15-398 Introduction to Nanotechnology

Making Nanoparticles

Seth Copen Goldstein seth@cs.cmu.edu CMU

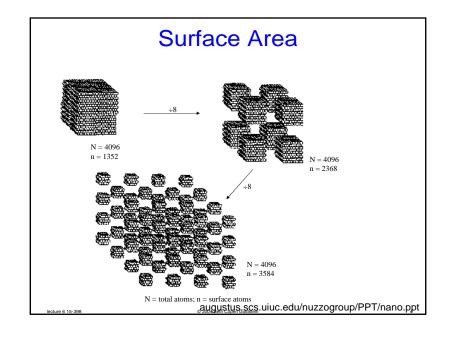
actura 6 15,308

2004 Seth Copen Goldstein

Today

- Nanoparticles
- Manufacturing
 - Ball Milling
 - Plasma Arcing
 - CVD
 - Sol-Gels
 - Electrodeposition

6 15-398


© 2004 Seth Copen Goldstein

Nanoparticles

- Nanoparticles are simply particles that have nanoscale dimensions
- They can be organic or inorganic
 - $\boldsymbol{\cdot}$ Combustion produces organic nanoparticles
 - · Inorganic nanoparticles, e.g., Gold
- Basis for many interesting applications
- Different from bulk material mostly due to surface/volume ratio

lecture 6 15-39

© 2004 Seth Copen Goldstein

Nanoparticle Uses

- Basis for creating other more complex nanostructured materials
- · High surface area/volume ratio
 - Insulators
 - Catalysts
 - Energy storage
- Coatings
 - Transparant
 - Flexible
- Encapsulators
- Additives to form composites

Ball Milling

- Mechanical crushing of solid into nanocrystallites
- Inexpensive (read "commercial process")
- As product is made, one key is to keep it

from reacting with itself

Old process

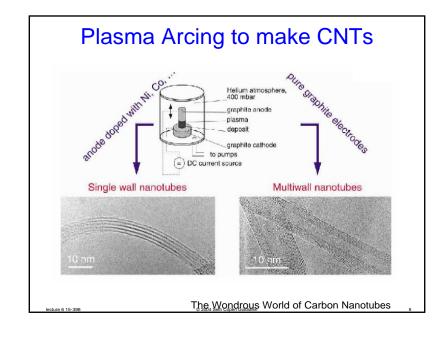
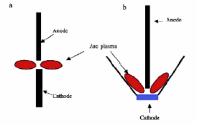


Figure 3: A ball mill being used as part of a gold mining operation in Arequipa, Peru http://www.itdg.org/html/technical_enquiries/docs/mineral_processing_milling.pdf

Plasma Arcing

- Create particles by vaporizing an electrode using a voltage difference (>20V) at a high current (> 50A).
- The atoms in electrode are ionized and leave the anode and are deposited on the cathode.
- The ions usually pass through an inert gas (e.g., helium or argon)
- Often the anode is doped with a catalyst

ecture 6 15-398 © 2004 Seth Copen Goldstein

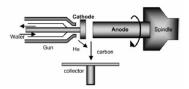


Plasma Arcing Parameters

- Anode catalyst
- Pressure
- · Kind of gas
- · Anode-to-cathode distance

· Current, voltage ^a

- Kind of metal
- geometery

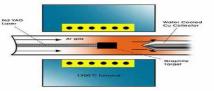


lecture 6 15-398

04 Seth Copen Goldstein

Related to Plasma Arcing

- · Rotating Electrode System
 - Increase pressure
 - Evenly distributes discharges


- Flame Ionization
 - Spray material into flame
 - lons produced

lecture 6 15-398

© 2004 Seth Copen Goldstei

Laser Ablation

- Used by Smalley et al to make CNTs
- Laser vaporizes graphite target @ 1200°C
- As carbon vapor cools -> clusters are formed.
- Catalysts help to form open structures

Chemical Vapor Deposition (CVD)

 Deposit a material (chemical precursor) in gas phase onto a solid surface

Metal-Organic-CVD

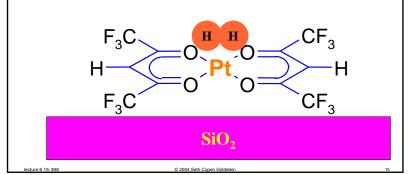
- MOCVD uses a precursor that is a metal surrounded by organic ligands
- E.g., Pt(hfac)2 complex, or
- bis(hexafluoroacetylacetonate) platinum.

$$F_3C$$
 O
 O
 CF_3
 F_3C
 O
 CF_3
 CF_3

lecture 6 15-39

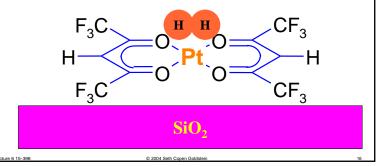
Seth Copen Goldstein

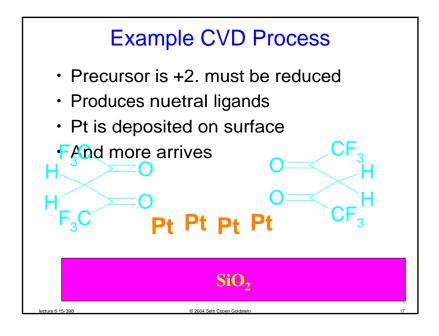
Why MO?

