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. tonstruction of a very simple elecironic device, 5 rectifier, based on the use af a sigle organic molecule s

- The molecular rectifier congists of dinor pi system and an acceptor pisysten, separated by a sigma-

d fmethylene) tunnefling bridge. The response af sueh o moleculs to an applied field is calenlated, and rectifier
properties indeed appear,

iduction 2. Architecture of the rectifier cireuit

endous improvements in reliability com-
versatility and range of electronic circuitry
videspread manufacture and use of solid-

s constitutes perhaps the major technologi-
€ of the past quarter century. Within biologi-
; hﬂwu'mr, some Lasks performed by solid-

s in electronic applications are performed,

Common solid-state rectifiers are based on the use
of p—n junctions. An organic molecule, to show recti-
fier properties, should have roughly the properties of
4 p—n junction. By the use of substituent Zroups on
arontic systems, it 5 possible to increase or decrease
the pi electron density within the organic, and there-
_ fare to create relatively electron-poor (p-type) ar
¥ organic molecules; such tasks include electron-rich (n-type) molecular subunits, Those sub-
transfer both of enerpy and of electrons. stituents classified as electron withdrawing (that is,
nsuggested occasionally [1] that the develop-  showing positive Hammett constants) [4] will cavse
nthetic electronic devices based on organics their aromalic subunit to become relatively poor in pi
ted: Particular interest has heen evinced electron density, thus raising the electron affinity and
gently in the use of organic crystals both as semi- making the subunit 4 good electron acceptor, Con-
ors [2] and as possible superconductors [3]- versely, electron-releasing substituents will increase
10 us reasonable to examine the potential use the pi-clectron density, thereby lowering the ioniza-
Cules as components of electronic circuitry hy tion potential and rendering the subunit a good elee-

B,05 3 starl, at the current —voltage characteris-
asingle molecule scting as a rectifier.

g article we present semiguantitative calcula-
are intended to demonstrate the feasibility
molecular device.

Sloan Foundation Fellaw,

tron donor |37,

Certain solids, the so-called charge-transfer crystals,
show high electronic conductivity and spin susceptibi-
lity due to the donor—acceptor transfer of electrons
[8]. This electron motion suggests that a rectifier
could be buill in which electrons would be allowed to
pass from a cathode to an acceptar site or from a
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Fig. 1. An exampleof a hemiguinone.

donor gile to an anode, hut pot in the other sense. 11
however, the electronic systems of the donor and ac-
ceplor molecular subunits are allowed to interact
stronply with one another, a single donor level will
exist on the lime-scale of any laboratory experiment
[2]. Therefore, the donor and sceeptor sites should

he elfectively insulaled from one another in order for
the device to Tunction, This cen be accomplished by
the use of 4 sigrma-electron system between the donor
and acceptor pi subunits®. Such o molecule, illustrited
in f1g. 1, might then be expected to show rectifier
properties; electron current would be expected (o pass
only from left to nght in the figure, along the system
cathode = acceptor —= donor —= anode. The hemi-
quinone molecule shown in hig. 1 may be used asa
prototype for understanding rectifier behavior. The
quing (=) groups on the left decrease the pi density
and raise the electron affinity, whereas the methoxy
(- OCHy} groups on the right increase pi density and
lower ionization potential, Fig. 2 shows a similar mole-
cule based on the extremely popular acceptor tetra-
cyanoguinodimethane (TCNG) and the donor letra-
thiofulvalene (TTF). In this case, we have indlcated a
triple, rather than single, methylene (—CH,— ) bridge;
this will help ensure molecular rigidity. We will refer
to the methyvlene bridge as a £ bridge henceforth. lis
purpose is to cause the pilevels of the donor and ae-
ceplor sites to be essentially non-interaeting on the
time-scale of electronic motion to or from the elee-
trodes,

To describe simply the response of such o molecular
rectifier circuit to an ac signal, we will employ an in-
dependent-particle picture for the pi electrans, The
empty orbital which accepts electrany from the
cathode will be called the affinity state. [n the free

* Compurs, ¢.¢., the beautiful experimental wark on photo-
electron spectra of methylene-bridged aromatics by
Berkowitz et al, [10], and relsted papers.
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donor aceeptor malécules of the type shown in fig]
and 2, the eleetron affinity of the acceptor will bed
order | —2.5 valt, while the ionization polential ofth
donor will be of order 69 volt, These values are
siderably modified in crysials [3], u5 we might
Lherm 1o be io o rectifier cirouit, due Lo interag
with ather {in our case metallic ¢lectrode) elects
states; For proper rectifier behavior we require thet
finity level of the acceptor to be cither totally o pi
tially empty, and He at or slightly above the Fzrnﬂ,
level ol the clectrode (and of course above the ioni
leval C of the donor) as shown in fig, 3.

