
Artificial Intelligence:
Representation and Problem

Solving

15-381

May 8, 2007

Review Session for Final

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session

Essential things to know (from 2nd half)

• Probability and Uncertainty

• Bayes nets

• Decision Trees

• Probabilistic Learning

• Cross Validation

• Clustering and k-Nearest Neighbors

• Neural Nets

• MDPs

• HMMs

• Reinforcement Learning

2

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session

Probability and Uncertainty

• sum rule
(marginalization)

• product rule

• Bayes rule

• independence

3

p(x, y) = p(x|y)p(y)

p(X = xi) =
N∑

j=1

p(X = xi, Y = yj)

p(x) =
∑

y

p(x, y)

p(x) =

∫
dy p(x, y)

short hand notation

p(y|x) =
p(x|y)p(y)

p(x)
=

p(x|y)p(y)
∑

y
p(x|y)p(y)

p(x, y) = p(x)p(y) iff x and y are independent

p(x1, x2, . . . , xN) =
N∏

n=1

p(xn)

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session

Bayes Nets

• Bayes Net = directed graph of variables with the property that a variable is
conditionally independent of its non-descendants given its parents

P(X | Parents(X), Y,Z,W) = P(X|Parents(X))

• Associated with each variable is the Conditional Probability Table (CPT) of
P(X|Parents(X))

• Any entry of the joint probability distribution can be computed from the
Bayes Net by looking only at the CPT:

4

P (x1, . . . , xn) ≡ P (X1 = x1 ∧ . . . ∧ Xn = xn)

=
n∏

i=1

P (xi|parents(Xi))

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session

Bayes Nets

• Inference: Given observed values for a subset of variables (the “evidence” E2),
compute the probability distribution of another set of variables E1 (the “query”),
symbolically denoted by: P(E1 | E2)

• In principle, any inference can be computed from a Bayes Nets by summing up the
appropriate entries of the joint distribution:

5

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session

Bayes Nets

• Inference requires in general exponential time in the number of variables, because
of the number of terms in the sums

• The sums can be simplified by cleverly grouping the terms that depend only on
one (or a small number of) variable

• This can implemented in polynomial time if the graph is a “polytree” (i.e., the
undirected version of the graph is a tree)

• Expected:

- Understand how probabilities can be expressed as sums of products

- How to group terms advantageously and do so on simple examples

6

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session

f

e b

a

c

d

ea

b

c

Statistical dependences in belief nets

• Is an independence statement, e.g. is
a ⊥ b | c implied by a graph?

• If two nodes are conditionally
independent given another variable,
e.g. a ⊥ b | c then p(a|b,c) = p(a|c).

• Note: There is a technique called “d-
separation” for determining whether
two noes (or sets of nodes) are
independent. It was covered in
previous years and is in previous
exams, but the book does not cover
this and we did not cover it in
lecture, so you are not responsible
for this material.

• What you should understand: How
information can propagate in belief
networks to affect the beliefs about
certain nodes.

7

Is a independent of b given c?

No. The inferred value of f depends on b. e is

also factor in determining d. d in turn

influences a. So the value of b can influence the

value of a, so they are not independent.

Is a is independent of b given e ?

Yes. e fixed completely determines the

probability of b via p(b|e).

f

e b

a

c

d

ea

b

c

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Types of learning

8

world
(or data)

model
{θ1, . . . , θn}

desired output
{y1, . . . , yn}

supervised

world
(or data)

model
{θ1, . . . , θn}

unsupervised

world
(or data)

model
{θ1, . . . , θn}

model output

reinforcement

reinforcement

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Polynomial curve fitting

9

0 1

!1

0

1

0 1

!1

0

1

0 1

!1

0

1

0 1

!1

0

1

y(x,w) = w0 + w1x + w2x
2 + · · · + wMxM =

M∑

j=0

wjx
j

E(w) =
1
2

N∑

n=1

[y(xn,w)− tn]2

example from Bishop (2006), Pattern Recognition and Machine Learning

“Overfitting”

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Decision Trees 2 10

General principle

• As its complexity increases, the model is able to better classify the training data

• Performance on the test data initially increases, but then falls as the model
overfits, or becomes specialized for classifying the noise training

• The complexity in decision trees is the number of free parameters, ie the number
of nodes

%
co

rr
ec

t
cl

as
si

fi
ca

ti
o
n

Complexity of model (eg size of tree)

Classification
performance on

training data

Classification
performance on

test data

Region of
overfitting the
training data

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Decision trees: classifying from a set of attributes

11

<2 years at
current job?

missed
payments?

defaulted?

