer-
tain intensity and the rest in black). In each
movie frame the brightness of all pixels can be

5Due to Moore’s law, resource constraints in RH become less
important with each new technological generation and will cease
to constitute a real obstacle in the near future.
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increased in parallel: this is parallelism between
independent operations. Moreover, while one
frame is brightened, the previous frame can be
thresholded by using a set of different process-
ing units. This is a form of pipeline parallelism.

e No instruction issue: Unlike a microproces-
sor which has to fetch new instructions con-
tinuously, the functionality of RH is hardwired
within the circuit. The RH unit does not need
to expend resources to fetch instructions from
memory and decode them.

Dispensing with instruction issue has several
positive benefits. First, the problem of con-
trol dependencies'® is eliminated or substan-
tially reduced. Second, precious memory band-
width is conserved because there is no need to
bring instructions from the memory (the mem-
ory is connected with a narrow bus to the pro-
cessor, on which there is contention for trans-
mitting both data and instructions).

e Unlimited internal bandwidth: A subtle dif-
ference between a processor and an RH device
is in the way they handle intermediate compu-
tation results. Processors have an internal array
of scratch-pad storage elements called registers.
Intermediate computation results are stored in
the registers, where they can be quickly ac-
cessed. When a “final” result is produced, it
is stored in memory. Like the number of func-
tional units, the number of registers is hard-
wired from manufacturing. If the number of
temporary values exceeds the number of regis-
ters, they must be spilled into memory, which
is much slower to access. A scarce resource
in processors is the number of ports into the
register file. Data is read from or written to a
register through a port: therefore, the number
of ports determines the number of simultane-
ous read/write requests that can be honored by
a register file. In other words, the bandwidth in

8\We say that instruction B is control dependent on A if A
decides whether B is executed or not. For example, branch in-
structions decide the next instruction to execute; the targets of a
branch are thus control-dependent on the branch. Not knowing
which way execution goes prevents the timely issuing of instruc-
tions, penalizing execution performance.
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and out of the register file is essentially bounded
by a hard limit—the number of ports.

In contrast, in RH devices the datapath is cus-
tom synthesized for each application. For in-
stance, there is no need to use a single register
file for all intermediate results. Because the data
usage of the program is known, registers can be
connected exactly to their producers and con-
sumers, and nothing else. Moreover, an arbi-
trary number of registers can be created in the
configuration because their space overhead is
quite small. In RH, potentially unbounded reg-
ister bandwidth accommodates the parallelism
in the application under consideration, while the
unbounded number of registers prevents costly
memory spills.

Out-of-order execution: While superscalar
processors allow instructions to execute in or-
ders different from the one indicated by the pro-
gram, the opportunity to do so is actually quite
limited:

— First, only instructions within a limited
“issue window” can be reordered.

— To ensure correct execution, most super-
scalar processors constrain the instruc-
tions to also complete execution in pro-
gram order.

In RH implementations none of these con-
straints has to be obeyed. explain why!

efficiency of configuration size and logic den-
sity on one side and resource waste due to short
data word size. For this reason, narrow compu-
tational units may not always be best in terms
of performance.

Custom operations. The functional units in-
side a microprocessor are restricted to a small
set of general-purpose operations: simple in-
teger arithmetic and logic, and bit manipula-
tions. As media processing algorithms were
standardized, processors started to incorporate
special instructions designed especially to ac-
celerate these programs [PWW97]. For exam-
ple, virtually all modern processors have special
instructions to aid with the encoding and decod-
ing of digital video sequences. However, new
applications and algorithms arise continuously
and require special-purpose operations. In RH
one can easily synthesize efficient implementa-
tions for operations which, when expressed in
classic ISAs, require many instructions. As an
example, consider an operation that permutes
the bits of a word in a fixed order. In a normal
ISA this requires at least three instructions per
bit, for extracting, shifting, and inserting the bit.
However, in an RH with bit-level operations the
permutation can be implemented just by wire
connections, without any computation.

Specialization: This is applicable when some
of the data processed by the algorithm changes
slowly. As an example, consider an encryp-

Besides these major advantages of RH fabrics,
there are three additional advantages which boost
RH performance, although state-of-the-art compila-
tion tools do not exploit them as effectively:

tion algorithm with a given key: once the key is
known, the algorithm will process a lot of data.
The algorithm can therefore be specialized for

e Custom widths: The word size of a micropro-
cessor is essentially fixed from manufacturing.
When computations on narrower or wider data
values are desired, programmers resort to word-
size computations, which basically wastes most
of the result. In contrast, RH devices allow
complete flexibility for the width of computa-
tional units [BSWGO00]. However, as we dis-
cuss in Section 5.6, there is a tension between
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a key [TG99]: once the key is known, an en-
cryption circuit built especially for that particu-
lar key can be generated, which has the potential
to operate much faster than a general-purpose
encryption circuit. However, such specializa-
tion must generally be done at run-time, when
data is known. This requires executing some
of the configuration-generation process during
program execution. This can be a costly pro-
cess, which may offset the advantages of spe-
cialization.
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5.6 RH Disadvantages

In this section we discuss the disadvantages of RH
devices as compared to microprocessors. Some of
the disadvantages are intrinsic to the nature of RH
devices: for example, the need of the electrical signal
to cross multiple switches for practically all point-to-
point connections is a consequence of the generality
of the routing fabric. Other disadvantages are “in-
herited” from the traditional usage of RH devices as
glue logic circuits, for example, the cumbersome and
slow programming methodology. These latter disad-
vantages will possibly be overcome by new research
results.

We list disadvantages in order, beginning with the
ones most likely to be easily overcome, and ending
with the ones that seem fundamental.

e Bit granularity: The traditional usage of FP-
GAs for implementing random control logic has
economically favored architectures oriented to-
ward one-bit computations. Synthesizing wide
arithmetic units from one-bit elements results
in slow and large functional units (e.g., a cus-
tom eight-bit adder is much more compact than
eight one-bit adders hooked together). This fact
reflects a trade-off between flexibility and per-
formance. If RH is to be used to accelerate
general-purpose computation, most likely the
balance has to be shifted more toward word-
oriented devices [GSM199, Har01].

Closely related to the granularity of the compu-
tational elements is the flexibility of the routing
resources. When RH is used for computation
the full generality of a fine-grained intercon-
nect is unneccesary since one often only needs
to switch word-sized groups of data. The flexi-
bility of the fine-grained interconnect increases
overhead without increasing usefulness. Thus,
to increase the efficiency of RH for general-
purpose computation the interconnect should be
made less general.

e Special programming languages: The lineage
of RH from random logic is most strongly re-
flected in the similarity of the tools used for
programming both. Most notably, hardware de-
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scription languages explicitly describe the ac-
tivities that should be carried in parallel. In con-
trast, software languages have a more sequen-
tial nature, describing the program as a linear
sequence of actions.

However, if RH is to migrate more toward han-
dling computation, the development environ-
ment used to program RH devices must also
metamorphose. Currently, an active topic of
research is in the determination of how to ef-
ficiently bridge the gap between software lan-
guages on one side and programming tools and
the parallelism available in RH devices on the
other side.

L ong compilation time: The hardware-design
tools used for programming RH devices tend to
use a lot of time (hours and even days) in order
to achieve high-quality results. This trade-off
must be tipped in the opposite way (i.e., lower
quality, but fast compilation), to bring compila-
tion time in line with the expectations of soft-
ware developers.

Limited computational resources. The num-
ber of computational elements in an RH device
is determined at the time of manufacture. Im-
plementing programs that require more than the
available amount of resources is simply not fea-
sible using current technology. In contrast, pro-
cessors store program instructions in memory,
which is cheap and large, and whose capacity
grows quickly with new generations. Moreover,
practical mechanisms for virtualizing the main
memory have been used for over three decades.
Such mechanisms store the data on much larger
disks and use the memory essentially as a large
cache for this data. Using virtualization, even
programs requiring more memory than physi-
cally available can be executed, provided they
have good locality. Nanotechnology promises
to solve or at least severely ameliorate the prob-
lem of limited computational resources: by us-
ing molecular devices, several billion compu-
tational elements can be assembled in a square
centimeter, many more than are currently used
by today’s most sophisticated circuits.
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e Configuration size and configuration loading

time: As we described previously, the size of
the configuration describing the circuit func-
tionality is substantial. Ratios of 100 bits of
configuration for describing a 1-bit computation
are not unheard of. Large configurations require
large storage resources on-chip and, most im-
portantly, require a long time for downloading
the configuration from an external medium onto
the chip.

Configuration size and time can be substantially
reduced by increasing the computational granu-
larity. For example, when using eight-bit com-
putational units, instead of describing the com-
putation of each one-bit functional unit sepa-
rately, eight of them share the same configura-
tion.

The impact of configuration loading time can be
alleviated by implementing chips that allow in-
cremental reconfiguration: only as much of the
chip should be reconfigured as necessary for im-
plementing the desired functionality. Another
practical solution is to completely separate the
electrical interfaces for configuration and exe-
cution. For such chips, while some part of the
chip is being configured, the rest can be used for
active computations [GSM*99, GSB*00].

L ow density and speeds: The flexibility of RH
is offset most seriously by two factors: the re-
duced number of computational units that can
be implemented per unit area, and the slowdown
incurred on the electrical signal crossing multi-
ple switching points. A logic gate in a processor
or custom hardware device is one order of mag-
nitude more compact than a programmable gate
in an RH device. Moreover, substantial space
is wasted for the communication and configura-
tion interconnection networks.

Some CAEN proposals (e.g., [GBO01]) solve
the density problem by using computational

overcome—no effective solutions have yet been
proposed.

Interestingly enough, the low speed of the elec-
trical signals can be construed as an asset of RH
devices in the following sense: RH program-
mers have always had to work with the reality
of slow communication links and have had to
factor the cost of communication into the bal-
ance of the systems. For classical hardware
architects, wires were perceived until recently
as being essentially free. However, the amaz-
ing advances in clock speeds have reached a
limit where the propagation delay of wires is
no longer insignificant [AHKBOO]. Modern de-
signs must accommodate the reality of multi-
cycle latencies for propagating information on
the same chip. Classical microarchitectural de-
signs tend to be monolithic, and therefore break
down, when the latencies of the communica-
tion links become significant. Such architec-
tures will require a major redesign to accom-
modate multiple unsynchronized clock signals
(clock domains). RH devices have therefore
always faced this fundamental problem, which
classical hardware has only postponed.

No I SA: As described in Section 3.2, a proces-
sor is characterized by its instruction set archi-
tecture, that is, the set of operations it can carry.
The ISA is a contract between the hardware and
the software world. The same ISA can be im-
plemented in various ways, but the programs
using it continue to work unchanged. This con-
tract is extremely important for decomposing
the architecture into clean layers.

To date no concept equivalent of an ISA has
been proposed for RH devices. The lack of
an ISA also complicates the task of compiling
high-level languages to such architectures: the
ISA is a very powerful conceptual handle in the
description of programs.

elements and switches which can hold their 5.7 RH and Fault Tolerance

own configuration, without the need for sup-

plemental memory. The overhead in size of A subject where the qualities of RH devices differ
such devices becomes insignificant. The speed considerably from either custom hardware or proces-
overhead, however, is much more difficult to sors is reliability. The “deep” flexibility of the RH
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devices enables the construction of computer sys-
tems which can reconfigure on the fly” to increase
reliability or to manage emerging defects. In this sec-
tion we discuss how the qualities of RH fabrics can
be exploited to build robust systems.

5.7.1 Permanent Defect Tolerance

RH devices have a unique quality, which enables
boosting the yield (see Section 2.5) almost for free:
such chips can be used even when they have a sub-
stantial number of defects.

In an RH device practically all programmable
gates are equivalent, because each can be configured
to implement any functionality. Hence, if some por-
tions of the chip are defective, their functionality can
be assumed by other equivalent portions, by simply
rerouting the connecting wires and changing the con-
figuration of a few gates (see Fig. 26). Given a de-
fect map of a chip, a compiler can use it during the
place-and-route process to avoid defective zones and
implement perfectly functional circuits using faulty
RH. The success of this approach has been demon-
strated by the Teramac project [HKSW98] (see be-
low).

5.7.2 Sdf-Testing

Once the defective parts of a chip are known, they
can be circumvented. This can occur, for instance, by
using defect-aware place-and-route tools or by shift-
ing parts of the configuration based on the regularity
of the chip geometry.

We have not yet explained how defect positions
are discovered. For defect discovery we need a test-
ing mechanism which can circumscribe precisely the
defective regions. This task is not a simple one be-
cause there are few ways of probing a chip.

Testing would be trivial if we could test the indi-
vidual components. In general, the testing strategy
should satisfy the following constraints [MG02]:

e it should not require access to the individual
components
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e it should scale slowly with the number of de-
fects

e it should scale with fabric size, so that testing
does not become a bottleneck in the manufac-
turing process

The solution is to use the programmability of the
chip to implement self-testing computations. These
are simple computations that can be applied selec-
tively to small parts of the chip. For example, by
testing on rows and columns one can precisely assign
defects to the intersections of the rows and columns
that give wrong results.

RH can be designed to ease the self-testing by us-
ing built-in self-testing (BIST). Complex architec-
tures have been devised which can carry complex
self-tests [SKCA96, SWHA98, WT97] without an
external entity controlling reconfiguration.

An important advantage of BIST is that it allows
the testing procedure to be carried out on many parts
of the chip simultaneously, reducing the time needed
to build the defect map. This is especially important
for very large chips, with billions of components,
where a sequential testing process would last an in-
ordinate amount of time.

5.7.3 Teramac

How effectively RH devices can provide fault tol-
erance has been demonstrated by the Teramac
project [HKSW98]. Teramac is built RH devices—
thousands of which are faulty—and interconnected
by a very rich network. Although more than 70% of
the RH devices contain some sort of defect, Teramac
performs flawlessly.

The key idea behind making Teramac work is that
reconfigurability allows one to find the defects and
then to avoid them. Before Teramac can be used,
it is first configured for self-diagnosis. The result
of the diagnosis phase is a map of all the defects.
Then, one implements a particular circuit by config-
uring around the defects.

Place-and-route tools for Teramac have been mod-
ified to take into consideration the defect map.
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Figure 26: Place and route can avoid chip defects.
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For the end-user the presence of defects is practi-
cally invisible: self-testing and construction of the
defect map, together with automated defect-aware
place-and-route, constitute a highly effective fault-
tolerance method.

In some sense, Teramac introduces a new manu-
facturing paradigm, one which trades off complexity
at manufacturing time with postfabrication program-
ming. The reduction in manufacturing time com-
plexity makes RH fabrics a particularly attractive ar-
chitecture for CAEN-based circuits, since directed
self-assembly will most easily result in highly reg-
ular, homogeneous structures.

