Artificial Intelligence:
Representation and Problem
Solving
15-381
May 8,2007

Review Session for Final

Essential things to know (from 2nd half)

® Probability and Uncertainty

® Bayes nets

® Decision Trees

® Probabilistic Learning

® Cross Validation

® (Clustering and k-Nearest Neighbors
® Neural Nets

e MDPs

e HMMs

® Reinforcement Learning

Probability and Uncertainty

® sum rule p(X =z;) = ZP =z, Y = yj)
(marginalization)

p(m) = Zp €, y short hand notation

plz) = /dyp(xay)

® product rule p(z,y) = p(z|y)p(y)

e Bayes rule oy = Pelyply) - plely)py)
' R SN TEI)

® independence p(z,y) = p(x)p(y) iff x and y are independent

N
p(x1,22,...,2N) = Hp(a:n)

n=1

Bayes Nets

® Bayes Net = directed graph of variables with the property that a variable is
conditionally independent of its non-descendants given its parents

P(X | Parents(X),Y,Z,W) = P(X|Parents(X))

® Associated with each variable is the Conditional Probability Table (CPT) of
P(X|Parents(X))

® Any entry of the joint probability distribution can be computed from the
Bayes Net by looking only at the CPT:

P(xl,...,:cn) P(Xlle/\ /\Xn:xn)

HP (z;|parents(X;))

=1

<.

Bayes Nets

® Inference: Given observed values for a subset of variables (the “evidence” E2),
compute the probability distribution of another set of variables El (the “query”),
symbolically denoted by: P(El | E2)

® In principle, any inference can be computed from a Bayes Nets by summing up the
appropriate entries of the joint distribution:

P(X)
I:(E1 ‘Ez) — P(ElpEz) — All joint entries X that contain E, “E,

P(E,) P(Y)

All joint entries Y that contain E,

Bayes Nets

® Inference requires in general exponential time in the number of variables, because
of the number of terms in the sums

® The sums can be simplified by cleverly grouping the terms that depend only on
one (or a small number of) variable

P(D=d)= ZP(D=d|C=c)P(C=c\B=b)P(B=b\A=a)P(A=a)

!

P(D=d)=EP(D=d|C=c)ZP(C=c|B=b)EP(B=b|A=a)P(A=a)

® This can implemented in polynomial time if the graph is a “polytree” (i.e., the
undirected version of the graph is a tree)

® Expected:
= Understand how probabilities can be expressed as sums of products

- How to group terms advantageously and do so on simple examples

Statistical dependences in belief nets

® |s an independence statement, e.g. is
a L b | cimplied by a graph?

® |f two nodes are conditionally
independent given another variable,
e.g.a L b| cthen p(alb,c) = p(alc).

® Note:There is a technique called “d-
separation” for determining whether
two noes (or sets of nodes) are
independent. It was covered in
previous years and is in previous
exams, but the book does not cover
this and we did not cover it in
lecture, so you are not responsible
for this material.

® \What you should understand: How
information can propagate in belief
networks to affect the beliefs about
certain nodes.

Is a independent of b given c?

No.The inferred value of f depends on b. e is
also factor in determining d. d in turn
influences a. So the value of b can influence the
value of g, so they are not independent.

C

Is a is independent of b given e ?
Yes. e fixed completely determines the
probability of b via p(ble).

Types of learning

supervised

desired output
{y,-- - m}

{t

{

{

unsupervised

reinforcement

reinforcement

£

{

world world

(or data)

(or data)

world
(or data)

Polynomial curve fitting

1 M=9

“Overfitting”

General principle

Classification
performance on
training data

L
>

Region of
overfitting the
training data

Classification
performance on
test data

%correct classification

>

Complexity of model (eg size of tree)

® As its complexity increases, the model is able to better classify the training data

® Performance on the test data initially increases, but then falls as the model
overfits, or becomes specialized for classifying the noise training

® The complexity in decision trees is the number of free parameters, ie the number
of nodes

Decision trees: classifying from a set of attributes

Predicting credit risk

<2 years at missed
current job? | payments?

N N

defaulted?

missed
payments?

