
Assignment 1
Computer Vision 15–385, Spring 12

Due Date: Tuesday 02/14/2012
Total Points: 110

In this assignment you will be implementing some basic image processing algorithms and
putting them together to build a Hough Transform based line detector. Your code will be able
to find the start and end points of straight line segments in images. We have included a number
of images for you to test your line detector code on. Like most vision algorithms, the Hough
Transform uses a number of parameters whose optimal values are (unfortunately) data dependent
(ie a set of parameter values that works really well on one image might not be best for another
image). By running your code on the test images you will learn about what these parameters do
and how changing their values effects performance.

Many of the algorithms you will be implementing as part of this assignment are functions in
the MATLAB image processing toolbox. You are not allowed to use calls to functions in this as-
signment. You may however compare your output to the output generated by the image processing
toolboxes to make sure you are on the right track.

1 Submitting Your Assignment
Your submission for this assignment will comprise of answers to a set of theoretical questions,
the code for your MATLAB implementation and a short writeup describing your observations and
improvements you made to your code. The answers to the theory questions in Section 2 should
be in a plaintext file or a pdf named theory.txt or theory.pdf. Each of the MATLAB
functions you write as described in Section 3 along with any extra helper functions you wrote
should be in a folder named matlab, upload only .m files to this folder and make sure all the
files needed for your code to run (except data) are included. The writeup describing your exper-
iments (refer to Section 4) should be in a plaintext file or a pdf named experiments.txt or
experiments.pdf.

A directory has been created on for uploading all your course related files. The directory can be
found at afs/cs.cmu.edu/academic/class/15385-s12-users/andrewid (for grad-
uate students, the folder is 15685-s12-users. Inside your submission directory, create a sub-
folder named p1 for this assignment. Do not add any extra layers of indirection to your directory
structure. Your final upload should have the files arranged in this layout:

• afs/cs.cmu.edu/academic/class/15385-s12-users/andrewid

• p1
• theory.txt or theory.pdf
• experiments.txt or experiments.pdf
• matlab
• myImageFilter.m

1



• myEdgeFilter.m
• myHoughTransform.m
• myHoughLines.m
• myHoughLineSegments.m
• houghScript.m (already provided, upload your modified copy)
• drawLine.m (already provided)
• yourHelperFunction1.m (optional)
• yourHelperFunction2.m (optional)

You may need to run aklog cs.cmu.edu when you log in to be able read and write from
your submission directory. Your files are due by 23:59:59 on the submission day. Please check to
make sure you have write permissions to your submission folder ahead of time so that problems
(if any) can be fixed. We will be using timestamps to determine submission times and for late day
counting, so do not modify your files after the submission deadline unless you wish to use a late
day.

2 Theory Questions
Question 1: Composing filters (10 points)

Consider the following three filters G, E andM. G is a Gaussian smoothing kernel, E is one
of the linear kernels used by the Sobel edge detector andM is a median filter. Is applying G
to an image followed by E equivalent to applying E to an image followed by G? How about
ifM is used in place of G? In both cases, explain your answer.

Question 2: Decomposing a steerable filter (10 points)

In the continuous domain, a two dimensional Gaussian kernel G with standard deviation σ
is given by G(x, y) = 1

2πσ2 exp
(
−x2+y2

2σ2

)
. Show that convolution with G is equivalent to

convolving with Gx followed by Gy where Gx and Gy are 1 dimensional Gaussian kernels
in the x and y directions respectively with standard deviation σ. From a computational
efficiency perspective, explain which is better, convolving with G in a single step or the two
step Gx-and-Gy approach.

Question 3: Hough Transform Line Parameterization (10 points)

Show that if you use the line equation xsin− ycos+ ρ = 0, each image point (x, y) results
in a sinusoid in (ρ, θ) Hough space. Relate the amplitude and phase of the sinusoid to the
point (x, y). Does the period (or frequency) of the sinusoid vary with the image point (x, y)?

2



3 Programming
We have included a wrapper script named houghScript.m that takes care of reading in images
from a directory, making function calls to the various steps of the Hough transform (the func-
tions that you will be implementing) and generates images showing the output and some of the
intermediate steps. You are free to use and modify the script as you please, but make sure your
final submission contains a version of the script that will run your code on all the test images and
generate the required output images.

Convolution (15 points)

Write a function that convolves an image with a given convolution filter

function [img1] = myImageFilter(img0, h)

The function will input a greyscale image (img0) and a convolution filter stored in matrix
h. The function will output an image img1 of the same size as img0 which results from
convolving img0 with h. You will need to handle boundary cases on the edges of the image.
For example, when you place a convolution mask on the top left corner of the image, most
of the filter mask will lie outside the image. One solution is to output a zero value at all these
locations, the better thing to do is to pad the image such that pixels lying outside the image
boundary have the same intensity value as the nearest pixel that lies inside the image.

In the interests of running time, you might want your function to treat h kernels that are just
row or column vectors and not full matrices separately, but this is optional.

