Introduction to Nanotechnology


Seth Copen Goldstein Seth@cs.cmu.Edu

CMU

lecture 1 © 2004 Seth Copen Goldstein

What is "nano" 100m 10m 1m 10-1m 10-2m 10-3m http://www.powersof10.com/

What is "nano" | Image: Control of the control of

© 2004 Seth Copen Goldstein

Nanotechnology, a definition

- American Heritage Dictionary
 "The science and technology of
 building electronic circuits and
 devices from single atoms and
 molecules."
- Wordnet
 "the branch of engineering that deals with things smaller than 100 nanometers (especially with the manipulation of individual molecules)"

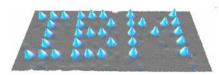
lecture 1 © 2004 Seth Copen Goldstein

Ancient History of Nanotech?

- ~400BC, Atoms [Democritus of Abdera]
- ~500AD, glazes [artisan in Mesopotamia]
- 1661, elements [Boyle]
- 1803, atomic theory [Dalton]
- 1869, periodic table [Mendeleyev]
- 1915, Bohr Model [Bohr]
- 1920, carbon black

Definitions continued

- M. Rocco, NSF
 "the ability to work at the molecular level, atom by atom, to create large structures with fundamentally new properties and functions"
- · NASA

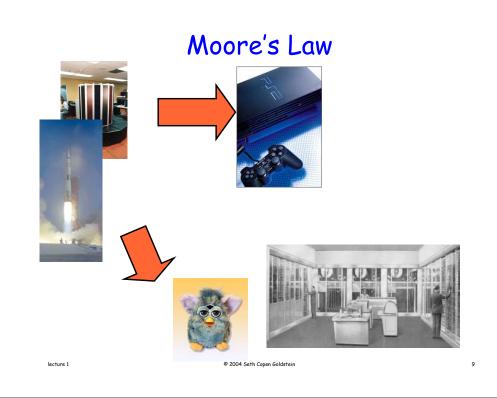

"the creation of functional materials, devices and systems through control of matter on the nanometer length scale (1-100 nanometers), and exploitation of novel phenomena and properties (physical, chemical, biological) at that length scale"

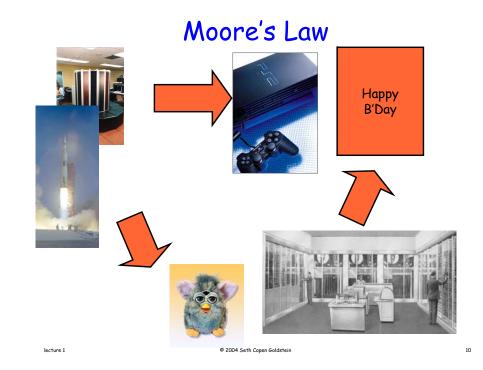
lecture 1

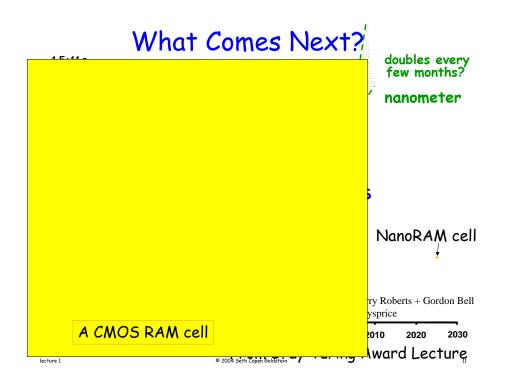
© 2004 Seth Copen Goldstein

Modern history of nanotech

- 1959, Feynman's talk "There is plenty of room at the bottom"
- 1965, Moore's original paper
- 1981, Drexler began popularizing
- 1984, invention of STM [Binning]
- 1985, discovery of fullerens [smalley]
- 1990, IBM written in Xenon

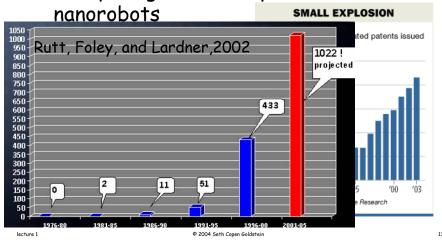

lecture 1


© 2004 Seth Copen Goldsteir

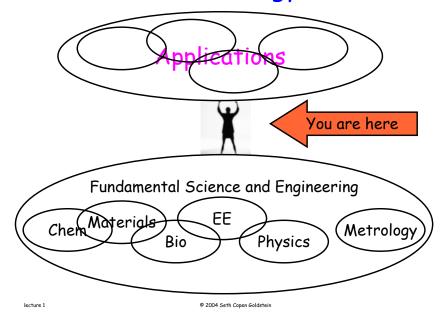

lecture 1

© 2004 Seth Copen Goldstei

8


Technology Shifts

- · Size of Devices
 - ⇒ Inches to Microns to Nanometers
- Type of Interconnect
 - ⇒ Rods to Lithowires to Nanowires
- Method of Fabrication
 - ⇒ Hammers to Light to Self-Assembly
- Largest Sustainable System
 - \Rightarrow 10¹ to 10⁸ to 10¹²
- Reliability
 - ⇒ Bad to Excellent to Unknown


lecture 1 © 2004 Seth Copen Goldstein

Commercialization

- By 2015 predicted to be >10¹² dollars
- · Everything from nanoparticles to

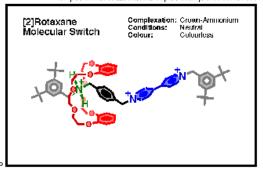
What Nanotechnology means to x



One Course Goal

- Understand what is important to you
 - Read literature in related fields
 - Understand relevance to your research
- Understand importance to others