<2 years
at current
job?

good: 3

<|=<|1Z|Z|(<|Z|Z|Z]|<
Z|Zz|<|<|Zz|=<x|Z|Z]|Z
Z|Zz|<|Zz|zZz|=<x|Z|Z|<|Z

‘ bad: 0

® cach level splits the data according to different attributes

® goal: achieve perfect classification with minimal number of decisions

= not always possible due to noise or inconsistencies in the data

Entropy
Predicting credit risk
® How many bits does it take to specify ‘
the attribute of ‘defaulted?” e | payenesy | defalted?
= P(defaulted =Y) = 3/10
N N N
= P(defaulted = N) =7/10 v N v
HY) = - Y P =y;)log, P(Y =y) N N N
i=Y,N N N N
—0.31log, 0.3 — 0.71og, 0.7 N v v
0.8813
Y N N
® How much can we reduce the entropy N Y N
(or uncertainty) of ‘defaulted’ by
knowing the other attributes? N M M
® |deally, we could reduce it to zero, in M N N
which case we classify perfectly. Y N N

Conditional entropy

® H(Y|X) is the remaining entropy of Y given X
or

The expected (or average) entropy of P(y|x)
HY|X) = =) P(z))_ P(ylz)log, P(ylx)
x y
=~ P@) S PY = ylX = 2)logy P(Y = y|X = x)
x y

= =) P@)> HY|X =)

® H(Y|X=x) is the specific conditional entropy, i.e. the entropy of Y knowing the value
of a specific attribute x.

Back to the credit risk example Predicting credit risk

<2 yrs [missed| def?

H(Y|X) = =) P(x)>_ P(ylz)log, P(ylz) ———

’ Y Y N Y

= =Y P(x)Y PY =y|X =x)log, P(Y = y|X = 1) N N[N

z Y N N N

N Y Y

= —ZP(Q/’)ZH(Y\XZCU) Y N N

z Y N Y N

N Y Y

Y N N

H(defaulted|< 2years = N) = f% log, % - %bgz % = 0.8631 . N N

3 3 1 1

H (defaulted|< 2years =Y) = ~1 log, 11 log, 1= 0.8133
H (defaulted|missed) = %0.8631 + %0.8133 =0.8432

6 6 1 1

H (defaulted|missed = N) = —5 log, 7 log, 7= 0.5917
. 1 1 2 2
H(defaulted|missed =Y) = —-log, - — = log, = = 0.9183
3 3 3 3
7 3
H(defaulted|missed) = —0.5917+ —0.9183 = 0.6897

10 10

Mutual information

® We now have the entropy - the minimal number of bits required to
specify the target attribute:

H(Y) =) _ P(y)log, P(y)
y
® The conditional entropy - the remaining entropy of Y knowing X
H(Y|X) = =) P(z)) Plylz)log, P(ylz)
z y

® So we can now define the reduction of the entropy after learningY.

® This is known as the mutual information betweenY and X

I(Y;X)=H(Y) - HY|X)

Information gain

H(defaulted) — H(defaulted|< 2 years)
0.8813 — 0.8432 = 0.0381

H(defaulted) — H (defaulted|missed)

[0.8813 — 0.6897 = 0.1916 }

Missed payments are the
most informative attribute
about defaulting.

missed
payments?

<
N 2years \ vy
at current

job?
bad: 0 bad: |
good: 3 good: 3

The scaling problem in joint probabilities

Count(x = v A Cy = k)
Count(Cy, = k)
Count(zy =v1,... ANzny = on, ACk, = k)

p(x=v|Cy) =

p(xl =V1,..., TN :/UN’C/C :k) = Count(Ck :k)

® The likelihood, the table (or joint probability) is huge!

Simplifying with “Naive” Bayes

® What if we assume the features are independent!?

px[Cr) = p(@1,...,2N]|C)
N
—] ptealcy)
n=1

® VWe know that’s not precisely true, but it might make a good approximation.

® Now we only need to specify N different likelihoods:

Count(z; = v; ACy, = k)
Count(Cy, = k)

p(xi = Ui|Ck = k) =

® Huge savings in number of of parameters

Decision trees with continuous variables

N + _H_ .
In which example would] i|_|++_|_++ +
you be more confident Iris virginica +++ ++
about the class? IR 4+
+H+ +
< & H++ +
= +
< 151 eH- N 4
©
IS
8 1f Iris setosa ; ; i
Iris versicolor
0.5¢ 2 .
' O
% O
0 - 1 1 1 1 Decision trees provide a
1 2 3 4 5 classification but not
petal length (cm) uncertainty.