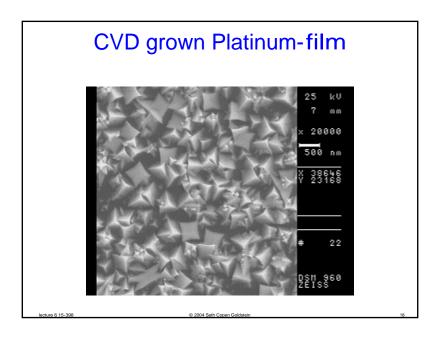

- Metal generally solid at room temp
- However, the non-polar organic ligands greatly reduce the intermolecular forces -> easier to vaporize
- Also, readily decomposes on substrate - in this case SiO₂

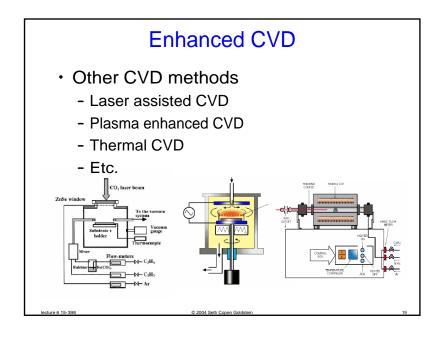
lecture 6 15-398

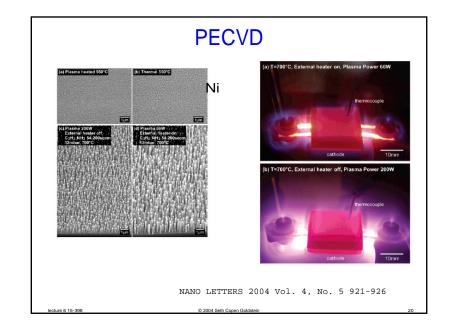
© 2004 Seth Copen Goldstein

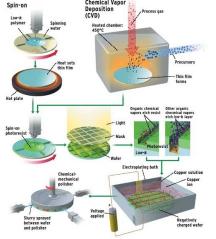

Example CVD Process


· Precursor is +2. must be reduced




Example CVD Process


- Precursor is +2. must be reduced
- Produces nuetral ligands
- · Pt is deposited on surface



CVD & Spin-on in Chip Fab

 Used to create thin film, e.g., for use as a dielectric

 CVD used for many layers

http://www.spectrum.ieee.org/WEBONLY/publicfeature/feb03/filmf3.html

CVD Parameters

- Volatility of precursor
- Ease of decomposition & volatility of fragments
- Relative concentration
- Catalyst on target surface
- · Arrangement of surface
- Temperature
- Pressure

2004 Seth Conen Goldstein

Sol-Gels

- Start with precursor
- Form Solution (e.g., hydrolysis)
- Form Gel (e.g., dehydration)
- Then form final product
 - Aerogel (rapid drying)
 - Thin-films (spin/dip)

© 2004 Seth Copen Goldstein

Sol of Sol-Gel

- Suspension (By brownian motion and/or charge) of solid particles in a solution
- Form Sol from a precursor (e.g., TMOS or TEOS)
- Add: water, cosolvent, acid catalyst
- Hydrolysis occurs
- Condensation occurs resulting in a sol with different polymeric structures
 - Linear, clusters, colloids, chains

lecture 6 15-398

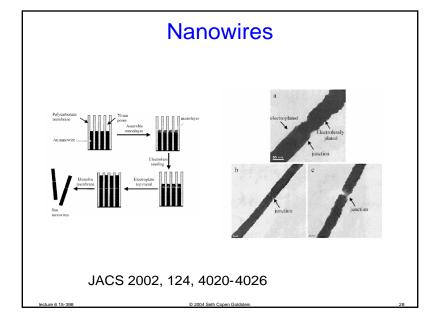
2004 Seth Copen Goldstein

Gel of Sol-Gel

- Gel is a solid network containing liquid components
- · Sol becomes gel
- · Gel can be molded, etc.
- Remove solution to create final product
 - Spinning
 - Drying
 - Mold
 - electrophoresis

lecture 6 15-30

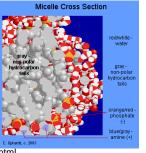
2004 Seth Copen Golds


Parameters to Sol-Gel

- Materials
- Relative Concentrations
- Ph
- Temperature
- Time of reaction
- ...

lecture 6 15-308

© 2004 Seth Copen Gold


• Or, electroplating Nano Let, Vol 3, No 7, 920

lecture 5

Terms For Natural Particles

- Surfactants: A substance that lowers the surface tension of a solvent (e.g., soap on water)
 - Usually amphiphilic linear molecule (.e.g., with hydrophobic/phillic ends)
- Micelles: aggregate formed by, e.g., amphiphilic molecules in aqueous environment.

http://www.elmhurst.edu/~chm/vchembook/558micelle.html

Next Time

- Today
 - Bottom-up manufacturing of particles
- Next Time
 - Nanomolding fab
 - Making synthetic gecko hair
 - · Read paper on web
 - Write ~1/2 page summary
 - · Email to me

lecture 6 15-398

2004 Seth Copen Goldstei

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.