N N N

Y N Y

N N N

N N N

N Y Y

Y N N

N Y N

N Y Y

Y N N

Y N N

Predicting credit risk

bad: 3
good: 7

missed
payments?N Y

bad: 2
good: 1

bad: 1
good: 6

<2 years
at current

job?

N Y

bad: 0
good: 3

bad: 1
good: 3

• each level splits the data according to different attributes

• goal: achieve perfect classification with minimal number of decisions

- not always possible due to noise or inconsistencies in the data

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Entropy

12

• How many bits does it take to specify
the attribute of ‘defaulted?’

- P(defaulted = Y) = 3/10

- P(defaulted = N) = 7/10

• How much can we reduce the entropy
(or uncertainty) of ‘defaulted’ by
knowing the other attributes?

• Ideally, we could reduce it to zero, in
which case we classify perfectly.

<2 years at
current job?

missed
payments?

defaulted?

N N N

Y N Y

N N N

N N N

N Y Y

Y N N

N Y N

N Y Y

Y N N

Y N N

Predicting credit risk

H(Y) = −
∑

i=Y,N

P (Y = yi) log2 P (Y = yi)

= −0.3 log2 0.3− 0.7 log2 0.7
= 0.8813

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Conditional entropy

• H(Y|X) is the remaining entropy of Y given X

or

The expected (or average) entropy of P(y|x)

• H(Y|X=x) is the specific conditional entropy, i.e. the entropy of Y knowing the value
of a specific attribute x.

13

H(Y |X) ≡ −
∑

x

P (x)
∑

y

P (y|x) log2 P (y|x)

= −
∑

x

P (x)
∑

y

P (Y = y|X = x) log2 P (Y = y|X = x)

= −
∑

x

P (x)
∑

y

H(Y |X = x)

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Back to the credit risk example

14

<2 yrs missed def?

N N N

Y N Y

N N N

N N N

N Y Y

Y N N

N Y N

N Y Y

Y N N

Y N N

Predicting credit risk

H(Y |X) ≡ −
∑

x

P (x)
∑

y

P (y|x) log2 P (y|x)

= −
∑

x

P (x)
∑

y

P (Y = y|X = x) log2 P (Y = y|X = x)

= −
∑

x

P (x)
∑

y

H(Y |X = x)

H(defaulted|missed = N) = −6
7

log2
6
7
− 1

7
log2

1
7

= 0.5917

H(defaulted|missed = Y) = −1
3

log2
1
3
− 2

3
log2

2
3

= 0.9183

H(defaulted|missed) =
7
10

0.5917 +
3
10

0.9183 = 0.6897

H(defaulted|< 2years = N) = − 5
5 + 2

log2
5

5 + 2
− 2

7
log2

2
7

= 0.8631

H(defaulted|< 2years = Y) = −3
4

log2
3
4
− 1

4
log2

1
4

= 0.8133

H(defaulted|missed) =
6
10

0.8631 +
4
10

0.8133 = 0.8432

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Mutual information

• We now have the entropy - the minimal number of bits required to
specify the target attribute:

• The conditional entropy - the remaining entropy of Y knowing X

• So we can now define the reduction of the entropy after learning Y.

• This is known as the mutual information between Y and X

15

I(Y ;X) = H(Y)−H(Y |X)

H(Y) =
∑

y

P (y) log2 P (y)

H(Y |X) = −
∑

x

P (x)
∑

y

P (y|x) log2 P (y|x)

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Information gain

16

H(defaulted) − H(defaulted|< 2 years)
0.8813 − 0.8432 = 0.0381

H(defaulted) − H(defaulted|missed)
0.8813 − 0.6897 = 0.1916

bad: 3
good: 7

missed
payments?N Y

bad: 2
good: 1

bad: 1
good: 6

<2 years
at current

job?

N Y

bad: 0
good: 3

bad: 1
good: 3

Missed payments are the
most informative attribute

about defaulting.