Probabilistic classification

® Let’s apply Bayes’ rule to infer the most probable class given the observation:

p(x|Cr)p(Ck)
p(x)
p(x|Cr)p(Cr)
>k P(x[Cr)p(Ck)

p(Cklx) =

® This is the answer, but what does it mean?
® How do we specify the terms?
- p(Cy) is the prior probability on the different classes

= p(x|Cy) is the data likelihood, ie probability of x given class C}

® How should we define this?

Consider the iris data again.

How would we minimize the number

of future mis-classifications?

We would need to know the true
distribution of the classes.

Assume they follow a Gaussian
distribution.

What classifier would give “optimal” performance?

p(petal length | C')

p(petal length | C2) \

® The number of samples in each class o5l

is the same (50), so (assume) p(C}) is

equal for all classes.

classes we have:

p(Crlx) =

€
(&)
® Because p(x) is the same for all < 1 51
£ 1.
B
g
p(x|Cr)p(Ck) 2
p(x) 0.5
o< p(x|Ck)p(Cl) 0

~

2,

+ +
+.,+
HH -+
+ +
+ o+
HE L
+++¢ H++ +
+
H
+

1 2 3 4 5 6 7
petal length (cm)

Optimal decision boundaries

® The minimal misclassification error at the point where

= p(z|C3)p(C3)/p(x) = p(x|C2)p(C2)/p(x)

=

0.8
0.6
0.4
0.2

p(Cslz) = p(Calz)

p(x|C3) = p(z|C2)

p(C2 | petal length) ’—\v

p(petal length | Cs)

~

Note: this assumes we
have only two classes.

Optimal decision boundary

f_ p(Cs | petal length)

p(petal length | Cs)

Defining a decision boundary

® consider just two classes

® want points on one side of line in
class |, otherwise class 2.

® 2D linear discriminant function:
y = mix+b

= miT; +moexe+b

= Zm,—xier
7

® This defines a 2D plane which
leads to the decision:

class 1 if y >0,
X
class 2 if y <O0.

25} + +
+ o+
HH 4+ +
++
R +
2 T +
+H+ +
4+ H++ +
+
+
15} -
+

The decision boundary:

y=mix+b=0

Or in terms of scalars:

mix1 +mexa = —b
mix1 + b
=Ty = — 171
ma
Diagraming the classifier as a “neural” network
® The feedforward neural network is
specified by weights w; and bias b:
y = wlx +b “output unit”
M “bias”
= Z w;T; +b “weights”
i=1
“input units”

® |t can written equivalently as
M
Yy = WTX = E W;x;
=0

® where wy = bis the bias and a
“dummy” input z, that is always 1.

Non-linear neural networks

® |dea introduce a non-linearity:

Yj = f(Z Wi jT;)

® Now, multiple layers are not equivalent
FOQ vk y;)
k
= O vk FO_wijxi))
k i

zZj =

® Common nonlinearities:
= threshold

- sigmoid

threshold

0
-5

-4 3 -2 1 0 1 2 3 4 5

sigmoid

k-means clustering

® |dea:try to estimate k cluster centers by

minimizing “distortion”
® Define distortion as:

N K
S5 v 3 — g P

n=1 k=1

D =

Tnk =

® r.is | for the closest cluster mean to Xp.

® Each point X, is the minimum distance
from its closet center.

® How do we learn the cluster means?

® Use EM = Estimate Maximize

1 if x,, € cluster k, 0 otherwise.

Using EM to estimate the cluster means

® Our objective function is:

N K
D=3 rue | %0 — g |

n=1k=1

® Differential wrt to the mean (the
parameter we want to estimate):

® We know the optimum is when

Solving for the mean we have:

i = Zn TnkXn
Zn Tnk

This is simply a weighted mean for
each cluster.

Thus we have a simple estimation
algorithm (k-means clustering)

I. select k points at random

2. estimate (update) means

N
oD 3. repeat until converged
—— =2 Tnk\Xn — Hk) = 0
B nz::l (%0 — t)
® convergence (to a local minimum) is
guaranteed
MDPs

® MDP defined by: set of states + set of actions + probabilities of moving from one
state (s) to another (s’) after executing an action (a) + reward at each state R(s)

® A policy is a mapping from states to actions: a=TI(s) is the action taken at state s

® The utility (or value) of a state U(s) is the expected sum of the rewards that we

will receive in the future starting at s.

® We might be interested in a finite amount of time in the future (“finite horizon”)
or in the rewards over an unlimited amount of time (“infinite horizon”).