57.4 Test While Run

Postmanufacturing testing can be extended to allow
for continuous testing of the device, even during nor-
mal operation. Such devices devote most of the chip
area for the main computational task, while a fraction
is used for self-testing, in the way described above.

Execution is periodically interrupted and the test-
ing circuitry swaps places with some of the com-
putation; wires are rerouted to connect the dis-
placed circuits correctly, and then computation re-
sumes [ASH'99]. When self-testing discovers
faulty areas, these are marked as invalid and never
used again.

This procedure allows for an extreme robustness
against defects even when they appear during sys-
tem operation. As long as there is enough space to
accommodate the computation and testing, the chip
can function even if new defects appear. The cost of
this scheme is the area devoted for testing purposes
and the time spent for reconfiguration when new chip
tiles begin self-testing.

5.7.5 Dynamically Adjustable Fault-Tolerance

The configurability of RH enables it to dynamically
change the technique applied for increasing redun-
dancy [SKGOO0]: for example, when an increasing
number of faults is detected, the chip can be recon-
figured to carry a higher number of redundant com-
putations. If transient faults are predominant, tests
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can be carried out using temporal redundancy. When
noncritical computations are being carried out, no re-
dundancy need be used at all.

6 Molecular Circuit Elements

We turn now to an examination of the basic devices,
wires, and fabrication methods available for con-
structing molecular electronic computing devices.
Our primary focus is on chemically assembled elec-
tronic nanotechnology.

CAEN takes advantage of chemical synthesis
techniques to construct molecular-sized circuit el-
ements, such as resistors, transistors, and diodes.
Chemical synthesis can inexpensively produce enor-
mous quantities (moles) of identical devices, or it
can be used to grow devices in situ. The fabricated
devices are only a few nanometers in size and ex-
ploit quantum mechanical properties to control volt-
age and current levels across the terminals of the de-
vice. These molecules are smaller than the physical
feature-size limit that can be produced using silicon.
Significantly, the operation of these devices requires
only tiny amounts of current, which should result in
computing devices with low power consumption.

CAEN devices will be small—a single switch
for a random access memory (RAM) cell will be
approximately 100 square nanometerst’ compared
with 100,000 nm? for a single laid-out transistor®
To construct a simple gate or memory cell requires
several transistors, separate P- and N-wells, etc., re-
sulting in a density difference of approximately one
million between CAEN devices and CMOS. Since
very few electrons are required to switch these small
devices, they also use less power.

\We assume that the nanoscale wires are on 10 nm centers.
This is not overly optimistic—single walled nanotubes have di-
ameters of 1.2 nm and silicon nanowires of less than 2 nm have
already been constructed.

®Even in Silicon-on-insulator where no wells are needed, in a
70 nm process, a transistor with a 4:1 ratio and no wires attached
to the source, drain, or gate measures 210 nm x 280 nm. With
just a minimal sized wire attached to each, it measures 350 nm
x 350 nm.
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In this text we largely limit our discussion to
molecular devices that have I-V1° characteristics
similar to those of their bulk counterparts even when
a different mechanism is used to achieve the effect.
For example, while the mechanism of rectification
is different in a silicon-based P-N junction diode
from a molecular diode, they both have similar I-
V curves [AR74]. There are two reasons why we
choose to examine systems that can be built from
nanoscale devices with bulk-semiconductor analogs:
(1) we can apply our experience with standard cir-
cuits and (2) we can model the system with standard
tools such as SPICE [QPNT02].

Molecular-scale devices alone cannot overcome
the constraints that will prove limiting for CMOS un-
less a suitable, low-cost manufacturing technique is
devised to compose them into circuits. Since the de-
vices are created separately from the circuit assem-
bly process, localization and connection of the de-
vices using a lithographic-like process will be very
difficult. We must therefore seek other means. Con-
necting the nanoscale components one at a time is
prohibitively expensive due to their small size and
the large number of components to be connected.
Instead, economic viability requires that circuits be
created and connected through self-assembly and
self-alignment.

6.1 Devices

While molecular devices of all types have been cov-
ered in other sections of this encyclopedia x & v,
here we examine their effect on the kinds of com-
puting devices that can be built. We examine devices
that have direct analogs to bulk devices (e.g., diodes,
resistors, transistors, resonant tunneling diodes), as
well as devices that have no direct counterpart (e.g.,
molecular switches). While this is not an exhaustive
list of molecular devices, it serves to illustrate the
important properties of molecular-scale devices.

®Devices are often characterized by the amount of current (1)
they conduct based on the voltage (V) across their terminals. An
I-V curve is a graph of the current versus the voltage.
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Figure 27: Characteristic curve of a molecular negative
differential resistor.

6.1.1 Diodes

A diode is the simplest nonlinear device. It con-
ducts current in only one direction. In 1974, Avi-
ram and Ratner published the first paper on a molec-
ular device. They described a theory which predicted
that molecules could behave like diodes. The the-
ory is that molecular diode rectification occurs due
to through-bond tunneling between the molecular or-
bitals of a single D-o-A molecule. In such a system,
electrons flow easily from the donor (D) toward the
acceptor (A) through the covalent bond (o), but not
vice versa [AR74]. Since that time, molecules which
show rectification have been constructed [Met99].
Additionally, researchers have developed molecular-
scale diodes based on the Schottky effect. From a
circuit design perspective, the two most important
characteristics of these devices are their turn-on volt-
age (i.e., when they start conducting in the forward
direction) and the amount of current that flows in
the reverse direction. A perfect diode would start
conducting in the forward direction immediately and
would conduct no current in the reverse direction.
As we shall see later (in Section 8.1), the lower the
turn-on voltage, the more useful the device. Unlike
silicon-based diodes, molecular diodes have turn-on
voltages of less than 0.7 V and forward to reverse ra-
tios of several thousand to one [ZDRJI97]. However,
since diodes have no gain, they are not sufficient to
build large circuits.

Another molecular device of interest is the res-
onant tunneling diode (RTD), which is often re-
ferred to as a negative differential resistor (NDR)
in the molecular device literature. Resonant tunnel-
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ing diodes are two-terminal devices that have a re-
gion of negative resistance (see Fig. 27). The NDR
effect is seen in a variety of molecules, most no-
tably [CRRT99, CR00]. Solid-state RTD-based cir-
cuits have a long history [AS62], but were essen-
tially abandoned when transistors became the work
horse for circuits. The key feature of an RTD is a
region of NDR, where the tunneling current falls as
the voltage increases. The ratio of the current at the
beginning of the NDR region to the current at the
end is called the peak-to-valley ratio (PVR). An addi-
tional important characteristic of an RTD is the resis-
tance of the device. Lower resistance leads to faster
switching times. While molecular circuits based on
RTDs include basic logical operations [ELOO] and
latches [RG02, NF02], they alone cannot be used
to construct large circuits. Although they can be
connected in ways that introduce gain into a circuit,
without additional devices they do not provide any
I/0 isolation. In Section 8.3, we discuss their use in
building latches and describe how to introduce 1/0
isolation.

6.1.2 Transistors

As discussed in Section 2.3, transistors are suffi-
cient to construct large circuits. There has been
significant recent progress in developing molecular
transistors.  Transistor-like behavior has been re-
ported in many different kinds of organic and inor-
ganic molecules. In fact, Wind et al. [WAM™"02]
have reported on a nanotube transistor with twice the
current carrying capability of silicon-per-unit width.
One advantage of this device is that the gate is lo-
calized to the device (i.e., it does not use back-
gating).2® Therefore, more than one device can
be present on the substrate. Many other impres-
sive results have been reported on molecular transis-
tors [BHNDO1, HDC*01a, DMAAO01]. All of these
devices report gain of more than one, have large cur-
rent carrying capability, and localized gates. Addi-
tionally, some of the reported work has developed
both P-type and N-type transistors, allowing com-

2|n back-gating the gate that controls the device is the entire
substrate on which the device is fabricated. Therefore, when
back-gating is used, all the back-gated devices are controlled by
a single gate—the substrate.
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plementary logic to be developed. This last fact is
important for building circuits with reduced power
requirements. It would therefore seem that these de-
vices would be perfect for building molecular elec-
tronic devices. However, assembling them into a cir-
cuit is a significant remaining challenge, which we
discuss below.

6.1.3 Switches

Molecular switches, unlike the previous components,
are devices that have no single bulk analog. A switch
is a device that can be programmed to be either
highly resistive (open) or highly conductive (closed).
Molecular switches have already been demon-
strated [CWBT99, CWRT00]. We focus here on
the psuedo-rotaxane developed at UCLA [CWB*99,
BCKS94, MMDS97] (see Fig. 28). The psuedo-
rotaxane is a two-terminal device which can be
viewed as a rod surrounded by a ring. Four voltage
points are used to operate this device: program-off,
signal-low, signal-high, program-on. The program-
ming voltages cause the device to change state. The
signal voltages, which have a lower absolute mag-
nitude than the programming voltages, are used to
operate the circuit. Programming is achieved using
a high voltage differential applied to the two termi-
nals, causing the ring to move to either the left or
the right of the rod, depending on the voltage sign.
When the ring is at one end of the rod, the molecule
behaves like a wire with relatively low resistance.
When the ring is at the other end, the device behaves
like an open switch (i.e., it has very high resistance).
When in series with a diode, this behaves like a pro-
grammable diode: when the ring is at one end the
ensemble is an open connection, when on the other
end it behaves like a diode. It is, of course, crucial
that the signal voltages remain less than the program-
ming voltages. Otherwise, the device will have its
state unintentionally changed.

There are two reasons why molecular switches are
particularly well suited for reconfigurable comput-
ing. First, the state of a switch is stored in the switch
itself. Second, the switch can be programmed us-
ing the signal wires (i.e., there is no need for ad-
ditional programming wires). For the rotaxane de-
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Figure 28: A diagram of a psuedo-rotaxane in series with a diode. When the ring is at the right it has low resistance
(i.e., it is a conductor), when at the left it has high resistance (i.e., it is an open circuit). Adapted from Ref. [Sto] with
permission J. Stoddart, http://www.chem.ucla.edu/dept/Faculty/Stoddart/research/mv.htm.

scribed above, the state is stored in the spatial lo-
cation of the ring. Under operating conditions the
ring position is stable. On the other hand, a CMOS-
based reconfigurable device requires a static RAM
cell to control each pass transistor. When the molec-
ular fabric is compared to a CMOS fabric using a 6-
transistor static RAM cell to control a pass transistor,
we see that a reconfigurable fabric will be at least 1(f
times as dense using molecular electronics. In addi-
tion, CMOS reconfigurable circuits require two sets
of wires: one for addressing the configuration bit and
one for the data signal.

Perhaps a more apt comparison is between molec-
ular switches and floating-gate technology, which
also stores the configuration information at the tran-
sistor itself. A floating-gate can also be used to cre-
ate a programmable logic array. Because it requires
high voltage for programming, a floating gate tran-
sistor is slightly larger than a standard transistor. Its
large size makes it, at most, one order of magnitude
more dense than the RAM cell, still giving CAEN-
based devices a density factor advantage of roughly
10°. Moreover, floating-gate transistors act as bidi-
rectional devices and therefore are less useful than
the molecular switches which can incorporate recti-
fication, acting as diodes.

Another example of a configurable device is a
configurable transistor. Fig. 29b shows a schematic
of a configurable transistor formed at the intersec-
tion of two wires similar in spirit to that reported
in [RKJ*00]. Unlike the example shown in Fig. 29a,
this device behaves like a transistor when the wires
are in physical contact and behaves like two nonin-
tersecting conductors when the wires are detached.
The configuration mechanism is not a conforma-
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tional change in a molecule, but rather a conforma-
tional change in the wires. By putting an attractive
electrostatic charge on the two wires, they will come
together. They will then stick together due to van der
Waals forces.?! They can be separated by putting a
repulsive electrostatic charge on the wires.

6.2 Wires

A single device, while interesting, is not useful un-
less assembled in a circuit. Connecting nanoscale
devices together requires nanoscale wires. The pri-
mary requirement on a wire is that it quickly trans-
mits (without significantly distorting) a signal from
one device to another. Such wires exist and have
been made from many different materials, including
various metals [PRS*01], silicon [KWC*00], poly-
mers [EL00], and carbon nanotubes [SQM*99]. In
addition to the wire, there must be a means for con-
necting the wire to the device. The connection, or
contact, between the wire and the device must also
have low signal distortion.

Nanoscale wires can do more than simply con-
duct, they can also be active devices themselves.
For example, carbon nanotubes with diode-like
and transistor-like behavior [HDC*01b] and silicon
nanowires with transistor-like behavior [CDHLO00]
have been reported. Another example of wires with
active devices are metallic wires which are grown
using electrochemical deposition. The fabrication
process also allows different materials to be used in

ZThe van der Waals force acts to pull atoms (or molecules)
together. It is inversely proportional by the seventh power to
distance between the atoms. Clearly this force is only important
on the nanometer scale.
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Figure 29: Creating transistors between two wires: (a) fixed and (b) configurable transistors.

the growth of the wire. In addition to making wires
with different metals [PRS*01], they can also grow
wires with inline molecules [KMM*01, MMK ™02,
KMM™02]. This technique allows molecules ex-
hibiting rectification, switching, and transistor-like
behavior to be incorporated into a wire. In Sec-
tion 8.3, we show how this technique aids in the con-
struction of a molecular latch. In the end, CAEN
blurs the traditional distinction between wires and
devices.

Evaluating nanoscale wires is very difficult be-
cause the wire/contact/device system is highly in-
tertwined. In fact, some theorize that the nonlinear
behavior of molecules is actually a combined effect
between the molecule and the contact [Hip01]. How-
ever, we can at least characterize the system by the
resistance of the wire and the coupling capacitance
between neighboring wires and potentially the sub-
strate on which the circuit is built. In the best case,
the wire behaves like a one-dimensiional quantum
wire (i.e., transports electrons ballistically, having a
length-independent resistance). It is theorized that
carbon nanotubes behave in this manner.

Their conductance (the inverse of resistance) is ex-
pressed in units of ¢?/h [Lan57]?% and a perfectly
conducting nanotube would have a conductance of
4e?/h or a resistance of approximately 6.5 kQ in-
dependent of its length. This roughly agrees with
measurements made for carbon nanotubes by Soh,
et. al. [SQM™99], in which they measured resis-
tances for both the contacts and a nanotube as low
as 20 k2. Using this resistance we can determine a
rough lower bound on the RC?® delay of a molec-

22; js the charge on an electron, A is Plank’s constant.
2RC is the product of a circuits resistance (R) and its capaci-
tance (C). It indicates the rate at which the circuit can change its
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ular computing device; which determines an upper
bound on the speed of such a device. Even ignor-
ing the quantum capacitance, the RC delay for 1 mi-
cron long wires placed at a 10 nm pitch is .24 ps;
at 100 nm pitch it is .13 ps. The relatively long RC
constant is due to the high resistance of the nanotube.