Figs, 4 and 6 demonstrate the passage of electnt
curprent from cathode (o anodeand the non-condas
tinn of current on reversal of polarity; that is, they
show the rectifier property of the molecule, As'sil
as the applied field becomes large envugh for the
cathoda levels to overlap the accepror levels in fig#
electron transfer anto the acceptor becomes
The threshald for this process will depend on
factors, principally the affinity perturbed level s
£y and the work function ¢. A similar process o
at the donor end, where electron transfer from
donor orbital T tooanede becomes possible when the
applied voltage V> IP — ¢, where 1P is the donor
ionizgation potential, Motion of electrons from et
ta donor will sccur under the action of the feld. T
(now veeupied) affinity level and the hole left ond
ionized donar are sufficiently close in energy that®
electron tunneling process will oceur: the tun
width can be of the order of 10-5000 em~1.
tunneling is generally inelastic as can be observed
plancing at fip. 3. The charged acceptor contal
electron in orhital B, {in the graund vibrationa
that tunnels with conservation of energy to thed
orbital C at the donor site. Except in cases of e
transier, the level B will lie ahove C, sothat € 1t
prepared in anexcited Franck—Condon stute, whid
will tlen decay radiationlessly [11]. This processis
clearly irreversible so long as B lies above C.

We thus think of current passage through our s
ficr molecule asa three-step equivaleni-resistance
Kirchoff net, with the three steps being cathodz to
acceptor, acceptor to donor and donor to anode
transfers, Thus when polarity is reversed as sh
fig. 6 level I would have to be lowered to the F
level oof the metal on the right and the Fermil
the metal on the left would have to be lowered
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5. As can be seen from the figure, the thresh-
r this process should be relatively high,
e an additional mechanism for condue-

s direction that has to be taken into ac-

first step of this mechanism involves an in-
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Fig. 2. An example of & rectifier moleculs.

Fiz. 5. Internal tunneting,

volves & threshold voltage, since it is imperative that
the danor highest oceupied maolecular orbital C, on
the right, be cnergetically at ar above the acceptor 7
aftinity orbital B, before tunmeling would acour, 1t is
the nenreversibility of the internal tunneling (for
small applied felds) thar vields the rectification
properties of these molecules. [t s thus possible to
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design materials that would leve a larger threshold
voltage for conduction in one direction than for the
other direction; that is, rectifiers.

3. Calculations

The passage of electric current through @ molecular
systern can generally be considerad simply from the
viewpoint of perturbation thecry, with the total
malecular wavefunction perturbed by the applied
field. [n the case of our A - Z--D system, however, the
T bridae affectively separates the pi units, and the
concept of a total nolecule wavefunction to describe
the response to an external field is no longer necessasi-
ly the most convenient starting point, Instead, we now
choose to consider the three steps of cathode —= A,
A-= I =0, and D —anode a5 processes in an equiv-
alent resistance network: arguments for the use of this
method have been given by Maott and Twose,
Kirkpatrick and others [12]. The essential reason for
the use af this model is really based on time-scales;
the electrode and bridpge processes oceur on such dif-
ferent time-scales that each one is really not dynami-
cally caupled to the others. We will also choose Lo ig-
nore, in our present ceude independent-particle de-
seription, any direct excitonic inleractions il the
donter hole with the acceptor eleciron, The electronic
elpenenergies (donor acceptor levels) as well as the ef-
fective tunncling matrix-elements can be roughly
estimated using sell-consistent Geld molecular orbital
caleulations. Alternatively, and preferably, these fevels
can be found from photeelectron spectra of the mole-
cule. Dur 8CF ealculations, which were carricd out
for the melecule of fig. 1 using the INDO semi-empiri-
cal method [13], give rough ane-clectron energies for
the molecule alone; interaction shifts and broadening
musl then be added.