® [f using an infinite horizon, we need to decrease the rewards by a discount

factor 0 <y < | at every time step.

MDPs

® An MDP is defined by:

states: {s1,...,SN}

Unknown

initial state: Sy

actions: {ai,...,anm}
rewards: R(s) ={r1,...,~n}
transitions: T(s,a,s’) = P(si41 = §'|las = a, 8¢ =)

discount: v

MDPs

® Assuming a particular policy , U(s) is the sum of the reward at s and the expected
reward after executing action a, discounted by Y:

V(s) = R(s) + 7 Z T(s,a,s)V(s)

® The optimal policy is the one that yields the largest value of utility for the MDP.
The resulting utility satisfies:

V*(s) = R(s) + ymax Z T(s,a,s)V*(s")
® The optimal policy is:

7" (s) = arg max
a

ZT(s,a, sSHV*(s)

s

® This cannot be solve directly, since we need to know V*(s).

MDPs

® |terative techniques to solve for optimal policies
® Value iteration
Viti(s) = R(s)+ymax) T(s,a,5)Vi(s)
a /
S
V*(s) = lim V(s)
1— 00

® Then after convergence the optimal policy is:

7 (s) = arg max
a

ZT(S,CL,S’)V*(S’)

MDPs

® |terative techniques to solve for optimal policies

e Policy iteration

Tr+1(s) = argmax
a

ZT(S, a, s \Vi(s")

Vie1r = R(s)+ ’yZT(s, a,s)\Vi(s'), with a = mry1(s)

® Both value and policy iteration are guaranteed to converge to the optimal value
and policy function.

Reinforcement Learning

® Basic problem: Same as before, except we don’t know T(.,.,.) or R(.).We need to
discover the MDP through exploration.

® Model-Based (Certainty Equivalent learning):We estimate T(.,.,.) by
recording the states we move through by applying actions during the exploration

® Given estimates of T(.,.,.) (and R(.)), we can compute the optimalV and 11 by using
the previous algorithms (value or policy iteration)

® The problem is that running value/policy iteration is expensive and we’ll have to
run it many times as we explore.A cheaper way is to updateV by using our
current estimate of T(.,.,.) at the current visited state (this amounts to doing one
step of value iteration at that state only).

Reinforcement Learning

® The model-based techniques requires building estimates of T(.,.,.), which we would
like to avoid. One solution: incrementally updateV at the state currently visited.
This is temporal difference or TD learning

V(s) — V(s)+a(R(s) +7V(s) = V(s))

VIV(s) = VO (s) +a(R(s) + VO (s) — VOl (s))

® (is the learning rate and it controls how fast the system converges (low & =
slower convergence).This incremental update (Temporal Differencing) is
guaranteed to converge, provided that & decreases as the iterations progress.

® Note:The precise conditions on & are stated in the notes, but you do not need to
remember these exact conditions. Just the fact that TD can be made to converge.

Reinforcement Learning

® The limitation of TD-like algorithms is that they converge to the optimal V¥, but
they don’t say anything about the optimal policy. An extension is to keep track of
the utility of the (state,action) pairs instead of the utility of the states. This is
stored in a Q table Q(s,a). This is Q=learning:

QU (s,a) = Q°M(5,0) + o [R(s) + ymax Qs ") - Q°(5,0)

® Note on notation: Q + f(Q) is the same as Q" = f(Q°'9).

® The optimal policy is computed from our current Q table as (action with the
largest utility for each state):

m(s) = arg max Q(s,a)

® Also: you are not expected to know how these equations are derived.

Reinforcement Learning

o Exploration / exploitation dilemma.

® In Q-learning care must be taken in how we choose the policy since a poor
choice could lead to a sub-optimal policy.

e Exploration strategies:

- random: ie no learning estimate best policy at end

greedy: always choose best estimated action TI(s)

€-greedy: choose best estimated action with probability |-€

softmax (or Boltzmann): choose best estimated action with probability, e.g.

eQ(si,a)/T

P S @Gt

some more examples

P(E)

(*/- is same as True/False) 0.5
B | C|PD)

E | P(O)
+ |+ |05

A | C| P(B) + 103
+ - |02

+ |+ 1006 - 108
+ 02

+ |- 0. -
P(A) N (‘))i - - 105
0.5 - :
Q - - 1006 /—\

P(C)=P(C,E)+P(C,-E)=
P(C|E)P(E)+P(C|-E)P(-E)=
0.3x0.5+0.8x0.5=0.55

In the previous slide, the decomposition
P(C)=P(C,E)+P(C,-E)

is kind of obvious, given that we have a CPT of C conditioned on E, so we know

that we’ll need to use E.A more mechanical reasoning using factorization works

as follows (not that it is not necessary to work through this entire derivation for
this kind of question; this only added FYI):