Equally as important as the electrical characteris-
tics of the wires and the contacts is the method by
which the wire is constructed and the contacts are
made. In CMOS-based systems, the wires and con-
nections are made using photolithography. This al-
lows the wires, devices, and connections to be man-
ufactured at the same time, in the same place. This
will not be true of molecular systems. In molecu-
lar systems the devices will be made separately from
the wires and they will then be connected together.
The next task is to make the connections economi-
cally, yet with high reliability. The ability to achieve
this will significantly influence the kinds of struc-
tures that can be built using molecular devices.

7 Fabrication

Molecular-scale devices cannot themselves over-
come the constraints that will prove limiting for
CMOS unless a suitable, low-cost manufacturing
technique can be devised for composing them into
circuits. For devices created separately from the
circuit assembly process, localization and connec-
tion of the devices using a lithographic-like pro-
cess will be very difficult. Other means must be
sought. Connecting the nanoscale components one
at a time is prohibitively expensive due to their

value. After RC time units the circuit can charge (or discharge)
to approxiamitly 2/3 of its final value.
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small size and the large number of components
to be connected. Instead, economic viability re-
quires that circuits be created and connected througt
self-assembly and self-alignment. Several groups
have recently demonstrated CAEN devices that are
self-assembled, or self-aligned, or both [CWB'99,
MMDS97, RKJ*T00, AN97]. Advances have also
been made in creating wires out of single-wall car-

() (b) (©) (d) (

e)

bon nanotubes and aligning them on a silicon sub

strate [TDD197, PLP199]. More recently, selective
destruction has been used to create desired carbor
nanotube structures [ACAO0L]. In addition, metal-
lic nanowires have been fabricatec®* which can scale
down to 5 nm and can include embedded devices or
device coatings [MDR™99, MRM*00].

While other sections (see especially Sections X
and Y) in this encyclopedia detail the many differ-
ent assembly techniques, here we review some of
the techniques in light of their impact on the cir-
cuits and architectures that can be created. Mass as-
sembly techniques range from top-down approaches
such as photolithography, to bottom-up approaches
such as self-assembled monolayers. For reasons
stated earlier, we limit ourselves to chemically as-
sembled electronic nanotechnology (i.e., to bottom-
up approaches).

7.1 Techniques

Bottom-up, scalable techniques include Langmuir-
Blodgett films, flow-based alignment, nanoim-
printing, self-assembled monolayers, and catalyzed
growth. The common feature among all these tech-
niques, with the possible exception of nanoimprint-
ing,?® is that they can only form simple structures
(i.e., either random or very regular, but not complex
aperiodic). An additional characteristic is that the re-
sulting structures usually contain some defects (i.e.,
the results are not perfect). Finally, it is not possible
to predetermine exactly where a particular element

Z*Unlike wires created in traditional processes—i.e., lithogra-
phy, these wires are “grown” in nanopores.

»Nanoimprinting has been used successfully to create irreg-
ular structures. However, the process of creating masters com-
bined with direct contact printing may limit the smallest achiev-
able pitch to above 100 nm [XRPW99]. Further, it will be diffi-
cult to precisely align the master with the target.
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Figure 30: Different defect scenarios using flow-based
assembly.

will be located in the structure. That is, one cannot
deterministically assemble an array of different types
of wires into a particular aperiodic pattern.

To date, the most complex structures made using
scalable bottom-up techniques are two-dimensional
meshes of wires.?® For example, fluidic assem-
bly was used to create a two-dimensional mesh
of nanowires [HDW'01]. The nanowires are sus-
pended in a fluid that flows down a channel. The
nanowires align with the fluid flow and occasion-
ally stick to the surface they flow over. By varying
flow rate and the duration of the flow they were able
to vary the average spacing between wires and the
density of wires. Further refinements can be made
by patterning the underlying substrate with different
molecular end-groups to which the nanowires will
show preferential binding. By performing the flow
operation twice, first in one direction and then in the
orthogonal direction, arrays of wires at right angles
can be formed.

The above method points out the possibilities and
the limitations of bottom-up assembly. On the pos-
itive side, one can form one-dimensional arrays and
two-dimensional meshes of nanowires (Fig. 30a and
f). Negatives to this method include its imprecision
and its lack of determinism. Wires will rarely all be

% An exception exists for the recent advances in DNA-based
assembly (e.g., [WLWS98, Mir00, NPRGT02]). DNA-based as-
sembly has been known to create ordered structures with hetero-
geneous materials. However, DNA-based methods are even less
developed than the methods we explore here.
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equidistant from each other (Fig. 30b). Wires that
should be parallel may intersect (see Fig. 30c) or be
askew (Fig. 30d). The wires may be parallel but may
be offset from each other (Fig. 30e). The resulting
arrays may contain shorts (see Fig. 30c) or open con-
nections (see Fig. 30g and h). Finally, the technique
can never deterministically arrange the wires in the
channel. Thus, it cannot produce a complex aperi-
odic arrangements of the wires.

7.2 Implications

The use of self-assembly as the dominant means
of circuit assembly imposes the most severe limita-
tions on nanoscale architectures: it will be difficult
to create either precise alignment between compo-
nents or deterministic aperiodic structures. Chemi-
cal self-assembly, as a stochastic process, will pro-
duce precise alignment of structures only rarely, and
manipulation of single nanoscale structures to con-
struct large-scale circuits is impractical at best. Fur-
thermore, the methods used to assemble nanoscale
components are most effective at creating random or,
at best, crystal-like structures. These two facts have
significant implications on the kinds of circuits and
structures that can be realized at the time of fabrica-
tion.

The structural implications of bottom-up assembly
are:

Connections by overlapping wires. Lack of pre-
cise alignment means that end-to-end connec-
tions between groups of nanoscale wires will be
near impossible to achieve. If all connections
between nanoscale wires occur only when the
wires are orthogonal and overlap, we reduce the
need to precisely align the wires.

Two-terminal devicesare preferred: The easiest
devices to incorporate into a circuit will be
devices with two terminals (e.g., diodes, con-
figurable switches, and molecular RTDs). In
the case of wires that do more than conduct
(e.g., carbon nanotube diodes), then when two
wires intersect, they create an active device
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between them out of topological necessity?’ If
a molecule is required, then it can be assembled
onto one of the wires and then where that wire
and another wire intersect an active device will
be formed at the intersection. The device will
consist of the first wire, the molecule attached
to that wire, and the second wire where it
touches the molecule on the first wire. Or, in
the case of inline devices, one terminal of the
molecule is assembled onto the end of the wire
as it is grown and then the growth of the wire
is resumed, making the other connection to the
molecule. In all three cases, there is no need
for precise or end-to-end connections because
devices are incorporated into the circuit out
of topological necessity. A harder problem is
using three-terminal devices (e.g., molecular
transistors). It will likely prove extremely
difficult to attempt the connection of three
wires to a molecular transistor en masse at the
nanometer scale. One possible solution is to
arrange for the intersection of the two wires to
be the gate of the device. We saw an example
of this earlier in Fig. 29.

Active components at cross-points. The most reli-
able way to make device connections will be to
generate them at the intersection of two wires.
Such devices can be either two-terminal de-
vices, as described above, three-terminal de-
vices (e.g., [HDCT01b]), or four-terminal de-
vices. In the latter two cases care must be
taken to ensure that enough heterogeneity can
be introduced into the circuit to utilize the de-
vices. Practical foreseeable nanocomputer de-
signs will therefore have to rely on the place-
ment of active components at the intersections
of wires.

Meshesare basic unit: The methods used to as-
semble wires combined with the method of
creating active devices implies that the basic
structural unit will be a two-dimensional mesh.
More complicated structures will have to be cre-
ated either by combining meshes together, or

2'By topological necessity we mean that the outcome is a di-
rect result of the geometric arrangement. In this case, the inter-
section of two wires creates, simply by being a point of intersec-
tion, an active device.
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cutting the wires in a mesh to break it up into
subarrays.

Rather than attempting to eliminate all the
defects completely with manufacturing tech-
niques, we will also rely on postfabrication

Nanoscale to microscale connections will haveto besparsqg;los that allow the chip to work in spite of its

A direct implication of the size difference be-
tween the nanoscale and the microscale is
that connections between the two will have
to be few. If there are many connections
between the two worlds, then the density of
the nanoscale components will be dictated by
the density of the microscale. For example,
using a demultiplexer to connect micronscale
wires to nanoscale wires would allow at any
particular instant 1 of n nanoscale wires to be
addressed using log, n micronscale wires. As n
grows large, the nanoscale wires dominate the
device, not the micronscale wires. We describe
several different approaches for interfacing
micronscale devices with nanoscale devices in
Section 7.3.

The architectural implications of molecular elec-
tronics and self-assembly are:

Fine-grained reconfigurable: The most likely as-
sembly processes are best at creating crystal-
like structures (e.g., 2D meshes). Therefore, the
resulting structures cannot directly implement
a complex, aperiodic circuit. To create useful
aperiodic circuits will require that the device be
configured after it is manufactured.

Defect tolerance: The stochastic process behind
molecular self-assembly will inevitably give
rise to defects in the manufactured structures.
Instead of defect densities in the range of one
part per billion (as one gets in silicon), we ex-
pect defect densities for CAEN to be as high as
a few percent. The architecture will have to be
designed to include spares which can be used
in place of defective components. Another use-
ful design criterion will be to ensure that when
a set of components is assembled into a larger
structure (i.e., wires into parallel wires), that the
individual components are interchangeable. For
example, in a set of parallel wires, it should not
matter a priori which working wire is used to
implement a particular circuit.
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defects. A natural method of handling the de-
fects, first used in the Teramac [CACT97] (see
Sections 4.5.2 and 5.7.3), is to design the device
to be reconfigurable and then exploit its recon-
figurable nature. After fabrication, the device
can be configured to test itself. The result of
testing could be a map of the device’s defects.
The defect map can then be used to configure
the device to customize the device to implement
a particular function.

Locality: As devices and wires scale down to
molecular dimensions, the wires become an in-
creasingly important part of the total design.
This is true not only of molecular computing but
also of end-of-the-roadmap CMOS. Architec-
tures with significant locality (and thus the abil-
ity to communicate most frequently over shorter
wires) will have an advantage.

7.3 Scale Matching

As we mention above, every nanoscale component
cannot be connected to a micronscale component or
the density of the overall system would be dominated
by the micronscale components. However, all the
currently proposed architectures require some con-
nections to the micronscale. The connections are
used for a variety of purposes, including connections
to CMOS transistors for signal restoration and con-
nections to wires for circuit inputs, power, ground,
and the clock for the nanoscale circuits. Addition-
ally, all the reconfigurable architectures require pro-
gramming signals which must be routed to every re-
configurable switch. For arrays, this requires ad-
dressing individual cross-point in the array. Since
the programming signals originate in the micronscale
world, it would seem that we need to connect every
nanoscale wire to a micronscale wire.

Consider the array of wires in Fig. 31. If we had to
bring in programming signals on micronscale wires
to all the nanoscale wires simultaneously we could
not escape the need to connect each of these wires to
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Figure 31: An array of nanoscale wires with pro-
grammable molecules at each cross-point. To program a
single cross-point, we ensure that the voltage difference
between its row wire and its column wire is greater than
the programming voltage. All the other wires are kept at
zero. The result is that the cross-points that are not being
programmed will have voltage drops of less than half the
programming voltage.

a micronscale wire. Luckily, we only need to address
a single wire in a row and a single column at a time.
By raising a single row to half the programming volt-
age and lowering a single column by half the pro-
gramming voltage, we have created the proper volt-
age differential at a single cross-point. By repeating
this for each cross-point we can configure the entire
array.

Since we only need to raise (or lower) a single
wire (in each dimension) at a time, we can use a de-
multiplexer to select the nanoscale wire. A demul-
tiplexer (demux) connects a single input line to one
of n output lines based on an address input. If we
encode the address in binary, then we can select one
of n outputs with just log, n address lines. If the ad-
dress lines and the input line are micronscale wires,
then we can connect a single micronscale wire to one
of n» nanoscale wires using only 1 + log, n micron-
scale wires. Since the address lines grow with the
log of the output lines, the ratio of nanoscale wires
to micron scale wires grows as ﬁ. If this ratio
is greater than the ratio of the micron to nanoscale
pitches, then we will not adversely affect the pitch
of the nanoscale wires using a multiplexer. If the
nanoscale array has 64 rows and columns, and the
pitch is 10 nm, then the array will be 640 nm x
640 nm. This would require two 6:64 demuxs. If
the micronscale pitch is 100 nm, then it would be
perfectly pitch matched.
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Figure 32: A possible implementation of a 3:8 demul-
tiplexer. The broad lines are micron scale input and ad-
dress lines. The thin lines are nanoscale lines. These con-
nections between vertical nanoscale lines and horizontal
nanoscale lines are not necessary to the operation of the
demux.

Fig. 32 shows a possible implementation of a 1:8
demux. In this implementation each address line
is implemented in both its true and complemented
form. If the address line is driven high, a logical
“1,” then the transistors connected to the address line
are turned on, the ones on the complemented line
will remain off. In this way, one of the eight ver-
tical lines will connect the input line (on the top of
the figure) to the bottom of the selected wire. In
the figure we have also connected the vertical lines
to horizontal nanoscale lines, therefore we are able
to connect the horizontal micronscale input line to
one of the horizontal nanoscale lines at the bottom
of the figure. The area introduced by the demux is
((2logy n)pm)(npy), where p,, is the micronscale
pitch and p,, is the nanoscale pitch. As the number
of nanoscale wires, n, grows large, the overhead for
making the connection becomes small.

The demultiplexer above requires precise align-
ment of the nanoscale and micronscale wires. As we
have argued above, such alignment will be difficult
achieve. In [WKO01], the authors describe a method
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Figure 33: A demux formed using random connections
between the micronscale wires and the nanoscale wires.

for constructing a demultiplexer which requires sub-
stantially less precision. In fact, as far as layout is
concerned, it requires only that the nanoscale wires
and the micronscale wires are laid out orthogonally.
The connections between the wires are made us-
ing gold particles that are deposited randomly. The
gold particle, when in contact with the nanoscale
wire, creates a transistor at the point of contact with
the gold particle acting as the gate. Fig. 33 shows
schematically what might result for a demux with
eight outputs and six address lines. The gold par-
ticles are assembled onto the microscale wires re-
sulting in a randomly distributed collection of par-
ticles. The micronscale wires will act as the address
lines in the demultiplexer. A mesh is then created so
that the nanoscale wires being addressed overlay the
gold particles. Each nanoscale wire will now con-
nect, through the gold particles, to a subset of the
micronscale wires.

