Feynman's vision

Seth Copen Goldstein Seth@cs.cmu.Edu

CMU

lecture 2 © 2004 Seth Copen Goldstein

Motor < 1/64th of an inch

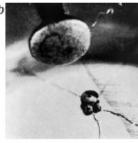
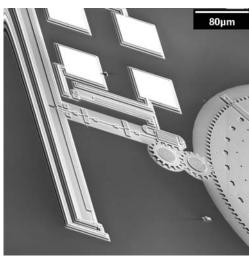
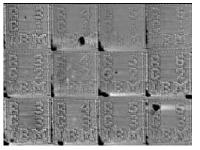
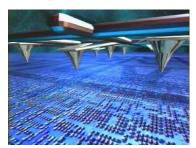



Figure 1. (a) Richard Feynman viewing the micromotor built by William McLellan (left) who won the challenge to build the first motor smaller than 1/64th of an inch. (b) The motor, 3.81 mm wide, photographed under an optical microscope. The huge object above it is the head of a pin. (Picture credit: Calfech Archives)

lecture 2 © 2004 Seth Copen Goldstein 2

MEMS/NEMS Motors





http://www.sfu.ca/immr/gallery/motors.html

Information density

- 1985 using e-beam, "Tale of two cities" inscribed in 1/160mm per side
- Magnetic Disks can approach 60Gbit/in²
- AFM based work at IBM gets 4006bit/in²

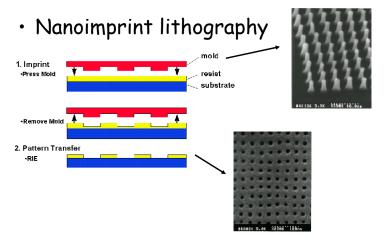
lecture 2 http://www.zurich.ibm.com/st/storage/millipede.html

lecture 2 © 2004 Seth Copen Goldstein

4

AFM based approach

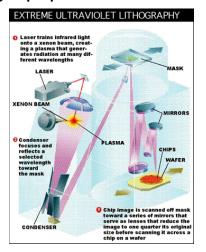
- Use afm tip to make holes in plastic
- · Write:
 - Heat the tip to make a dent
 - thermomechanical system
- · Read:
 - Scan with moderately heated tip
 - Detect changes in efficiency of thermal conductance (through changes in resistance) to indicate presence of a dent.
- Slow, but use lots of tips


cture 2 © 2004 Seth Copen Goldstein

Size of all info (1015 bits?)

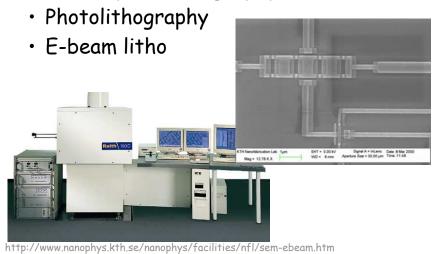
- Using AFM tip:
 - 10¹⁵ / 400*10⁹
 - = 2500 sq in. / 93.5
 - = 26 pages
 - ~40nm×40nm per bit
 - = 70K atoms per bit
- Using molecular memories/crossbars
 - Fabricated as by HP/UCLA
 - Similar bit density

lecture 2 © 2004 Seth Copen Goldstein


Writing the bits

http://www.princeton.edu/~chouweb/newproject/page3.html

Writing the bits


- Nanoimprint lithography
- Photolithography

lecture 2 © 2004 Seth Copen Goldstein 7 lecture 2 © 2004 Seth Copen Goldstein

Writing the bits

Nanoimprint lithography

Bio

© 2004 Seth Copen Goldstein

- Inspired by us!
- But, be careful with biomimetic approaches

Bio-inspiration

- Biology is one of the main inspirations for all nanotechnologists
- Self-assembly
 - Protein formation
 - differentiation
- Density of information
 - 1 base pair 2-3nm
 - 50 atoms per bit

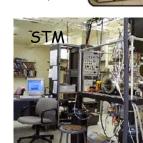
SEM

- Energy system
 - Atp motor

ture 2 - Ion pumps

© 2004 Seth Copen Goldstein

A Better Microscope


· TEM

· STM

· AFM

http://www.semitech.ee.ttu.edu/html/facilitye/tomsettle-copen Goldstalttp://sibener-group.uchicago.edu/facilities.htm

lecture 2 © 2004 Seth Copen Goldstein

l Seth Copen Goldstein

Size/parallelism/scale

- The $\frac{1}{4}$ $\frac{1}{4}$ argument?
- Precision and scaling
- What are some ways to deal with imprecision?
- · Are things really the same, only smaller?
 - Surface/volume
 - Van der walls (α r⁻⁶)
 - Quantization
 - Thermal
 - · Conductance
 - Adsorbtion

© 2004 Seth Copen Goldstein

Nanomedicine

- · Not exactly nano, ...
- Cancer treatments based on nanoparticle

lecture 2 © 2004 Seth Copen Goldstein 14

Molecular Manufacturing

- The drexlarian nanotechnology
- Placement of individual atoms
- Is this possible?
- If so, what are the benefits?

Plan

- Introduction
- · Feynman's lecture
- · Forces at the nanoscale
- More Forces
- Microscopy (SEM, TEM, AFM, STM)
- · no class on 9/16
- manipulation (AFM/STM/other)
- · nanomaterials
- guest lecture (materials)

 lecture 2
 © 2004 Seth Copen Goldstein
 15
 lecture 2
 © 2004 Seth Copen Goldstein
 16

Plan

- · CNT
- nanoelectronics (devices)
- nanoelectronics (wires & assembly)
- guest lecture (vlsi)
- nanocomputing
- design space 1
- · nano/bio
- molecular machines
- bottom-up/self-assembly
- ethics

lecture 2 © 2004 Seth Copen Goldstein

For next time

- Read chapter 1 of "Nanotechnology: Basic Science and Emerging Technologies" by Mick Wilson et al., CRC Press (2002)
- Begin design space exploration
 - Create a web page with links to 10 different companies pursuing nanotechnology. For each provide a brief summary of what they are doing and what forces, size scales, manufacturing methods, etc. they are exploiting

Plan

- ethics
- · design space 2
- · quest lecture
- · quest lecture
- light and the nanoscale
- · design space 3
- · swarms
- projects

lecture 2 © 2004 Seth Copen Goldstein 18

Mechanics of submission

 Send Brent a link to your page by Monday 5pm. He will link all the pages together and look at them before class.

 lecture 2
 © 2004 Seth Copen Goldstein
 19
 lecture 2
 © 2004 Seth Copen Goldstein
 20