3.4, The cathode —= acoeptor siep

To estimate the rate of this transition in an applied
field, we have employed a variant of the transfer-
hamiltonian method originally proposed by Oppen-
heimer [14] to treat ffeld ionization. lo this method,
the expression {or the transition probability per unit
time is simply
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Here | /7 is the final eigenstate (in our case, the
vibronic slate on the Asite), |03 is the initia
state (the metallic wavefunction), and the elr_:
field of strength F is directed along the zaxs
[15] hasshown the eguivalenceof (1) to Ba
colculation of junction tunneling [16]. The o
lerence between (1) and the usual golden-rule
that | 3 is associated with the unperturbed hamsl
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the electronic hamiltonian of the éntire molecule as

Hy=Hp +H, + Vs {4)
E 2 Lic s a ek, ()
EDjEA

The H, and Hyy are the subunit electronic hamiltonians
for the A, D ends, and ol coorse nclude two-electron
terms, The ¢, 7 in (5) run over the one-electron pi states
of the donor and the acceptorT, respectively: Tj isan
effective one-electron transfer, or tunneling matrix
clement, and & is a Fermion création operator for or-
bital f, Using simple molecular-orbital splitting con-
siderations (or, more elaborately, a canonical trans-
formation), the size of the tunneling elements Ty can
be estimated from separate SCF-tvpe caleulations on
D, on A, and on A—Z-D, The element Ty, was
evaluated in this fashion for the molecule of fig. |
using the INDO parametrization, and found to be
360 em— !, While this is certainly not quantitatively
correct, it is in qualitative-agrezament with expecta-
tions as to the transfer probability for a  bridge, and
we will use it without further correction®®

When the rectifier molecule is placed between
electrodes, the one-electron levels will, as stated above,
shift and broaden. The transfer probability for an
electron passing from A to T will still be proportional
L0 |T33|11 but it will alse contain density-of-states fac-
tors on the final state, as well as Franck—Condon fac-
tors describing the possibility of inelastic transfer,
Both the electronie changes and the vibronic factors
were discussed ahove in connection with cathode —=
acceptor motion.

3.3, Donor = anode mofion

This is treated in g transfer-hamiltonian procedure,
very similar to the cathode -» acceptor calculation.
4, Results

A current—voltape charscteristic can be caleulated
along the lines described above. The true characteristic

1 We have assumed that the f,j states are approximately or-
thoganal, 50 that |ag, 2] |+ = 8L
T The n—2 —= idea was first suggested to us by P.E. Seiden.
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Fig, 7. 1- ¥ characteristics of o moleculis rectifier including
direet electrode to electrade tunneling, { in Afem?, Vin volt,
EA ageeptor = 5.0 ¢V, IP donor = 5.3 ¥V, =51 &V.

of such a cireuit, however, will contsin ather contri-
butions to the current. These might include surface
Lerms and direct passape due to inhomaogeneous pre-
pacation of the molecular laver, both of which could
be difficult experimental prablems but will be ignored
here. Another possible contributor would be direct
tunneling of electrons from electrode tio electrode
with the sigma netwark as a barrier. This last contri-
bution is rather difficult to caleulate. Kuhn [22], in
an elegant series of experiments, has measured the
direct conductivity of molecular films of fatty acids,
using a Langmuir—Blodgett film with a vapor-
deposited electrode. We have compared the direct
passage current with that expecied by pielectron
maotion in the rectifier, and it appears clear that the
direct transmission contribution will be small com-
pared to the rectifier current.
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sions on the concept of molecular rectifiers w

or 2

In fig. 7 we have presented the calculated [
characteristic for arbitrary chojces of donor ion
potential, acceptor electron affinity, and electrof
work function, More complete caleulations, fn
& discussion of the dependence of the curren
parameters, will be published subsequently
portant observation to he made about the pra
result is that there is indeed 4 rectification evid
that is, current passes preferentially to the righ
1 and 2, The threshold potential for passage
is determined essentially by the vollage at which
meaningful overlap of the broadened states [Blg
[C and the respective merallic states oceur, |
case, the broadening has been found to he ne
due to the large distance from the electrode,
the I—F curve is nearly discontinuous near the
For larger broadening, this onset of current
become smoother. IF the reverse voltage is pu
high enough, current will indeed begin to Mow {8
the pi system from anode to cathode; for the pre
choice uf parameters, this occurs at an applie
of 10,35 voll,

A large number of materials and synthesis
meust, clearly, be overcome before such o mo
electronic device can be testad in the laborato
forts towards the solution of these problems
presently under way., [n addition, there are s
serious drawhacks to the present semiquantitat
treatment. ineluding neglect of direct energy tn
from D ro A (this can, however, be minimizadi
geometry is chosen properly), possible Juh
effects, difficultics with electrode polarization,
particularly, electron correlation effeets, So
these will be corrected in further work, Thee
point 1o he made, however, is that these cale
seem 1o verify that a properly constructed si
ganic molecule can indeed exhibit useful devicen
ties. [n turn, such properties may aid in our furth
understanding of the molecular electronic strocim
nf these molecules.
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