If we can ensure that each nanoscale wire con-
nects to a different set of micronscale wires, then
the nanoscale wires can be individually addressed by
the micronscale wires. Of course, we do not know a
priori which nanoscale wire will be selected by any
given address on the micronscale wires. We do not
even know that only one wire will be selected at a
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Figure 34: A representation of an optically addressed
single-wire demux. This example shows a symmetric
single-wire demux that can be programmed with three dif-
ferent frequencies of light.

time. This is not as important as it seems as either
(1) we may not care which wire is selected as long as
only one is selected or (2) we can determine which
one is selected postfabrication. As the number of ad-
dress lines increases, the chances that each nanoscale
wire will have a different address increases. For ex-
ample, 4 log, n address lines can address n different
nanoscale wires with 50% probability. Furthermore,
the mapping of addresses to selected outputs can be
determined in O(logn) time [WKO01].

A demultiplexer essentially trades space for time.
With direct connections between the nanoscale and
the micronscale all n nanoscale wires can be con-
nected at once. However, the total area used for such
connections scales with n. With a demultiplexer only
one connection can be made a time, reducing the
bandwidth between the nanoscale and the micron-
scale by a factor of n, but reducing the area required

n
y log, n*

Another alternative, that trades both more power
and more time for space than the demultiplexers
above is to use a wire which can have the length of
its conducting region configured in a circuit. We call
such a wire a single-wire demux (SWD). A SWD is
not as general as the demultiplexer but can be used
for addressing configuration bits in a nanoscale array.
It can be configured to address a subset of the wires
to which it is orthogonal. Fig. 34 shows an exam-
ple of an optically addressable SWD. At the cost of
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Figure 35: How a SWD might be used to program the
individual cross-points of an array.

some power, two SWDs can be used to individually
address a single wire out of a set of parallel wires (see
Fig. 35). As opposed to the demultiplexer above, this
scheme uses more time, more power, and requires
light. However, it only needs a constant amount of
area. For small sets of wires, it will take consider-
ably less area than the demultiplexer, which scales
with the log of the number of wires being addressed.

7.4 Hierarchical Assembly of a Nanocom-
puter

Bottom-up assembly implies, by definition, a hier-
archical approach to assembling complete systems.
Having described some of the basic fabrication prim-
itives, we now describe a plausible process for con-
structing a molecular integrated circuit. The pro-
cess, a hybrid of molecular self-assembly and litho-
graphically produced aperiodic structure, is inexpen-
sive yet creates structures out of nanoscale compo-
nents. At the nanoscale, all subprocesses are self-
directed. Only at the micronscale do we allow de-
terministic operations. The process is hierarchical,
proceeding from basic components (e.g., wires and
switches), through self-assembled arrays of compo-
nents, to complete systems.

In the first fabrication step, wires of different types
are constructed through chemical self-assembly in

59

bulk. Some of these wires may be functionalized,
either by coating their exterior or by including in-
line devices along the axis of the wire. The next
step aligns groups of wires into rafts of parallel wires
using flow techniques [HDW'01]. Two rafts can
be combined to form a two-dimensional grid us-
ing the same flow techniques. The active devices
are created wherever two appropriately functional-
ized wires intersect. By choosing the molecules that
coat the wires appropriately, we can make the inter-
section points ohmic contacts, diodes, configurable
switches, or other devices. No precise alignment is
required to create the devices, they occur wherever
the rafts of wires intersect.

The resulting grids will be on the order of a few
microns in size. A separate process will create a
silicon-based die using standard lithography. Note,
however, that this lithographic process does not have
to be “state-of-the-art” since the CMOS components
are few and far apart. The circuits on this die will
be used to support the nanoscale components. They
might include wiring for power, ground, clock lines,
interface logic to communicate to the outside world,
and support logic for the grids of devices. The
previously created grids can then be aligned to the
substrate using either techniques such as flow-based
techniques or electromagnetic alignment [SNJ*00].

At this point a crystal-like structure has been cre-
ated composed of simple meshes. In order for this
device to perform useful logic it will have to be cus-
tomized. A combination of reconfigurable switches
and wire cutting can be used to customize the sim-
ple meshes into complex aperiodic circuit elements.
Wire cutting allows a wire to be selectively broken
into two pieces [WKHO1]. A high voltage is applied
at a cross-point which over oxidizes one of the wires.
Due to the small diameter of the wire to be cut, the
over-oxidation will consume the wire at the cross-
point. This results in two disconnected wires.

The resulting device is a reconfigurable fabric, as
described in Section 5. Once the device is manufac-
tured, it is tested using techniques described in Sec-
tion 10. The result of the testing phase is a defect
map that is used to avoid the defects in the device.
Finally, when the device is used, the desired circuit is
loaded onto the device through a configuration. The
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end effect of reconfiguration is a customized, aperi-
odic circuit which can perform a useful function.

The important features of this scenario are that
it is based on both fairly random self-assembly at
the molecular level (the assembly of the rafts and
the wires), and deterministic assembly at the litho-
graphic scale (the placement of the rafts on the
CMOS die). It is defect tolerant due to its recon-
figurability. It has no end-to-end connections at the
nanoscale. All wire connections are made at the in-
tersections of wires.

8 Circuits

The easiest molecular electronic devices to use are
those with only two terminals. Such devices can be
incorporated into a molecular circuit at the intersec-
tion of two wires. However, designing circuits with
only two-terminal devices is a challenge. Currently,
there are no known two-terminal devices that in and
of themselves provide I/O isolation, gain, or even in-
version. Therefore, any circuit design methodology
will have to create logic functions without these ben-
efits or else find equivalent primitives through col-
lections of the two-terminal devices. If molecular
circuits are to scale beyond toy designs, then at some
point in the circuit, isolation and gain will have to be
introduced.

In this section we reintroduce an old logic de-
sign methodology for two-terminal devices: diode-
resistor logic. Diode-resistor logic allows for the cre-
ation of AND and OR gates. The logic family is
made complete (in the sense of Section 2.2) by pro-
viding, at the inputs to the circuit, both the inputs
and their complements. We then describe a method
for introducing gain and I/O isolation using molecu-
lar latches based on the NDR molecules described in
Section 6.1.

8.1 Diode-Resistor Logic

Without transistors as the active elements, we are
reduced to using an older form of circuit design,
diode-resistor logic. Diode-resistor logic is a form
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A output
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(a) AND gate (b) OR gate

Figure 36: Implementations of an AND and an OR gate
in diode-resistor logic.

of threshold logic that relies on the fact that diodes
only allow current to flow in one direction.

Fig. 36a shows an AND gate implemented with
diode-resistor logic. We call the voltage drop across
the diode Vdrop- If input A is grounded and B is
set equal to Vg, current will flow through the diode
connected to A and there will be a voltage drop of
(Vid — Vdrop) across the resistor. Note that there
will be no current flow through the diode connected
to input B, since it is back-biased. If we set a logic
“0” to be any voltage between ground and several
times Vy,qp. then the output will be a logic “0.” Sim-
ilarly, if B i1s low and A is high, then current will flow
through B’s diode and not A’s. The output will still
be “0.” If both inputs are low, then the output will
also be low. Only if both A and B are high will the
output be high. In that case neither diode conducts
and there is no voltage drop across the resistor.

Fig. 36b shows an OR gate. In this case, the resis-
tor is a pull-down resistor connected to ground. The
only way to make the output low is if both A and B
are low. If either A or B is high, then current will
flow through a diode. This will cause the output to
be Vgd — Vdrop-2 If both A and B are low, then the
diodes will both be back-biased, no current will flow,
and the output will be low.

2Both the AND and OR circuits shown here illustrate the
need to develop diodes with a very small Vdrop- The smaller
Vdrop is the closer the output high output will be to a logic “1”
for the OR gate and the closer a low output will be to a logic “0”
for an AND gate.
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There are several problems with this technology.
First, the voltage drops across the diodes tend to re-
duce the separation between a logic one and a logic
zero. For example, suppose Vyq = 5Vdrop and a
logic zero is any voltage less than 2Vdrop and a logic
one is any voltage above 3Vj,qn. Suppose there are
four AND gates connected in series, with the out-
put of each gate connected to both A and B of the
next gate. Then, if the input to the first gate is 0 V,
then the output from the final gate will be 4Vgqp,
which is interpreted as a logic one when it should
be a logic zero. Increasing Vg or decreasing Vyyop
helps but does not solve the basic problem (i.e., that
diode-resistor logic does not implement a restoring
logic). A further problem is that there is no 1/O iso-
lation. We address both of these issues in the next
section.

The third problem with diode-resister logic is that
it is not a complete logic family. That is, one can-
not invert a signal using only diode-resister logic.
This flaw is not fatal, in that if the inputs to a logic
function include both the signals and their comple-
ments, then one can compute both the outputs and
their complements. This result is based on de Mor-
gan’s law, which states that AV B = AA B and
AN B = AV B. Therefore, we only have to ensure
that all inputs to the device from the outside world in-
clude their complements. We arrange this by invert-
ing outside signals with CMOS as part of the external
interface. Then whenever a logic function computes
f, we also compute f.

Finally, this logic family consumes power even
when the logic elements are not switching. The static
power dissipation is V2/R. To make this a viable
technology the resistors will have to be very large,
on the order of 100 M. This will certainly affect
the speed of the circuit, since the RC time constant
is directly proportional to the resistance in the cir-
cuit. Fortunately, the capacitances of molecular scale
wires are small, on the order of a couple of tens of at-
tofarads, due to their small geometries.

8.2 RTD-Based Logic

Resonant tunneling diodes (RTDs) can form the ba-
sis for a logic family. RTD-based logic is also based
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around the nonlinear characteristics of a diode. How-
ever, instead of a simple rectifying device, it is based
on a diode with a region of negative differential resis-
tance, as shown in Fig. 27 in Section 6.1. This logic
family is based on bulk semiconductor tunnel diodes
from the early 1960s (e.g., [AS62, Car63]).

Most of the work employing tunnel diodes uses
them in conjunction with transistors [MSST99,
GPKR97, PG97]. Such circuits are not practical at
the molecular level because they require complicated
arrangements of transistors and tunnel diodes. If the
transistors themselves were freely available, standard
logic families would be sufficient for implementing
circuits.

Work by Nackashi and Franzon [NFO02] investi-
gates using only NDRs?® and other two-terminal de-
vices as the basis for a logic family. The nonlinearity
of the NDR is used in conjunction with a network of
resistors to create NAND and NOR gates, creating a
complete logic family. They found that circuits based
on such devices are extremely sensitive to small vari-
ations in the NDR behavior (particularly the voltage
at which the peak current flows) and the values of
the resistors. Furthermore, such logic families do not
provide gain or 1/O isolation.

8.3 Molecular Latches

Neither diode-resistor logic nor RTD-based logic is
scalable for the reasons stated above. Therefore, if
either family is going to be used to compute logic
functions, there must be another kind of device that
can introduce gain and provide 1/O isolation. While
it might be possible to use either molecular or CMOS
transistors, here we explore a more fabrication-
friendly alternative based only on two-terminal de-
vices. The latch we describe is motivated by early
work on tunnel diodes [AS62] and more recently
on compound semiconductor RTDs [MSST99]. The
molecular latch provides the important properties of
signal restoration, 1/O isolation, and noise immunity.

2An NDR is distinguihed from an RTD only in manufacture
and we will use these two acronyms interchangably.
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Figure 37: Load lines for the molecular latch. Dur-
ing a latching operation the voltage at @ is lowered to
Vmonoand then raised back to Vie¢.

8.3.1 Molecular Latch Operation

The molecular latch is constructed from a pair
of molecular RTDs (also called NDRs), described
in Section 6. Fig. 27 shows an I-V curve of a repre-
sentative RTD. The key feature of an RTD is a region
of negative differential resistance, where the tunnel-
ing current falls as the voltage increases. The ratio of
the current at the beginning of the NDR region to the
current at the end is called the peak-to-valley ratio
(PVR). Molecular RTDs that operate at room tem-
perature with PVRs of 10 or more have already been
realized [CRRT99, CROO].

Fig. 37 shows the arrangement of the RTDs in
a molecular latch and a load-line diagram for the
molecular latch at a bias voltage Vief. The state of
the latch is determined by the voltage at the node
between the two RTDs. The load line diagram
shows two stable states, Vjg,y and Vhjgp, and a third
metastable state. Small voltage fluctuations in the
metastable state will push the circuit into one or the
other of the stable states. The low state represents
binary “0” and the high state binary “1.”

The state of the latch is changed by temporarily
disrupting and restoring the equilibrium to one of
the two bistable states. The bias voltage is tem-
porarily lowered to Vimono, causing a shift of the
load line to the left such that the circuit has only
one stable state. The bias voltage is then returned
to Vief. During the evolution from the monostable to
bistable state (the monostable-bistable transition, or
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MBT), current introduced to the data node will flow
through the drive RTD. If the total charge introduced
by this current during the transition exceeds a thresh-
old value, the circuit will switch to the high state,
otherwise the circuit will switch to the low state. The
amount of current necessary to force the latch into
the high state is determined by the PVR of the RTD.
For a well-matched RTD pair, this current can be
very small [AS62]. A higher PVR requires more cur-
rent to set the high state but provides greater stability
against current variation. For the circuit to function
correctly, the drive RTD must be more resistive than
the load RTD (i.e., Rser in Fig. 38a must be larger
for RTDdrive)-

RTD latch technology has already been exploited
in constructing a GaAsFET logic family by Math-
ews et al. [MSS*99]. They describe a series of logic
gates constructed from RTD latches, FETSs, and sat-
urated resistors that display high switching speeds
and low power dissipation. In CAEN, the RTD
latches are used for a different purpose: they pro-
vide voltage buffering by storing the state of previous
computation for use in later computation, and sig-
nal restoration to either the “0” or “1” voltage with
each latch. All computation is performed by diode-
resistor logic and the latch restores the signal for a
later computational stage. Work in the 1960s with
tunnel diodes and threshold logic was hampered by
high manufacturing variability [HB67]. The molec-
ular RTDs discovered so far have higher PVRs than
semiconductor-based devices, which, as we explain
below, may alleviate some of these problems.