Biology


- · DNA/RNA
 - 2-3nm per base pair
 - 109 base pairs for human genome
- Proteins
 - 100K different in human
 - "self-assembles"
- · DNA-computing
- DNA-based self-assembly
- ATP motors

Chemistry

- Molecular diodes
- Molecular switches
- Block Polymers
- Fluidic self-assembly

Molecular design

http://www.chem.ucla.edu/dept/Faculty/stoddart/reser

lecture 1

lecture 1 © 2004 Seth Copen Goldstein 18

Physics

Materials

- · Carbon Nanotubes
- Multifunctional materials
- Smart materials
- Nanostructured catalysts

Electrical Engineering

- · VLSI
- Lithography
 - Top-down assembly

Quantum mechanics

Scattering

- Easily to 65nm, controlled gates to 15nm,
- Thicknesses to sub-1nm!
- Transistor
- · Electronic nanotechnology
- Nanocomputing

 lecture 1
 © 2004 Seth Copen Goldstein
 19
 lecture 1
 © 2004 Seth Copen Goldstein
 20

Robotics

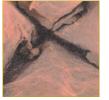
- Integration
- Actuation (e.g., surface tension)
- Power systems
- Sensing
- Emergent behavior

Sociology

- Disruptive technology
- Changes in social fabric
- · Work habits
- Life expectancy
- Understanding fear

 lecture 1
 © 2004 Seth Copen Goldstein
 21
 lecture 1
 © 2004 Seth Copen Goldstein
 21

Policy

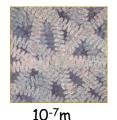

- Controlling & aiding research
- · Risk of accidental or intentional harm
- Training and education
- Environmental impact
- · What to fund

What is Nanotechnology?

- Does anyone really know?
- Another goal of the course, determine precisely what nanotech is

 lecture 1
 © 2004 Seth Copen Goldstein
 23
 lecture 1
 © 2004 Seth Copen Goldstein
 24

What is "nano"



10⁻⁴m 10⁻

10⁻⁶m

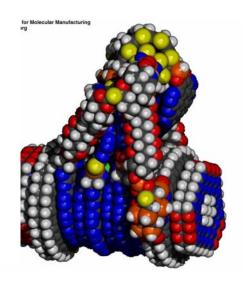
10⁻⁸m

10⁻⁹m

http://www.powersof10.com/

lecture 1 © 2004 Seth Copen Goldstein

lecture 1

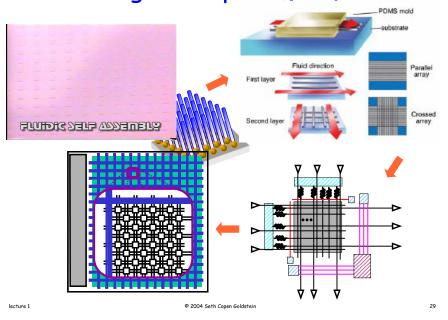

© 2004 Seth Copen Goldstein

What is "nano"

- Surface to volume ration is different
- Individual atoms are important
- · Forces/effects are new
 - Quantum
 - Van der Walls
 - Brownian
 - Electrostatic
- E.g., how fast is the speed of sound

Is this nano?

 A motion controller for nanoassembly


Building a Computing Crystal

Or, is this nano?

 lecture 1
 © 2004 Seth Copen Goldstein
 27
 lecture 1
 © 2004 Seth Copen Goldstein

Building a Computing Crystal

Defining Nanotechnology

- · Why?
 - Asilomar conference of 1975 for biotech
 - Funding priorities
- · How?
 - First, describe design space
 - Then, linearlize

lecture 1 © 2004 Seth Copen Goldstein 30

The Nano design space

- · Length scale
- · Dimensions controlled
- Types of materials used
- Dynamic or static end-product
- Assembly method
 - bottom-up
 - Top-down
 - Deterministic or self-assembly
- Forces harnessed

Course Structure

- Lectures
- Participation
- Readings
- · Reviews
- Projects

 lecture 1
 © 2004 Seth Copen Goldstein
 31
 lecture 1
 © 2004 Seth Copen Goldstein
 32

Topics Covered

- General nanotechnology
- Electronic nanotechnology
- Bottom-up/self-assembly
- · Tools
- Nanorobotics
- Self-organization
- Policy

For Next Time

- Read Feynman's lecture "There is plenty of room at the bottom" www.zyvex.com/nanotech/feynman.html
- Write $\frac{1}{2}$ page about above
- Email pdf to seth@cs.cmu.edu before Wed Midnight
- Email me brief background and what you want to get out of this course

 lecture 1
 © 2004 Seth Copen Goldstein
 33
 lecture 1
 © 2004 Seth Copen Goldstein
 3