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Probabilistic Learning

The scaling problem in joint probabilities

17

p(x = v|Ck) =
Count(x = v ∧ Ck = k)

Count(Ck = k)

p(x1 = v1, . . . , xN = vN |Ck = k) =
Count(x1 = v1, . . . ∧ xN = vN ,∧Ck = k)

Count(Ck = k)

• The likelihood, the table (or joint probability) is huge!

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Probabilistic Learning

Simplifying with “Naïve” Bayes

• What if we assume the features are independent?

• We know that’s not precisely true, but it might make a good approximation.

• Now we only need to specify N different likelihoods:

• Huge savings in number of of parameters

18

p(x|Ck) = p(x1, . . . , xN |Ck)

=
N∏

n=1

p(xn|Ck)

p(xi = vi|Ck = k) =
Count(xi = vi ∧ Ck = k)

Count(Ck = k)

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Probabilistic Learning

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

petal length (cm)

p
e
ta

l
w

id
th

 (
c
m

)

Decision trees with continuous variables

19

Iris virginica

Iris setosa Iris versicolor

In which example would
you be more confident

about the class?

Decision trees provide a
classification but not

uncertainty.

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Probabilistic Learning

Probabilistic classification

• Let’s apply Bayes’ rule to infer the most probable class given the observation:

• This is the answer, but what does it mean?

• How do we specify the terms?

- p(Ck) is the prior probability on the different classes

- p(x|Ck) is the data likelihood, ie probability of x given class Ck

• How should we define this?

20

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)

=
p(x|Ck)p(Ck)∑
k p(x|Ck)p(Ck)

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Probabilistic Learning

What classifier would give “optimal” performance?

• Consider the iris data again.

• How would we minimize the number
of future mis-classifications?

• We would need to know the true
distribution of the classes.

• Assume they follow a Gaussian
distribution.

• The number of samples in each class
is the same (50), so (assume) p(Ck) is
equal for all classes.

• Because p(x) is the same for all

classes we have:

21

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

petal length (cm)

p
e

ta
l
w

id
th

 (
c
m

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9p(petal length |C2)
p(petal length |C3)

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
∝ p(x|Ck)p(Ck)

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Probabilistic Learning

• The minimal misclassification error at the point where

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Optimal decision boundaries

22

Optimal decision boundary

p(petal length |C2) p(petal length |C3)

p(C3|x) = p(C2|x)
⇒ p(x|C3)p(C3)/p(x) = p(x|C2)p(C2)/p(x)
⇒ p(x|C3) = p(x|C2)

p(C2 | petal length) p(C3 | petal length)

Note: this assumes we
have only two classes.

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Probabilistic Learning

3 4 5 6 7

1

1.5

2

2.5

x
1

x
2

Defining a decision boundary

23

• consider just two classes

• want points on one side of line in
class 1, otherwise class 2.

• 2D linear discriminant function:

• This defines a 2D plane which
leads to the decision:

The decision boundary:

y = mT x + b = 0
x ∈

{
class 1 if y ≥ 0,
class 2 if y < 0.

m1x1 + m2x2 = −b

⇒ x2 = −m1x1 + b

m2

Or in terms of scalars:

y = mT x + b

= m1x1 + m2x2 + b

=
∑

i

mixi + b

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Probabilistic Learning

Diagraming the classifier as a “neural” network

• The feedforward neural network is
specified by weights wi and bias b:

• It can written equivalently as

• where w0 = b is the bias and a

“dummy” input x0 that is always 1.

24

x1 x2 xM• •!•

y

w1 w2 wM

b

x1 x2 xM• •!•

y

w1 w2 wM

x0=1

w0

y = wT x =
M∑

i=0

wixi

y = wT x + b

=
M∑

i=1

wixi + b

“output unit”

“input units”

“bias”

“weights”

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Probabilistic Learning

Non-linear neural networks

• Idea introduce a non-linearity:

• Now, multiple layers are not equivalent

• Common nonlinearities:

- threshold

- sigmoid

25

yj = f(
∑

i

wi,jxi)

zj = f(
∑

k

vj,k yj)

= f(
∑

k

vj,k f(
∑

i

wi,jxi))

!! !" !# !$!% & % $ # " !
&

%

'

()
'
*

threshold

!! !" !# !$!% & % $ # " !
&

%

'
()
'
*

sigmoid

y =

{

0 x < 0

1 x ≥ 0

y =
1

1 + exp(−x)

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Probabilistic Learning

k-means clustering

26

• Idea: try to estimate k cluster centers by
minimizing “distortion”

• Define distortion as:

• rnk is 1 for the closest cluster mean to xn.