8.3.2 Molecular Latch Simulations. Restoration
and Reliability

Since molecular-scale RTD latches have yet to be
realized, we conducted simulations of their behav-
ior using SPICE. We used a similar device model as
Mathews et al. for each RTD [MSS*99]. The device
model is depicted in Fig. 38a. The RTD is modeled
as a series resistance Rser, with a parallel capaci-
tance Crp and voltage-dependent current source
I(V). This meshes well with the proposed con-
struction of molecular-scale RTDs, which is accom-
plished by connecting two segments of molecular-
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Figure 38: (a) Device model for RTD. (b) Possible con-
struction technique for molecular RTD as an inline device
(not to scale).
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Figure 39: (a) Simple molecular latch circuit used in test-
ing. (b) Results of single stability experiment. Note volt-
age “gain” and memory effect.

scale metal wire with a number of identical RTD
molecules (see Fig. 38b). Based on the estimated
length and dielectric of the molecules and diame-
ter of the molecular wires, we estimate a capaci-
tance of 2.7 aF for each RTD. We constructed model
equations for the voltage-dependent current source to
mimic the I-V curves reported by Reed and Tour at
190 K [CWR™00]. To explore the RTD parameter
space, we also constructed models for several differ-
ent “ideal” molecular RTDs in which the Va4 and
Vvalley locations and PVR were varied.

Fig. 39b shows the results of a simple RTD sim-
ulation using an idealized molecule as the basis of
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the RTD latch circuit shown in Fig. 39a. The clock
signal is shaped to provide a MBT in every cycle
and to maintain the bistable state for the remainder
of the cycle. Note that the cycle time was deliber-
ately made longer than required to ensure equilib-
rium before the next cycle. The figure shows that
the voltage is restored to the levels predicted by the
RTD load line and the choice of Vj¢f. In contrast to
the “ideal” molecule, the relatively high V564 of the
Reed-Tour molecule would produce narrowly spaced
“0” and “1” voltages for any reasonable choice of
Viessignificantly reducing the noise margins of any
circuit using this kind of latch. The molecular RTD
latch becomes more practical as Vjeqi becomes
lower. The closer Vjaqk s to 0V, the larger the sep-
aration of low and high signals that can be produced
at a realistically achievable Vief.

To determine the envelope of stability for the RTD,
we simulated the behavior of this simple circuit
while varying the “low” and “high” input voltage,
the input current, and the relative sizes of the load
and drive RTDs. In simulation, simple RTD latches
in isolation appear to be stable over the range of vari-
ability likely to be encountered in their synthesis.
Stability has proven a significant stumbling block to
the application of semiconductor RTDs, as device
variability often falls outside the required range for
incorporation into circuits [HB67]. Molecular RTDs
have an advantage in that all molecules incorporated
into the RTD are identical. In addition, molecular
RTDs have far bigger PVRs than conventional RTDs,
which improves the stability of latches constructed
with them [MSS*99].

8.3.3 Combinations of Latches; I/O Isolation

In molecular circuits, latches are used to buffer and
condition the output of a diode-resistor combina-
tional circuit so that it can serve as input to the next
one. We therefore need to consider the interactions
of multiple latches. The simplest circuit using more
than one latch is a delay circuit, as shown in Fig. 40.
Because the latch data node emits the correct volt-
age only when the latch clock is in the high state, a
two-phase clocking scheme (as shown in Fig. 41) is
required to propagate the signal through the circuit.
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Figure 40: Simple 3-stage delay circuit using molecular
latch from Fig. 42.
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Figure 41: Two-phase clocking scheme used for series
latches.

Latches connected in series have alternating clock
phases.

It is clear that the lack of I/O isolation provided
by transistors is problematic for a latch consisting
solely of an RTD pair. Without intervening devices,
all data nodes must exist at the same voltage, and
even with additional linear circuit elements current
is free to flow backward to set upstream latches. To
provide the necessary isolation characteristics, we in-
corporate several additional devices into the latch, as
shown in Fig. 42.

A molecular-scale diode is added to prevent cur-
rent from a downstream latch from flowing to set an
upstream latch. Without the diode, setting a down-
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Figure 42: The complete molecular latch.

stream latch will prevent the immediately upstream
latch from resetting properly. Molecular diodes with
very low voltage drops and reverse current flow have
already been realized [KMM™'02]. The resistor, R,
immediately following the latch data forces enough
current into RTDgyyjye to allow it to switch high,
while allowing enough current into the next latch to
determine its value. Without the resistor, latches in
series would act as a current divider, and insufficient
current would flow through each RTDyjye to set it
to the “1” state.

To understand the rationale for the resistor to
ground, consider the delay latch shown in Fig. 40
and the circuit state (In=Low, D1=Low, D2=High,
D3=High) at the instant before the ®, clock cycle.
As the @5 clock voltage is lowered to Vimono, the
diodes in both D2 and D3 are reverse biased, pre-
venting any current discharge from the capacitance
of latch D2. Since discharge is necessary for the latch
to enter the low state, we provide a path to ground
through a large resistor. The value of this resistor
must be large to prevent current loss that would cause
latch-setting failure. However, the resistor should
also be as small as possible in order to minimize the
latch reset time.

We simulated several simple circuits using the
above latch configuration, including the delay cir-
cuit in Fig. 40 and the AND, OR, and XOR circuits
shown in Fig. 43. The circuits calculate the correct
values, taking into account the delay required to tra-
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Figure 43: AND, OR, XOR circuits using diode-resistor logic and intermediate molecular latches.
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Figure 44 Lack of 1/O isolation in AND circuit provides
path from V{341 to ground.

time

Figure 45: Clocking scheme used for V4.

verse intervening latches. Circuits with more logic
levels were also simulated successfully.

One additional complication resulting from a lack
of 1/0 isolation was discovered for the AND cir-
cuit. Consider the circuit state (A=low, B=high,
Y=high, Z=high) immediately before ®; begins its
cycle (Fig. 44). The diode of Z is reverse biased,
so the current in Vg1 will flow through the AND
diodes into the latches and to ground, preventing
them from being reset. The latch cannot be protected
by a diode to prevent this, because doing so leaves no
path to sink current from the pull-up voltage. With-
out a path to ground, the pull-up would cause Z to be
set high incorrectly. To counteract this, we introduce
a clocking scheme for the pull-up voltage as well, as
shown in Fig. 45. The pull-up voltage is temporarily
brought to ground during the MBT of the preceding
latch. This removes the forward influence and allows
the latches to be set properly. Unfortunately, in a real
circuit this will likely have deleterious consequences
for the RC constant.
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8.3.4 Latch Summary

In simulation, the molecular latch is capable of
restoring voltage levels to the two stable values and
of providing current input, as determined by the I-V
curve of the underlying RTD. It appears to be sta-
ble against variability brought about by manufactur-
ing, as long as the drive RTD can reliably be made
more resistive than the load RTD.3° Because of the
relatively low current required to switch states, one
molecular latch can drive several other latches (i.e.,
latches can have moderate fan-out). In combination
with the clocking scheme described above, the latch
also provides the necessary 1/O isolation to ensure
proper calculation.

Some caveats are necessary, however. Because the
RTD devices discovered so far are extremely resis-
tive, the RC constant for circuits incorporating them
is very long (on the order of hundreds of nanosec-
onds). Clearly, this will need improvement before
these devices become practical. Also, the relative
sizes of the various resistors must be carefully con-
trolled during manufacture to ensure that they are
properly matched. This will allow more devices to
attain proper 1/O isolation without adversely affect-
ing the time constants for the circuit. (Note, how-
ever, that controlling the resistance promises to be
easy compared to aperiodic placement of devices.)
Lastly, the use of a clocked pull-up voltage may re-
sult in additional complications for the design of the
CMOS support circuitry. However, the similarity in
waveforms between the latch clock and Vjq clock
may alleviate some of these problems.

8.4 Molecular Circuits

CMOS designers have long enjoyed the benefits of
using a physical device, the transistor, which has
been close to ideal. Furthermore, they have had
the freedom to connect devices together in whatever
topology they chose. With molecular electronics
(and potentially with end-of-the-roadmap CMOS),
this will not be true. Instead of a single device

%The actual RTDs need not be manufactured differently. In-
stead the resistance at the connection to drive RTD can be in-
creased; which can be accomplished quite easily.
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providing all the required features (switching logic,
isolation, restoration of signals, and gain), different
devices will have to be used each of which poten-
tially only provides a single one of these features.
In this section we have proposed a combination of
diode-resistor logic (for logic), a molecular latch (for
restoration of signals and memory), and a combina-
tion of diodes, resistors, and a clocking methodology
for isolation. There are other alternatives to this com-
bination. For example, the bulk of the logic could
use arrays of diode-resistor logic. State could be
stored using molecular latches. Another alternative
is to intersperse occasional transistors in the circuit
for 1/0O isolation and gain. Whatever the solution,
with high likelihood, circuit designers using molec-
ular electronics will have to obtain the behavior they
want with a combination of devices. For example,
one might ask, if transistors are available for isola-
tion and gain why not use only transistors. The rea-
son is that transistors are likely to be hard to incor-
porate in the circuit for reasons described earlier. So,
limiting them will increase the overall density and
reduce the overall cost of the final circuit.

Circuit designers currently use an abstraction of
the transistor as the basic building block of logic.
The abstraction combines three essential compo-
nents: a logical switch, isolation of inputs from out-
puts, and, signal restoration. To build memory de-
vices several transistors need to be combined. Ex-
amining molecular devices suggests that breaking
the abstraction for an ideal transistor into its prim-
itive components may provide intellectual leverage
for constructing molecular circuits. We propose the
SirM abstraction for molecular components. SirM
stands for switch, isolator, restorer, and memory.
The SirM device abstraction allows circuit design-
ers to construct circuits from devices each of which
may only display one of these four characteristics.
Using the previous example, we might construct
our logic from combinations of diodes and resistors
(the switch component), molecular latches (the re-
storer component and the memory component), and
a clocking methodology that provides isolation. Al-
ternatively, the switch component might come from
diodes and resistors, the isolator and restorer com-
ponents from molecular transistors, and the memory
component from latches.
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Figure 46: Example of a non-configurable P-type

nanowire FET. The diagram on the left shows the crossing
wires and on the right it shows the circuit formed.

SirM recognizes that one device does not have to
provide all the features necessary for a composable
scalable logic family. By identifying the primitives
necessary (switch, isolator, restorer, and memory)
circuit designers and device designers are given the
freedom to optimize the types and combinations of
devices in ways that they have not been able to be-
fore. Now, one can talk about complete device fam-
ilies, instead of single devices, that provide all the
necessary components for a complete logic family. A
complete device family is one that provides all com-
ponents of SirM and therefore can be used to con-
struct a scalable complete logic family.

8.5 Molecular Transistor Circuits

Nanowire FETs have been demonstrated which have
the potential to form the isolator/restorer components
of SirM or potentially to be the core of a complete
logic family. Unlike CMOS, this will not be a com-
plementary logic family so, like diode-resistor logic,
it will burn power even when it is not switching.
Fig. 46 shows a nanowire P-FET NOR gate made
only with crossing wires. This device, if config-
urable, could be put into an array so that the inputs all
run horizontally. Each vertical wire could be config-
ured to compute a different function on the inputs.
DeHon proposes an architecture (see Section 9.3)
based on this configurable device [DeH02]. If the
device is not configurable, then it can be used as the
isolator or restorer component of a complete device
family.
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9 Molecular Architectures

There are three basic approaches to molecular ar-
chitectures: random, quasi-regular, and determinis-
tic. The random approach assumes only the most ba-
sic manufacturing primitives and only requires that
molecules and wires be assembled in random pat-
terns. On the other end of the spectrum, the deter-
ministic approach assumes that complex, aperiodic
structures can be precisely built. It requires preci-
sion similar to that used in lithographically based
semiconductor manufacturing. The quasi-regular ap-
proach takes a middle road. It requires that two-
dimensional cross-bars be manufacturable. It does
not require that the wires in the cross-bar be laid out
in any particular order.

We begin this section with a detailed description
of the nanoFabric architecture, which is an example
of a quasi-regular molecular architecture. We then
review other approaches in all three categories.

9.1 NanoFabrics

The nanoFabric is an example of a quasi-regular ar-
chitecture designed to overcome the constraints as-
sociated with directed assembly of nanometer-scale
components and exploit the advantages of molecular
electronics. Because the fabrication process is funda-
mentally nondeterministic and prone to introducing
defects, the nanoFabric must be reconfigurable and
amenable to self-testing. This allows us to discover
the characteristics of each nanoFabric and then create
circuits that avoid the defects and use only the work-
ing resources. For the foreseeable future, the fabrica-
tion processes will only produce simple, regular ge-
ometries. Therefore, the proposed nanoFabric is built
out of simple, two-dimensional, homogeneous struc-
tures. Rather than fabricating complex circuits, we
use the reconfigurability of the fabric to implement
arbitrary functions postfabrication. The construction
process is also parallel. Heterogeneity is introduced
only at a lithographic scale. The nanoFabric can be
configured (and reconfigured) to implement any cir-
cuit, like today’s FPGAs. However, the nanoFabric
has several orders of magnitude more resources.
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Figure 47: Schematic of a nanoBlock.

V from the CMOS layer.

The nanoFabric is a planar mesh of interconnected
nanoBlocks. The nanoBlocks are logic blocks that
can be programmed to implement a three-bit input
to three-bit output Boolean function and its comple-
ment (see Fig. 47). NanoBlocks can also be used as
switches to route signals. The nanoBlocks are orga-
nized into clusters (see Fig. 48). Within a cluster,
the nanoBlocks are connected to their nearest four
neighbors. Long wires, which may span many clus-
ters (long-lines), are used to route signals between
clusters. The nanoBlocks on the perimeter of the
cluster are connected to the long-lines. This arrange-
ment is similar to commercial FPGAs (allowing us
to leverage current FPGA tools) and has been shown
to be flexible enough to implement any circuit on the
underlying fabric.

The nanoBlock design is dictated by fabrication
constraints. Each side of the block can have inputs
or outputs, but not both. Therefore, the 1/0 arrange-
ment in Fig. 48 is required. We have arranged it so
that all nanoscale wire-to-wire connections are made
between two orthogonal wires so that precise end-
to-end alignment is not needed. Figures 49b and c
show how the outputs of one nanoBlock connect to
the inputs of another. We call the area where the in-
put and output wires overlap a switch block. Notice
that the outputs of the blocks are either facing south
and east (SE) or north and west (NW). By arrang-
ing the blocks such that all the SE blocks run in one
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Figure 49: Diagrams showing how the inputs and outputs of a nanoBlock connect to their neighbors.
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Figure 48: The layout of the nanoFabric with a partial
blowup of a single cluster and some of the adjacent long-
lines.

diagonal and the NW run in the adjacent diagonal,
we can map any circuit netlist onto the nanoFabric.
Since the nanoBlocks themselves are larger than the
minimum lithographic dimension, they can be posi-
tioned precisely at manufacturing time in the desired
patterns using lithography.