P(C=c)= P(A=a,B=b,C=c,D=d,E=¢)=

afd.e
P(A-=a)P(B=b|A=a,C=c)P(C=c|E=e)P(D=d|B=b,C=c)PE =¢)
(Th; CI;Iues a,b,c,..are‘+’ or*-’)
We can order the sums by moving them as far in as we can:
P(C=c)= ZP(A=a,B=b,C=c,D=d,E=e)=

EP(C=c|E=e)P(E=e)E P(A=a)2 P(B=b|A=a,C=c)Z P(D=d|B=b,C=c)

Three sums disappear because

2 P(D=d\B=b,C=c)=12 P(B=b|A=aC=c)=1 2 P(A=a)-=1

P(E)

0.5
P(D
E | P(C) (D)
+ 105

A| C | PB) +103
- - +1- 102

+ |+] 0.6 - 108
+ 102

+ - o1 -
P(A) o] - |-105
0.5 - .

- - 1 0.6
O () O,

PB|A)=P(B,C|A)+P(B,-C|A)=
P(B|A,C)P(C|A)+P(B|A,-C)P(-C|A)=
PB|A,C)PC)+P(B|A,-C)P(-C)=
0.6x0.55+0.1x(1-0.55) =0.375

P(E)
0.5

We went from P(B,C|A) to P(B|C,A)P(C|A) by
using the chain rule in a slightly different way: C | P(D)
Normal chain rule (basically the definition of +]05
cond. Prob. and the formula to always - 102
remember): + o2
pa) | [PXY) = PX]Y)P(Y) - os
0.5 Same thing but with a conditional added:
P(X,Y|Z) = P(XIY.Z)P(Y|2) >
@ (Exactly the same formula with “|Z” added!) @

PB|A)=P(B,C|A)+P(B,-C|A)=

P(B|AC)P(C|A)+P(We can replace P(C|A) by P(C)
P(B | A, C)P(C) +P because A and C are independent

0.6x0.55 +0.1><(1—0.55) =0 070

P(C | ~A~B)=0.1
P((‘ ~A.B

)
P(C)
J, P(C | A, B):
@ P(D|~C)=0.5
P(D|C)=0.5
P(E|A,C)/P(E|A) =

P(CIA) =

P(BID) =

Al 02

® Q: Find the value functionV (also commonly called the utility function U) if the
policy To(s) = N for all the states is used.

® Usey=0.5

® This is a direct application of

U(s) = R(s) +y 2, T(s,a,5) U(S)

e U(s)) =10+ 0.5 x U(s,) therefore U(s,) = 20

e U(s,) =0+ 0.5 x U(s,) therefore U(s,) =0

® U(s;)) =0+ 0.5x(0.5xU(s;) +0.5xU(s))) therefore U(s;) = U(s)/3 = 20/3
o U(s,)) =-5+05xU(s) =5

Q: Run one step of policy iteration after T

® This is a direct application of the formula:

M, (s) = argmax_ (2, T(s,a,s") U,(s))

Expected rewards when Expected rewards when
a=N a=E

e 1 (s,) = argmax(U_(s,),U_(s,)) = argmax(20,0) = N

® T,(s,) = argmax(U_(s,),U_(s;)) = argmax(0,20/3)=E
® T,(s;) = argmax(0.5xU_(s,)+0.5xU _(s;),U_(s,)) = argmax(10+10/3,5) = N

e m,(s,) = argmax(U_(s,),U_(s,)) = argmax(20,5) = N

Q:What is the optimal policy after convergence?

® We can explicitly run another round of iteration to see what happens to TI.