Your code can not call on MATLAB’s imfilter, conv2, convn, filter2 functions
or other similar functions. You may compare your output to these functions for comparision
and debugging.

Edge Detection (15 points)

Write a function that finds edge intensity and orientation in an image.

function [Im Io Ix Iy] = myEdgeFilter(img, sigma)

The function will input a greyscale image (img) and sigma (scalar). sigma is the standard
deviation of the Gaussian smoothing kernel to be used before edge detection. The function
will output Im, the edge magnitude image; Io the edge orientation image and Ix and and
Iy which are the edge filter responses in the x and y directions respectively.

First, use your convolution function to smooth out the image with the specified Gaussian
kernel. This helps reduce noise and spurious fine edges in the image. To find the image
gradient in the x direction Ix, convolve the smoothed image with the x oriented Sobel filter.
Similarly, find Iy by convolving the smoothed image with the y oriented Sobel filter.

The edge magnitude image Im and the edge orientation image Io can be calculated from Ix
and Iy

In many cases, the high gradient magnitude region along an edge will be quite thick. For
finding lines its best to have edges that are a single pixel wide. Towards this end, make

3



your edge filter implement non maximal suppression, that is for each pixel look at the two
neighboring pixels along the gradient direction and if either of those pixels has a larger
gradient magnitude then set the edge magnitude at the center pixel to zero.

Your code can not call on MATLAB’s edge function or other similar functions. You may
use edge for comparision and debugging.

The Hough Transform (15 points)

Write a function that applies the Hough Transform to an edge magnitude image.

function [H] = myHoughTransform(Im, threshold, rhoRes, thetaRes)

Im is the edge magnitude image, threshold (scalar) is a edge strength threshold used to
ignore pixels with a low edge filter response. rhoRes (scalar) and thetaRes (scalar) are
the resolution of the Hough transform accumulator along the ρ and θ axes respectively. H
is the Hough transform accumulator that contains the number of ‘votes’ for all the possible
lines passing through the image.

First, threshold the edge image. Each pixel (x,y) above the threshold is a possible point on
a line and votes in the Hough transform for all the lines it could be a part of. Parameterize
lines in terms of θ and ρ such that x sin θ − y cos θ + ρ = 0 where θ lies between 0 and
pi and the range of ρ is large enough to accomodate all lines that could lie in an image.
The accumulator resolution needs to be selected carefully. If the resolution is set too low,
the estimated line parameters might be innaccurate. If resolution is too high, run time will
increase and votes for one line might get split into multiple cells in the array.

Your code can not call on MATLAB’s hough function or other similar functions. You may
use hough for comparision and debugging.

Finding Lines (10 points)

function [lineRho lineTheta] = myHoughLines(H, rhoRes, thetaRes,
nLines)

H is the Hough transform accumulator; rhoRes and thetaRes are the accumulator res-
olution parameters and nLines is the number of lines to return. Outputs lineRho and
lineTheta are both nLines × 1 vectors that contain the parameters (ρ and θ respec-
tively) of the lines found in an image.

Ideally, you would want this function to return the ρ and θ values for the nLines highest
scoring cells in the Hough accumulator. But for every cell in the accumulator corresponding
to a real line (likely to be a locally maximal value), there will probably be a number of cells
in the neighborhood that also scored highly but shouldn’t be selected. These non maximal
neighbors can be removed using non maximal suppression. Note that this non maximal sup-
pression step is different to the one performed earlier. Here you will consider all neighbors
of a pixel, not just the pixels lying along the gradient direction. You can either implement
your own non maximal suppression code or find a suitable function on the Internet (you must
acknowledge / cite the source).

4



Once you have suppressed the non maximal cells in the Hough accumulator, return the line
parameters corresponding to the strongest peaks in the accumulator.

Your code can not call on MATLAB’s houghpeaks function or other similar functions.
You may use houghpeaks for comparision and debugging.

Fitting Line Segments (10 points)

Implement an algorithm that prunes the detected lines into line segments that do not extend
beyond the objects they belong to.

function [lines] = myHoughLineSegments(lineRho, lineTheta, Im)

Your function should output lines is a MATLAB array of structures containing the pixel
locations of the start and end points of each line segment in the image. The start location
of the ith line segment should be stored as a 2 × 1 vector lines(i).start and the end
location as a 2× 1 vector in lines(i).stop.

Your code can not call on MATLAB’s houghlines function or other similar functions.
You may use houghlines for comparision and debugging.

4 Experiments
(15 points)

Use the script included to run your Hough detector on the image set and generate intermediate
output images. Did your code work well on all the image with a single set of parameters? How
did the optimal set of parameters vary with images? Which step of the algorithm causes the most
problems? Did you find any changes you could make to your code or algorithm that improved
performance? Include a experiments.txt or experiments.pdf file with your assignment
submission describing how well your code worked on different images, what effect the parameters
had and any improvements you made to your code to make it work better. If you made changes
to your code that required changes to the results generation script, include your updated version in
your submission.

5