In addition to the intracluster routing there are
long-lines that run between the clusters to provide
low-latency communication over longer distances.
The nanowires in these tracks will be of varying
lengths (e.g., one, two, four, and eight clusters long),
allowing a signal to traverse one or more clusters
without going through any switches. This layout is
essentially that of an island-style FPGA [SBV92].
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This general layout has been shown to be efficient
and amenable to place-and-route tools [BR97]. No-
tice that all communication between nanoBlocks oc-
curs at the nanoscale. The fact that we never need to
go between nanoscale and CMOS components and
back again increases the density of the nanoFabric
and lowers its power requirements.

The arrangement of the clusters and the long-lines
promotes scalability in several ways. First, as the
number of components increases we can increase the
number of long-lines that run between the clusters.
This supports routability of netlists. Second, each
cluster is designed to be configured in parallel, allow-
ing configuration times to remain reasonable even for
very large fabrics. The power requirements remain
low because we use molecular devices for all aspects
of circuit operation. Finally, because we assemble
the nanoFabric hierarchically we can exploit the par-
allel nature of chemical assembly.

9.1.1 NanoBlock

The nanoBlock is the fundamental unit of the
nanoFabric. It is composed of three sections (see
Fig. 47): (1) the molecular logic array, where the
functionality of the block is located, (2) the latches,
used for signal restoration and signal latching for
sequential circuit implementation, and (3) the 1/O
area, used to connect the nanoBlock to its neighbors
through the switch block.
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Figure 50: An AND gate implemented in the MLA of a
nanoBlock.
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Figure 51: A half-adder implemented in the MLA of a
nanoBlock and the equivalent circuit diagram for the com-
putation of AXORB =S.0nly S, S, C, and, C are outputs
of this circuit. The rest of the lines are intermediate results
and label only for reference.

The molecular logic array (MLA) portion of a
nanoBlock is composed of two orthogonal sets of
wires. At each intersection of two wires lies a con-
figurable molecular switch. The switches, when con-
figured to be “on,” act as diodes. Designing circuits
for the MLA is significantly different than for a pro-
grammable logic array, which requires an OR and
an AND plane. We have preliminary designs for a
“standard cell” library using nanoBlocks (e.g., AND,
OR, XOR, and ADDER).

70

Fig. 50 shows the implementation of an AND gate,
while Fig. 51 shows the implementation for a half-
adder. On the top part of Fig. 51 is a schematic of
the portion of the circuit used to generate the sum
output. This circuit, which is the XOR of A and B, is
typical of diode-resistor logic. For example, if A'is
high and B is low, then their complements (A and B)
are low and high respectively. As a result, diodes 1,
2,5, and 6 will be reverse-biased and not conducting.
Diode 8 will be forward-biased and will pull the line
labeled “red” in the figure down close to a logic low.
This makes diode 4 forward-biased. By manufactur-
ing the resistors appropriately (i.e., resistors attached
to Vjg have smaller impedances than those attached
to Gnd) most of the voltage drop occurs across R1,
resulting in S being high. If A and B are both low,
then diodes 2, 4, 5, and 7 are back-biased. This iso-
lates S from V4 and makes it low.

The MLA computes logic functions and routes
signals using diode-resistor logic. The benefit of this
scheme is that we can construct it by directed assem-
bly, but the drawback is that the signal is degraded
every time it goes through a configurable switch. In
order to restore signals to proper logic values without
using CMOS gates, we will use the molecular latch
described in Section 8.3.

The organization of the MLA supports the imple-
mentation of logic functions using either two-level
logic or arbitrary logic combinations3! If a two-
level representation is used, for example, a product
of sums representation, then the square shape of the
MLA and the fact that all the power connections are
on one side and all the connections to ground are on
another will reduce the logic density that can be re-
alized in a given area. This is offset by three factors.
First, it will be easier to fabricate a symmetric MLA.
Second, the extra freedom to place product terms or
sum terms anywhere in the array increases defect tol-
erance. Third, as we will see below, reducing the
number of different connections to the CMOS sub-
strate increases the overall density of the nanoscale
components.

Arbitrary logic representations use few of the
cross-points on any wire. As the size of the MLA in-
creases, the overhead of the micronscale connections

31Refer back to Section 5.2 for definitions of these terms.
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Figure 52: An example layout of a nanoBlock and its
associated CMOS support. The long thin rectangles rep-
resent nanowires. The thicker squares represent CMOS
metal.
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Figure 53: How nanoblocks tile together.

decreases, but the density of useful connections per
wire decreases. The goal of the designer is to choose
the size of the MLA so that the overall logic density-
per-unit area is highest. In addition to optimizing the
cross-points on each wire, the designer must keep in
mind that a particular circuit cannot include an arbi-
trary number of diodes. Each time a signal passes
through a diode the signal is degraded. Therefore,
the total number of diodes that can be traversed is
limited by the number of diodes that can be traversed
before a logical value on the wire can no longer be
distinguished from its opposite value.

The layout of the MLA and of the switch block
makes rerouting easy in the presence of faults. By
examining Fig. 51, one can see that a bad switch is
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easily avoided by swapping wires that only carry in-
ternal values. In fact, the rows can be moved any-
where within the block without affecting the cir-
cuit, which makes defect tolerance significantly eas-
ier than with CMOS.32 The number of possible ways
to arrange the columns/rows in the MLA combined
with the configurable cross-bar implemented by the
switch block makes the entire design robust to de-
fects in either the switch block or the MLA.

Notice that all the connections between the CMOS
layer and the nanoBlock occur either between groups
of wires or with a wire that is seperated from all the
other components. This improves the device density
of the fabric. To achieve a specific functionality, the
cross-points are configured to be either open connec-
tions or to be diodes.

Fig. 52 shows one possible way that the nanoscale
components of the nanoBlock might be connected to
a CMOS substrate. The filled-in squares represent
connections to the underlying substrate. The rect-
angles represent nanoscale wires. The power (Vgq)
and ground (Gnd) connections are all to sets of wires.
The power connection is for pull-up resistors in the
MLA, the ground connection on the left is for the
pull-down resistors in the MLA, and the two other
connections are for the connections to the molecu-
lar latch. The other end of the molecular latch wires
connect the clock pad (®). Finally, the two CMOS
connections labeled “C” are for the configuration pad
that connects to the single-wire demux. Notice that
only a tiny fraction of the entire area is taken up by
the MLA itself (the checkerboard area in the middle
of the nanoBlock.

The arrangement shown in Fig. 52 allows multiple
nanoBlocks to tile the plane without violating any
of the process rules used in constructing the CMOS
pads. That is, no pads of different types share any
sides or corners. Fig. 53 show how the nanoBlocks
can be arranged into the diagonal patterns needed to
form the switch blocks. The repeated pattern that can
tessalate the plane is shown as the area surrounded
by a thick black line covering eight nanoBlocks. The
pattern covers a 20x20 region of CMOS line widths

%2This is because nanowires have several orders of magnitude
less resistance than switches. Therefore, the timing of a block is
unaffected by small permutations in the layout.
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and contains eight nanoblocks. Therefore, the area
for one implemented nanoblock is 50 square mini-
mum line widths. This is at least an order of magni-
tude smaller than a half-adder implemented solely in
CMOS.

9.1.2 Configuration

The nanoFabric uses run-time reconfiguration for de-
fect testing and to perform its intended function.
Therefore, it is essential that the time to configure
the fabric scale with the size of the device. There are
two factors that contribute to the configuration time.
The first factor is the time that it takes to download
a configuration to the nanoFabric. The second factor
is the time that it takes to distribute the configuration
bits to the different regions of the nanoFabric. Con-
figuration decoders are required to serialize the con-
figuration process in each nanoBlock. (See Fig. 34
in Section 7.3.) To reduce the CMOS overhead, we
intend to configure only one nanoBlock per cluster at
a time. However, the fabric has been designed so that
the clusters can be programmed in parallel. A very
conservative estimate is that we can simultaneously
configure one nanoBlock in each of 1000 clusters in
parallel.

A molecular switch is configured when the volt-
age across the device is increased outside the nor-
mal operating range. Devices in the switch blocks
can be configured directly by applying a voltage dif-
ference between the long intercluster lines. In order
to achieve the densities presented above, it will also
be necessary to develop a configuration approach for
the switches in the MLA that is implemented with
nanoscale components. In particular, a nanoscale
decoder is required to address each intersection of
the MLA independently. Instead of addressing each
nanoscale wire separately in space, we address them
separately in the time dimension. This slows down
the configuration time but increases the device den-
sity.

Our preliminary calculations indicate that we can
load the full nanoFabric, which is comprised of 1(°
configuration bits at a density of 10'° configura-
tion bits/cm?, in less than 1 second. This calcula-
tion is based on realistic assumptions that, on aver-
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age, fewer than 10% of the bits are set ON and that
the configurations are highly compressible [HLS99].
It also significant to note that it is not necessary to
configure the full fabric for defect testing. Instead,
we will configure only the portions under test.

As the configuration is loaded onto the fabric it
will be used to configure the nanoBlocks. Using the
configuration decoder this will require &~ 300 cycles
per nanoBlock, or less than 38K cycles per cluster.
Therefore, the worst-case time to configure all the
clusters at a very conservative 10 MHz requires 3
seconds.

9.1.3 Putting It All Together

The nanoFabric is a reconfigurable architecture built
out of CMOS and CAEN technology. The support
system, i.e., power, ground, clock, and configura-
tion wires, /O, and basic control, is implemented
in CMOS. On top of the CMOS we construct the
nanoBlocks and long-lines constructed out of chem-
ically self-assembled nanoscale components.

Assuming a 100 nm CMOS process and 40 nm
centers with 128 blocks to a cluster and 30 long-
lines per channel, our design should yield 200M
blocks/cm?), requiring 2'° configuration bits. (If,
instead of molecular latches, transistors were used
for signal restoration then with 40 nm centers for the
nanoscale wires the density is reduced by a factor of
10.)

SPICE simulations show that a nanoBlock config-
ured to act as a half-adder can conservatively operate
at 100MHz. Preliminary calculations show that the
fabric as a whole will have a static power dissipation
of =~ 1.2watts and dynamic power consumption of
~ .4watts at 100Mhz.

The nanoFabric assumes a fairly simple fabrica-
tion process but still requires the parallel alignment
of nanoscale wires and the ability to attach those
wires to photolithographically-created pads on a sil-
icon substrate. It overcomes the lack of arbitrary
patterning in the fabrication methods with postfab-
rication computation, which will both aid in defect
tolerance and allow the desired functionality to be
configured into the device.
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Figure 54: A representation of a Nanocell. The links
between particles are implicitly created due to the prox-
imity of the molecules. Reprinted with permission from
[Hus02], S. M. Husband., Programming the Nanocell, a
Random Array of Molecules, Ph.D. Thesis, Rice Univer-
sity, 2002.

9.2 Random Approach

The random class of architectures requires less pre-
cise fabrication methods than nanoFabric. This class
of architectures essentially requires only fabrication
methods to randomly deposit nanoscale particles on
a silicon substrate. However, it requires even more
postfabrication computation to construct useful com-
puting devices.

Here we describe an example from this class
of architecture proposed by a team at Rice and
Yale.  The basic component of this architec-
ture is the Nanocell [Hus02, HHP'01], a small
lithographically-defined area filled with nanoparti-
cles and molecules. The nanoparticles are assem-
bled in the interior using a self-assembled monolayer
(see Fig. 54). Molecules that behave like molecu-
lar switches and also exhibit NDR behaviors are de-
posited on the nanoparticles. Along the perimeter of
the nanocell are 1/O pins which connect the nanopar-
ticles in the interior of the cell with the rest of the
chip, which is traditional CMOS created using litho-
graphic techniques. The density of particles and de-
posited molecules ensures that there will be some
connections between the particles themselves and the
micronscale leads connected around the perimeter
of the cell. The resulting ensemble forms a pro-
grammable electrical network.
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Figure 55: A Nanocell programmed to implement a
NAND-gate in its upper-right corner. Reprinted with per-
mission from [Hus02], S. M. Husband., Programming the
Nanocell, a Random Array of Molecules, Ph.D. Thesis,
Rice University, 2002.

Each nanocell will have a different arrangement
of particles and, as a result, will possibly have dif-
ferent functionality. Before a nanocell can be used
in a circuit, its possible set of functionalities will
have to be determined and then it will have to be
programmed to implement the desired functional-
ity. Husband [Hus02] proposes a genetic algorithm
which can be used to find the functionality of each
cell and to train the cell to implement one of its pos-
sible functions. The algorithm depends on being able
to set the state of each molecule individually. Fig. 55
shows an example of a nanocell that was trained to
implement a NAND gate. Once the cells are pro-
grammed, they need to be connected. While some
nanocells have been shown in simulation to imple-
ment restoring logic, they do not provide 1/O isola-
tion. Therefore, this architecture requires that the in-
terconnect in a circuit be implemented at least par-
tially in CMOS. Alternatively, molecular latches can
be used to restore signals and provide 1/O-isolation
as discussed in Section 8.3.

The nanocell is defect tolerant but results in rather
poor logic density. It is, by its nature, defect tol-
erant in that no predetermined functionality is as-
sumed, rather it is discovered. However, whether
the functionality needed to implement a useful cir-
cuit can be found in a reasonable amount of time is
an open question. The density of a nanocell-based
computer is determined by the size and functional-
ity of the nanocell, the supporting interconnect, and
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any logic needed for signal restoration or 1/O isola-
tion. Even if the supporting logic takes no area and
the interconnect is minimal, the density is low be-
cause the 1/0 pins to the nanocell are fabricated us-
ing lithography. If the lithographic pitch is A, then
a nanocell with 20 1/0 pins requires (127)? units of
area. A NAND gate implemented in CMOS requires
~ 35, units of area. In other words, a nanocell im-
plementing four NAND gates will be only slightly
denser than CMOS. CMOS has the advantage that no
static power is consumed. If NMOS-style circuits are
used, then the lithographic approach is significantly
denser than the nanocell. If nanocells can implement
more complicated functions (e.g., a half-adder), the
nanocell may enjoy a slight density advantage.

The nanocell architecture is an example of a
molecular electronic architecture that presupposes
only the simplest assembly primitives. It is defect
tolerant and reconfigurable. However, it requires
significant programming effort to overcome the ran-
domness inherent in its fabrication. It requires signif-
icant micronscale functionality during circuit opera-
tion, in particular, it requires micronscale wires and
potentially micronscale devices, to pass signals from
one nanocell to another.

9.3 Quasi-Regular Approaches

We have already seen an instance of a quasi-regular
architecture, the nanoFabric. It assumes that the
fabrication primitives can be used to create two-
dimensional meshes of wires. It further assumes that
some kind of active device can be made at the inter-
section of two wires and that the wires can be bonded
to lithographically created contacts. It does not as-
sume that the wires in a mesh can be determinis-
tically ordered. In spite of these seemingly simple
primitives, the nanoFabric and other architectures in
this class are surprisingly powerful. Here we discuss
briefly an additional example from this class.