U,(s)) = 10+ 0.5 xU(s,) therefore U,(s,) = 20

U,(s;) =0 +0.5x (0.5 xU,(s;) +0.5x U,(s,)) therefore U (s;) = U (s,)/3 = 20/3

U(,)=-5+05xU(s)=5

U,(s,) =0 + 0.5 x U (s,) therefore U, (s,) = U,(s;)/2 = 10/3

e T,(s,) = argmax(U(s,),U,(s,)) = argmax(20,0) = N

e T, (s,) = argmax(U(s,),U,(s;)) = argmax(10/3,20/3) = E

® T, (s;) = argmax(0.5xU (s,)+0.5xU,(s;),U,(s,)) = argmax(10+10/3,5) = N

e ,(s,) = argmax(U(s,),U,(s,)) = argmax(20,5) = N

® The policy has not changed from iteration | to iteration 2, therefore the optimal
policy is 7% =11,

(s,) = T¥(s3) = (s,) = N (s, = E

A faster way to do this

® We could have reached the same result without all of these painful calculations.
Observe that 1, is the same as 11, for the states ,3,4 (action ‘N’). Observe
also that after applying an action from this policy from any one of these 3
states, it remains in one of the same three states |,3,4.Therefore, the utility is
unchanged and U, is the same as U, for 1,3,4.

o T, is different from 1, for state 2 and it is easy to compute its utility U,. Given
that, it is easy to verify (one line in the previous page) that ‘E’ is still the
optimal policy for state 2.

® The conclusion is that TT, is the same as 11, and we have converged.The main
point is that we have save ourselves the pain of computing U, explicitly for
1,3,4.

® |mportant: In this kind of problem, it often useful to look carefully at the
structure of the graph and the transition probabilities (especially when they
are mostly I!?{ Many of these problems can be solved at least partiallr “by
inspection”, thus saving painful computations (or; as a minimum, enabling a
sanity check on the computations).

Al 04

Q-learning

® We run Q-learning on this MDP. We use the following strategy for exploration:
We start at X and we alternate between choosing action u and action v, starting
with action u.

® \What are the values in the Q table after 5 iterations?
® Optimal policy from Q table? Optimal policy from the underlying MDP above?

® (Call the learning rate ¢, and set the discount to y = |

Iteration 1: Reward = -10, action u, move from X to X

X Y
u [-10a |0
v |0 0

Iteration 2: Reward = -10, action v, move from X to Y

X Y
u [-10a |0
v |-10a |0

Direct application of the formula:
Q(s,a) € Q(s,a) + a(R(s) + y max,Q(s’,a’) — Q(s,a))

Iteration 3: Reward = 10, action u, move from Y to Y

X Y
u |-10a |10a
v |-10a |0

Iteration 4: Reward = 10, action v, move from Y to X

S Note that -100, =
u |-10a | 100 max (Q(X,u),Q(X,v))

v [-10a |a(10-10a)

Direct application of the formula:
Q(s,a) € Q(s,a) + a(R(s) + y max,Q(s’,a’) — Q(s,a))

Iteration 5: Reward = -10, action u, move from X to X

entry is:

The complete expression for this L

-10a + a(-10 + 1x(-10a) — (-10cx))

X |y
(’u/fzoa 100t
v [-10a |o(10-10a)

The optimal policy from the Q table is formed by choosing for
each state the action that maximizes Q:

a(X)=v

n(Y) =u (recall that we always choose o between 0 and 1)

This is also the optimal policy for the actual MDP (that fact should
be obvious by inspection of the diagram)

Q-learning: Policy exploration

%2}%%%%%%

SN TN TN

ES1 =random
ES2 = optimal
ES3 = in between

Al 03

BRSNS

(&

Using EST

Using ES2

Using ES3

FIND-OPTIMAL-QUICK
FIND-OPTIMAL-SLOW

NEVER-FIND-OPTIMAL

FIND-OPTIMAL-QUICK
FIND-OPTIMAL-SLOW

NEVER-FIND-OPTIMAL

FIND-OPTIMAL-QUICK
FIND-OPTIMAL-SLOW

NEVER-FIND-OPTIMAL

FIND-OPTIMAL-QUICK
FIND-OPTIMAL-SLOW

NEVER-FIND-OPTIMAL

FIND-OPTIMAL-QUICK
FIND-OPTIMAL-SLOW

NEVER-FIND-OPTIMAL

FIND-OPTIMAL-QUICK
FIND-OPTIMAL-SLOW

NEVER-FIND-OPTIMAL

+1

FIND-OPTIMAL-QUICK
FIND-OPTIMAL-SLOW

NEVER-FIND-OPTIMAL

FIND-OPTIMAL-QUICK
FIND-OPTIMAL-SLOW

NEVER-FIND-OPTIMAL

FIND-OPTIMAL-QUICK
FIND-OPTIMAL-SLOW

NEVER-FIND-OPTIMAL