DeHon [DeHO02] proposes an architecture based
around arrays of silicon nanowire FETs. The arrays
are arranged so that all signals in a circuit can be
transmitted over nanoscale wires. At least some of
the active elements in the arrays are reconfigurable,
which supports defect tolerance and the creation of
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Figure 56: A nanoscale array surrounded by four de-
coders and the micronscale wiring necessary to program
it. Reprinted with permission from [DeH02] A. DeHon, in
“Proceedings of the First Workshop on Non-Silicon Com-
putation,” 2002.

circuits after the device is fabricated. The nanoscale
components are surrounded by lithographically cre-
ated wires and circuits that are used only to support
reconfiguration and to supply global signals (e.g.,
clock, power, and ground).

Fig. 56 shows a possible fundamental building
block of this architecture. Each nanoscale array is
surrounded by a set of four decoders. The decoders
connect the nanoscale wires to address lines that are
micronscale. The address lines allow any individ-
ual nanowire to be selected. By selecting a partic-
ular row and column, the switch at the cross-point
can be configured. The decoders can also be used
to provide pull-up or pull-down resistors for either
diode-resistor logic or NMOS-style transistor logic.
The decoders allow O(log, n) micronscale wires to
address n nanoscale wires. The total area for an ar-
ray is therefore ((A + 4) P, + (24 + n)P,)?, where
n iS the number of wires in each dimension of the
nanoscale array, A is the number of address lines
used to address the wires in the nanoscale array
A > log,n), and P, is the pitch of the nanoscale
wires. In this arrangement with perfect decoders
(ie., A = logy,n) and a 10:1 ratio between the
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Figure 57: Arrangement of NOR only planes. Reprinted
with permission from [DeH02] A. DeHon, in “Proceed-
ings of the First Workshop on Non-Silicon Computation,”
2002.

lithographic pitch and the nanowire pitch, then the
support logic takes less than half the area when n
reaches several hundred. Either nanoimprinting or
self-assembly (see Section 7.3) can be used to con-
struct the decoders. If fault tolerance is needed, or
if the self-assembly method described in [WKO01] is
used, then A will be several times log, n requiring ar-
rays of several thousand nanoscale wires before the
overhead is less than half.

When we compare the density of this approach to
the nanoFabric, it is important to look beyond the
raw density of nanoscale cross-points. The nanoFab-
ric also devotes approximately 50% of its area to
support logic when n is several hundred. However,
the single-wire demux would probably not scale to
that large of an array. The more important issue
is whether the large arrays can be effectively uti-
lized when logic is mapped to them. If a nonrestor-
ing logic is used, then very few of the cross-points
in either array would be used, effectively reducing
the density of the nanoscale portion of the architec-
ture significantly. Therefore, several factors need
to be considered. First, does the micronscale-to-
nanoscale addressing mechanism scale to the desired
array size? Second, can the nanoscale array be effec-
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tively used to implement logical functions? Finally,
will the array be sufficiently fault tolerant? We dis-
cuss this final issue in Section 10.

In order to implement logic in DeHon’s architec-
ture, the cross-points must be configurable. DeHon
suggests two possible approaches. If the nanowire
FETs are programmable, then the array shown in
Fig. 56 can be replicated in groups of 16.

Fig. 57 shows the nanoscale portions of the arrays.
The decoders used to program the configuration bits
serve double duty, acting as either pull-up or pull-
down resistors when the circuit is running. The black
arrows show how the outputs from one set of NORs
can be fed in as inputs to the orthogonal set of NOR
wires. Take, for example, the second column from
the right. It has pull-up resistors at the top, then there
are four arrays running vertically, and finally a group
of pull-down resistors is at the bottom. A nanowire
FET running from the pull-up to the pull-down im-
plements a NOR gate. The inputs to the gate are from
the top left or the top right. The outputs go either to
the bottom right or the bottom left. Therefore, there
is substantial flexibility in routing to and from each
gate. Furthermore, all the connections between gates
use nanoscale wires.

If the nanowire FETs are not configurable, then
half the arrays can be replaced with configurable
diodes that can implement an OR plane. This can
be combined with the nonconfigurable NOR gates to
enable a PAL-like approach to creating logic. The
OR gates will be programmable, while the NOR
gates can provide 1/O isolation, inversion, and signal
restoration.

This architecture, like the nanoFabric, assumes a
moderate amount of precision and requires a moder-
ate amount of postfabrication computation in order to
construct useful computing devices. There are sev-
eral other architectures in this class. In 1998, a team
from HP and UCLA proposed a defect-tolerant ar-
chitecture roughly based on the Teramac [HKSW98].
Their overall approach was the inspiration behind the
nanoFabric. A team at AFRL proposed an architec-
ture that is a cross between the quasi-regular and the
deterministic approaches. At the micronscale it is
regular, but at the nanoscale it requires some arbi-
trary patterning [LDKO01, LDKOO].

DRAFT! do not distribute



October 10, 2003-10: 41

9.4 Deterministic Approach

As one would expect, there are few proposed archi-
tectures that require complete deterministic control
at the nanoscale. A team at Mitre made early propos-
als for multifunctional molecules. Their approach is
to exploit the huge number of molecules possible and
to design molecules that can act as AND gates or
even half-adders [ELOQ].

A completely different approach is found in the lit-
erature on quantum cellular automata (QCA). QCAs
move information around using charge instead of
current [Por98, NKO01, FRJT02]. There are many
advantages to using QCAs, particularly with respect
to power. However, the individual cell in a QCA
provides no isolation or gain. The designers of
QCA systems address this problem by adding a sys-
tem clock. The clock provides isolation and signal
restoration. Finally, the arrangement of the cells in a
QCA, with respect to each other and the clock, will
require great precision. It does not appear that QCA
circuits offer any advantage in terms of manufac-
turability over CMOS. Recently, however, there have
been proposals for reconfigurable QCAs [NRKO02]
that could possibly reduce the amount of manufac-
turing precision required.

9.5 Architectural Constraints

In summary, all the successful architectural ap-
proaches for molecular electronics must contend
with atomic scale effects. The small size of the in-
dividual components guarantees that there will be
some variability, some defects, and some constraint
on the kinds of patterns that can be economically cre-
ated. In addition, to interface the atomic scale elec-
tronics to the outside world implies some kind of size
matching problem. Finally, the small size also entails
that there will be huge numbers of devices. This re-
sults in issues relating to scalability.

10 Defect Tolerance

The nanoFabric is defect tolerant because it is regu-
lar, highly configurable, fine-grained, and, has a rich
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interconnect.3® The regularity allows us to choose
where a particular function is implemented. The
configurability allows us to pick which nanowires,
nanoBlocks, or parts of a nanoBlock will implement
a particular circuit. The fine-grained nature of the de-
vice combined with the local nature of the intercon-
nect reduces the impact of a defect to only a small
portion of the fabric (or even a small portion of a sin-
gle nanoBlock). Finally, the rich interconnect allows
us to choose among many paths in implementing a
circuit. Therefore, with a defect map we can create
working circuits on a defective fabric. Defect dis-
covery relies on the fact that we can configure the
nanoFabric to implement any circuit, which implies
that we can configure the nanoFabric to test its own
resources.

The key difficulty in testing the nanoFabric (or
any FPGA) is that it is not possible to test the in-
dividual components in isolation. Researchers on
the Teramac project [ACC*95] faced similar issues.
They devised an algorithm that allowed the Tera-
mac, in conjunction with an outside host, to test it-
self [CACT97, CACT96]. Despite the fact that over
75% of the chips in the Teramac have defects, the
Teramac is still used today. The basis of the defect
mapping algorithm is to configure a set of devices
to act as tester circuits. These circuits (e.g., linear-
feedback shift-registers) will report a result which, if
correct, indicates with high probability that the de-
vices they are made from are fault-free.

In some sense, Teramac introduces a new manu-
facturing paradigm, one which trades off complex-
ity at manufacturing time with postfabrication pro-
gramming. The reduction in manufacturing time
complexity makes reconfigurable fabrics a particu-
larly attractive architecture for CAEN-based circuits,
since directed self-assembly will most easily result in
highly regular, homogeneous structures. We expect
that the fabrication process for these fabrics will be
followed by a testing phase, where a defect map will
be created and shipped with the fabric. The defect

#Defect tolerance through configuration also depends on
short circuits being significantly less likely to occur than stuck-
open faults. The synthesis techniques should be biased to in-
crease the likelihood of a stuck-open fault at the expense of po-
tentially introducing more total faults.

DRAFT! do not distribute



October 10, 2003-10: 41

map will then be used by compilers to route around
the defects.

The key problem is then locating the defects:
once these locations are known, routing around them
should be straightforward enough. In general, any
methodology for locating these defects should not
require direct access to individual components and
should scale slowly with both defect density and fab-
ric size.

We outline here an approach to defect mapping
that extends the techniques used for the Teramac.
While conceptually similar to these earlier tech-
niques, the approach described here makes some
key contributions that enable mapping of the much
higher defect rates expected in CAEN-based fabrics.

Modern DRAM and SRAM chips and FPGAs are
able to tolerate some defects by having redundancy
built into them: for instance, a row containing a de-
fect might be replaced with a spare row after fabrica-
tion. With CAEN fabrics, this will not be possible:
it is unlikely that a row or column of any apprecia-
ble size will be defect free. Moreover, CAEN-based
devices are being projected as a replacement not just
for memories but for logic as well, where simple row
replacement will not work since logic is less regular.

There is a large body of work in statistics and in-
formation theory on techniques for finding subsets
of a population all members of which satisfy a given
property (in our case, this translates to finding defect-
free devices from among a large number, some of
which may be defective). Various flavors of this tech-
nique, called group testing, have been applied to a
variety of problems [Dor43, SG59, Wol85, KBT96].
However, none have constraints as demanding as
those of CAEN-based assembly.

Problems similar to this have been addressed
in the domain of custom computing systems.
For example, the Piperench reconfigurable proces-
sor [SKGO00], and more notably the Teramac custom
computer [CACT97, HKSW98], had a notion of test-
ing, defect-mapping, and defect-avoidance built into
them. Assembly was followed by a testing phase
where the defects in the FPGAs were identified and
mapped. Compilers for generating FPGA configu-
rations then use this defect map to avoid these de-
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fects. The testing strategy we outline is similar to
the one used for the Teramac. However, the prob-
lem we address is significantly harder because the
Teramac used CMOS devices whose defect rates are
much lower than those predicted for nanoFabrics.

An alternative approach to achieve defect toler-
ance would be to use techniques developed for fault-
tolerant circuit design (e.g., [Pip90, Spi96]). Such
circuit designs range from simple ones involving
triple-mode redundancy to more complex circuits
that perform computation in an alternative, sparse
code space, so that a certain number of errors in the
output (up to half the minimum distance between any
two code words) can be corrected. Such techniques
work reliably only if the number of defects is below
a certain hard threshold, which CAEN is likely to
exceed. Furthermore, even the best techniques for
fault tolerance available today require a significant
amount of extra physical resources, and also result in
a (non-negligible) slow-down of the computation.

10.1 Methodology

One approach to defect detection in molecular-scale
reconfigurable circuits consists of configuring the
components on the fabric®* into test circuits, which
can report on the presence or absence of defects in
their constituent components. Each component is
made a part of many different test circuits and infor-
mation about the error status of each of those circuits
is collected. This information is used to deduce and
confirm the exact location of the defects.

As an example, consider the situation in Fig. 58.
Five components are configured into one test circuit
that computes a simple mathematical function. This
function is such that defects in one or more circuit
components would cause the answer to diverge from
the correct value. Therefore, by comparing the cir-
cuit’s output with the correct answer, the presence or
absence of any defects in the circuit components can

¥\We are deliberately leaving the meaning of “component”
unspecified. It will depend on the final design of the fabric: a
component may be one or more simple logic gates, or a look-up
table implementing an arbitrary logic function. Also, the on-
fabric interconnects will also be “components” in the sense that
they may also be defective.
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Figure 58: An example showing how a defective component is located using two different test circuit configurations.
The components within one rectangular block are part of one test circuit.

be detected. In the first run, the components are con-
figured vertically and test circuit 2 detects a defect.
In the next run, the components are configured hori-
zontally and test circuit 3 fails. Since no other errors
are detected, we can conclude that the component at
the intersection of these two circuits is defective, and
all others are good.

Since the tester will not have access to individ-
ual fabric components, the test circuits will be large,
consisting of tens and perhaps even hundreds of com-
ponents. With high defect rates, each circuit will on
average have multiple defective components. This
will considerably complicate the simple picture pre-
sented in the example above. In particular, test cir-
cuits which give information only about the pres-
ence or absence of defects (such as the ones used
above) will be useless: almost each and every test
circuit will report the presence of defects. The key
idea we use here is more powerful test circuits: cir-
cuits that return more information about the defects
in their components, such as a count of the defects.
An example would be a circuit that computes a math-
ematical function whose output will deviate from the
correct value if any of the circuit’s components are
defective. If the amount of this deviation determin-
istically depends on the number of defective compo-
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nents, then a comparison of the circuit’s output with
the correct result can tell us the number of defects
present in the circuit.

Using such defect-counting circuits, Mishra and
Goldstein [MGO02] propose splitting the process of
defect mapping into two phases: a probability-
assignment phase and a defect-location phase. The
probability-assignment phase attempts to separate
the components in the fabric into two groups: those
that are probably good and those that are probably
bad. The former will have an expected defect den-
sity that is low enough so that in the defect-location
phase, we can use circuits that return 0-1 information
about the presence of defects to pinpoint them.

The first phase, that of probability assignment,
works as follows:

1. The components are configured into test circuits
in many different orientations (for example, ver-
tically, horizontally, and diagonally), and defect
counts for all the test circuits are noted.

. Given these counts for all the circuits, simple

Bayesian analysis is used to find the probability
that any particular component is good or bad.
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3. The components with a low probability of beingtoo ,
good are discarded and this whole process is re-
peated. This is done a small number of times, %7
so that as many of the defective components asygy |
possible are eliminated.
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At the end of this process, two groups of comp'§>- 60
nents are obtained: those with a high probability Bf
being good and those with a high probability of beiijg 7

bad. The latter are discarded. In the former, the frat- 4 |
tion of faulty components is expected to be at suc@a \
level that a significant number of defect-free circuits
can be found. Therefore, the second phase, that of2

defect location, proceeds as follows:

1. Test circuits providing 0-1 defect information
are run on the reduced set of components. If
a circuit is found to be defect-free, all its com-
ponents are marked as good. This is done again
for a number of test circuit orientations.

2. For a high yield, some of the components dis-
carded in the probability assignment phase can
be added back and step 1 repeated.

3. Finally, all the components marked as good are
declared good, and the others are declared bad.

There are a number of points to note here:

1. The quality of the results will depend on the
quality of the test circuit. In particular, we as-
sume that our counter circuits can count defects
only up to a certain threshold (this will likely be
the case, for example, if error-correction tech-
niques such as Reed-Solomon codes [RS60] are
used for test circuit design). Therefore, a higher
threshold will correspond to better quality re-
sults.

2. A number of good components may be marked
bad, particularly if a low-threshold test circuit
is used. This is the waste of the procedure. It
should be noted that it is never the case that a
bad component is marked good.

3. With the testing strategy as described above, it
will not be possible to completely determine the
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Figure 59: Yields achieved by varying the defect den-
sities and the number of defects our test circuits could
count. The X axis represents the defect density of the fab-
ric, the Y axis shows the yield achieved (or, in other words,
the fraction of the fabric’s defect-free components that are
identified as such), and each line represents a counter that
can count defects up to a different threshold.

test circuits a priori, and some feedback depen-
dent configuration on the part of the tester will
be required. The feedback will be limited to
routing the predetermined test circuit configu-
rations around the discarded components.

To test the effectiveness of this procedure and to
measure the impact of the defect-counting threshold
on the results, we ran a number of simulations; the
results are presented in Fig. 59. From our results, it is
apparent that it is possible to achieve high yields even
with test circuits that can count a small number of
defects. For example, for densities less than 10%, a
test circuit that could count up to four errors achieved
yields of over 80%. With more powerful test circuits,
yields of over 95% are achievable.
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Figure 60: A schematic representation of how testing
will proceed in a wavelike manner through the fabric. The
black area is tested and configured as a tester by the exter-
nal tester. Each darker shaded area then tests and config-
ures a lighter-shaded neighbor. For large fabrics, multiple
such waves may grow out from different externally tested
areas.

10.2 Scaling with Fabric Size

A short testing time is crucial to maintain the low
cost of CAEN fabrics, and therefore it needs to be en-
sured that testing proceeds quickly and needs mini-
mal support from an external tester. Our testing strat-
egy currently requires time proportional to » for test-
ing a fabric of n x n components, if a test circuit of
size n is being used. To speed testing up even fur-
ther, reconfigurability of the fabric can be leveraged
in the following ways:

1. Once a part of the fabric is tested and defect-
mapped, it can be configured to act as a tester
for the other parts, therefore reducing the time
required on the external tester drastically.

2. Once the tester is configured onto the fabric,
there is nothing to prevent us from having mul-
tiple testers active simultaneously. In such a
scenario, each tested area tests its adjacent ones
and the testing can proceed in a wave through
the fabric (see Fig. 60).

Therefore, the reconfigurability of the fabric helps
reduce the time on the external tester and also the
total testing time by a significant amount.
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Once a defect map has been generated, the fabric
can be used to implement arbitrary circuits. The ar-
chitecture of the nanoBlock supports full utilization
of the device even in the presence of a significant
number of defects. Due to the way we map logic to
wires and switches, only about 20% of the switches
will be in use at any one time. Since the internal lines
in a nanoBlock are completely interchangeable, we
generally should be able to arrange the switches that
need to be configured in the ON state to be on wires
which avoid the defects.

While the molecules are expected to be robust over
time, inevitably new defects will occur over time.
Finding these defects, however, will be significantly
easier than doing the original defect mapping be-
cause the unknown defect density will be very low.

11 Using Molecular Architectures

There are two scenarios in which nanoFabrics can be
used: as factory-programmable devices configured
by the manufacturer to emulate a processor or other
computing device, and as reconfigurable computing
devices.

In a manufacturer-configured device, user appli-
cations treat the device as a fixed processor (or po-
tentially as a small number of different processors).
Processor designers will use traditional CAD tools
to create designs using standard cell libraries. These
designs will then be mapped to a particular chip,
taking into account the chip’s defects. A finished
product is therefore a nanoFabric chip and a ROM
containing the configuration for that chip. In this
mode, the configurability of the nanoFabric is used
only to accommodate a defect-prone manufacturing
process. While this provides the significant benefits
of reduced cost and increased densities, it ignores
much of the potential in a nanoFabric. Since de-
fect tolerance requires that a nanoFabric be reconfig-
urable, why not exploit the reconfigurability to build
application-specific processors?

Reconfigurable fabrics offer high performance and
efficiency because they can implement hardware
matched to each application. Further, the configu-
rations are created at compile-time, eliminating the
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need for complex control circuitry. Research has al-
ready shown that the ability of the compiler to ex-
amine the entire application gives a reconfigurable
device efficiency advantages because it can:

o exploit all of an application’s parallelism: task-
based, data, instruction-level, pipeline, and bit-
level,

e create customized function units,

e eliminate a significant amount of control cir-
cuitry,

e reduce memory bandwidth requirements,

e size function units to the application’s natural
word size,

e use partial evaluation and constant propagation
to reduce the complexity of operations.

However, this extra performance comes at the cost
of significant work by the compiler. A conserva-
tive estimate for the number of configurable switches
in a 1cm? nanoFabric, including all the overhead
for buffers, clock, power, etc., is on the order of
10!, Even assuming that a compiler manipulates
only standard cells, the complexity of mapping a
circuit design to a nanoFabric will be huge, creat-
ing a compilation scalability problem. Traditional
approaches to place-and-route in particular will not
scale to devices with billions of wires and devices.

In order to exploit the advantages listed above, we
propose a hierarchy of abstract machines that will
hide complexity and provide an intellectual lever for
compiler designers while preserving the advantages
of reconfigurable fabrics. At the highest level is a
split-phase abstract machine (SAM), which allows
a program to be broken up into autonomous units.
Each unit can be individually placed and routed and
then the resulting netlist of preplaced and routed
units can be placed. This hierarchical approach will
allow the CAD tools to scale.

11.1 Split-Phase Abstract Machine

The compilation process starts by partitioning the ap-
plication into a collection of threads. Each thread is
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a sequence of instructions ending in a split-phase op-
eration. An operation is deemed to be a split-phase
operation if it has an unpredictable latency. For ex-
ample, memory references and procedure calls are all
split-phase operations. Therefore, each thread, sim-
ilar in spirit to a threaded abstract machine (TAM)
thread [CGSVE93], communicates with other threads
asynchronously using split-phase operations. This
partitioning allows us to virtualize the hardware (by
swapping threads in and out as necessary), allows the
CAD tools to concentrate on mapping small isolated
netlists, and has all the mechanisms required to sup-
port thread-based parallelism.

Unlike a traditional thread model, where a thread
is associated with a processor when executing, each
SAM thread will be a custom “processor.” While it is
possible for a thread to be complex and load “instruc-
tions” from its local store, the intention is that it re-
mains fairly simple, implementing only a small piece
of a procedure. This allows the threads to act either
in parallel or as a series of sequential processes. It
also reduces the number of timing constraints on the
system, which is vital for increasing defect tolerance
and decreasing compiler complexity.

The SAM model is a simplification of TAM.
A SAM thread/processor is similar to a single-
threaded codeblock in TAM, and memory operations
in SAM are similar to memory operations in Split-C
[CDG™93]. In a sense, SAM will implement (in re-
configurable hardware) active messages [VECGS92]
for all interprocessor communications. This model
is powerful enough to support multithreading. As
the compiler technology becomes more mature, the
inherently parallel nature of the model can be ex-
ploited.

While SAM can support parallel computation, a
parallelizing compiler is not necessary. The perfor-
mance of this model rests on the ability to create cus-
tom processors. A compiler could (and in its first
incarnations will) construct machines in which only
one processor is active at a time.

This also creates the opportunity to virtualize the
entire system. Imagine each configuration of a pro-
cessor as an ultrawide instruction that can be loaded
as needed to virtualize the hardware. The bandwidth
to load these instructions is available since CAEN
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devices can implement very dense customized mem-
ories. Later, as the compiler technology becomes
more mature, the inherently parallel nature of the
model can be exploited.

The SAM model explicitly hides many important
details. For example, it addresses neither dynamic
routing of messages nor allocation of stacks to the
threads. Once an application has been turned into
a set of cooperating SAM threads, it is mapped to
a more concrete architectural model that takes these
issues into account. The mapping process will, when
required, assign local stacks to threads, insert circuits
to handle stack overflow, and create a network for
routing messages with run-time computed addresses.
For messages with addresses known at compile-time,
it will route signals directly.

12 Conclusions

Recent advances in molecular electronics, combined
with increased challenges in semiconductor manu-
facturing, create a new opportunity for computer
architects—the opportunity to recreate computer ar-
chitecture from the ground up. New device charac-
teristics require us to rethink the basic abstraction of
the transistor. New fabrication methods require us
to rethink the basic circuit abstraction. The scale of
the devices and wires allows us to rethink our basic
approach to designing computing systems. On the
one hand, the scale enables huge computing systems
with billions of components. On the other hand, the
scale forces us to rethink the meaning of a working
system; it must be a reliable system made from unre-
liable components.

The main challenge facing designers today is in re-
examining and redefining the core abstractions that
have enabled us to successfully design and imple-
ment computers. One approach to computer archi-
tecture is to view it as a hierarchy of abstractions.
The bottom layer of one possible hierarchy is the
device—currently the transistor. Built on the de-
vice layer is the abstraction of the logic gate (e.g.,
a NAND gate). On top of this, we have circuits and
then function units (e.g., adders and state machines).
Above function units, we have the instruction set ar-
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chitecture that defines the interface between the hard-
ware and the software in a computing system. Above
these layers there are computing models, algorithms,
and programming languages. A hierarchy of abstrac-
tions implies a contract between layers in the hier-
archy. The contract allows one to change the inter-
nals of any particular layer without adversely affect-
ing the entire system. It allows many people to si-
multaneously work on advancing the state of the art.
The advances in computing power over the last few
decades are an excellent example of the effectiveness
of this hierarchy of abstractions—almost without ex-
ception, advances have been made without having to
break the abstractions.

On the other hand, sometimes one must intention-
ally break the contracts, either by piercing the ab-
stractions or by creating new ones. When done care-
fully the results can be dramatic. Molecular com-
puting may be a case where a reexamination of the
layers of abstraction is required. For example, as
we have shown earlier, the fundamental device ab-
straction may be too rigid for nanometer-scale de-
vices. Decomposing the device abstraction into four
components—a switch, an isolator, a restorer, and a
memory (SirM)—provides device designers and cir-
cuit designers alike with a new degree of freedom.

SirM is an example of the easiest kind of change
to the abstraction hierarchy. It can be thought of as
a new layer between the new physical devices and
today’s abstraction of a transistor. In other words, a
“transistor”-like contract can be established by com-
bining the proper switch, isolator, and restorer de-
vices all together. Therefore, we are able to maintain
the current abstraction, providing backward compat-
ibility for tools and ideas while providing the oppor-
tunity to pierce the transistor abstraction when nec-
essary. This provides the design community with an
incremental path toward harnessing the underlying
devices directly. Furthermore, it oes not change any
of the contracts with other layers in the hierarchy.

A more difficult change to work into the abstrac-
tion hierarchy is wrought by the level of manufac-
turing defects and transient faults expected to arise
from using nanometer scale devices. It is probably
not reasonable to maintain the defect- and fault-free
clause in the contract expected from today’s devices
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and circuits. We have argued in this chapter that ex-
posing the defects in the manufacturing process to
the higher levels in the hierarchy may reduce the to-
tal cost of the system. It may also be significantly
easier to mask defects and faults from the end-user
if each layer is expected to do some of the work.
With respect to defect tolerance, a combined attack
at the levels of circuits, architecture, and tools may
be the only scalable approach. Reconfigurable archi-
tectures allow one to configure a hardware system to
implement a particular circuit. By avoiding the faulty
components, one may create reliable systems using
unreliable components. This requires changes in ar-
chitecture, circuit design, testing, and the tools used
to create the circuits from an engineer’s description.

One way to reduce the impact of a change in the
abstraction hierarchy is to encapsulate the change in
a tool. For example, one can present the abstraction
of a fault-free manufacturing process if the tools that
convert circuit descriptions to circuit layout imple-
ment all the changes necessary to perform defect tol-
erance. By encapsulating the details in a tool, we
obtain the intellectual leverage of hiding the imple-
mentation details while at the same obtaining the ad-
vantage of piercing the abstraction layer.

We believe that successfully harnessing the power
of molecular computing requires us to rethink sev-
eral key abstractions: the transistor, the circuit, and
the ISA. As we noted earlier, we feel that the abstrac-
tion of the transistor should be replaced by SirM. The
abstraction that a user’s desired circuit is created at
manufacturing time needs to be replaced by the abil-
ity to configure circuits at run-time. Finally, the ab-
straction of an ISA needs to be replaced with a more
flexible hardware/software interface implemented in
the compiler.

In just the last couple of years, there has been
a convergence in molecular-scale architectures to-
wards reconfigurable platforms. In the nanoFabric,
the main computing element is a molecular-based re-
configurable switch. We exploit the reconfigurable
nature of the nanoFabric to provide defect tolerance
and to support reconfigurable computing. Reconfig-
urable computing not only offers the promise of in-
creased performance but it also amortizes the cost
of chip manufacturing across many users by allow-
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ing circuits to be configured postfabrication. The
molecular-based switch eliminates much of the over-
head needed to support reconfiguration—the switch
holds its own state and can be programmed without
extra wires, making nanoFabrics ideal for reconfig-
urable computing.

The notion of an ISA is very successful in hiding
the details of a processor implementation from the
user of a processor. However, it also limits the abil-
ity of a compiler to take full advantage of the proces-
sor. ISAs were created when computers were pro-
grammed by hand. They were therefore designed to
be easily understandable by humans. Today, com-
puters are programmed using high-level languages
that are then translated by compilers into the machine
level instructions that control the computer. There-
fore, there is less of a need to make an ISA con-
cise and easy to understand. We argue that harness-
ing the plentiful resources that will become available
through molecular computing will require exposing
more of the underlying computational structure to
the compiler. In addition, by exposing more of the
underlying architecture, it should be easier for the
compiler to support increased levels of defect and
fault tolerance.

In conclusion, we believe that computer archi-
tecture is presently faced with an incredible op-
portunity, an opportunity to harness the power of
molecular computing to create computing systems
of unprecedented performance per dollar. To realize
this promise, we need to rethink the basic abstrac-
tions that comprise a computer system. Just as cur-
rent systems benefited greatly from the underlying
technology—the silicon-based transistor—new sys-
tems will benefit from the molecular reconfigurable
switch. This can serve as the basis for a recon-
figurable computing system that can construct cus-
tomized circuits tailored on the fly for every applica-
tion.
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