• Each point xn is the minimum distance
from its closet center.

• How do we learn the cluster means?

• Use EM = Estimate Maximize

D =
N∑

n=1

K∑

k=1

rnk ‖ xn − µk ‖2

rnk = 1 if xn ∈ cluster k, 0 otherwise.

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Probabilistic Learning

Using EM to estimate the cluster means

• Our objective function is:

• Differential wrt to the mean (the
parameter we want to estimate):

• We know the optimum is when

• Solving for the mean we have:

• This is simply a weighted mean for
each cluster.

• Thus we have a simple estimation
algorithm (k-means clustering)

1. select k points at random

2. estimate (update) means

3. repeat until converged

• convergence (to a local minimum) is
guaranteed

27

D =
N∑

n=1

K∑

k=1

rnk ‖ xn − µk ‖2

∂D

∂µk
= 2

N∑

n=1

rnk(xn − µk)

∂D

∂µk
= 2

N∑

n=1

rnk(xn − µk) = 0

µk =
∑

n rnkxn∑
n rnk

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session

MDPs

• MDP defined by: set of states + set of actions + probabilities of moving from one
state (s) to another (s’) after executing an action (a) + reward at each state R(s)

• A policy is a mapping from states to actions: a="(s) is the action taken at state s

• The utility (or value) of a state U(s) is the expected sum of the rewards that we
will receive in the future starting at s.

• We might be interested in a finite amount of time in the future (“finite horizon”)
or in the rewards over an unlimited amount of time (“infinite horizon”).

• If using an infinite horizon, we need to decrease the rewards by a discount
factor 0 < " < 1 at every time step.

28

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session

!

"#$%&'()*+,+-..-/+-..0/+123&45+67+8##&4 89&:#;+<%=*4>=?+<@'34+AB

C9@D4+E*4&9*'#2+F#&+=#@;'2(+89&:#;+

<%=*4>=

G "#>$D*4+HAI<iJ+F#&+49K)+j

G "#>$D*4+H-I<iJ+F#&+49K)+j

?

G "#>$D*4+H:I<iJ+F#&+49K)+j

1=+++:!" H:I<iJ!HLI<iJ+7++6)%M

6)42+*#+=*#$M++6)42

89N++++H:OAI<iJ+P H
:I<iJ+++++Q++#

i

R)'=+'=+F9=*4&+*)92+>9*&'N+'2;4&='#2+IST =*%@4J

'F *)4+*&92='*'#2+>9*&'N+'=+=$9&=4

"#$%&'()*+,+-..-/+-..0/+123&45+67+8##&4 89&:#;+<%=*4>=?+<@'34+AU

1+89&:#;+V4K'='#2+W&#K4==
! X+.7Y

W##&+Z

[2:2#52

O.

\'K)+Z

[2:2#52

OA.

\'K)+Z

]9>#D=

OA.

W##&+Z

]9>#D=

O.

^#D+&D2+9+

=*9&*D$+

K#>$92%7

E2+4;4&%+

=*9*4+%#D+

>D=*+

K)##=4+

_4*5442+

<9;'2(+

>#24%+#&+

13;4&*'='2(7
<

1
1

<

11

<

<
A

A

A

A`-

A`-

A`-

A`-

A`-

A`-

A`-

A`-

A`-

A`-

MDPs

• An MDP is defined by:

29

states: {s1, . . . , sN}

initial state: S0

actions: {a1, . . . , aM}

rewards: R(s) = {r1, . . . , rN}

transitions: T (s, a, s′) = P (st+1 = s′|at = a, st = s)

discount: γ

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session

MDPs

• Assuming a particular policy , U(s) is the sum of the reward at s and the expected
reward after executing action a, discounted by ":

• The optimal policy is the one that yields the largest value of utility for the MDP.
The resulting utility satisfies:

• The optimal policy is:

• This cannot be solve directly, since we need to know V*(s).

30

V (s) = R(s) + γ
∑

s′

T (s, a, s′)V (s′)

V ∗(s) = R(s) + γ max
a

∑

s′

T (s, a, s′)V ∗(s′)

π∗(s) = arg max
a

[
∑

s′

T (s, a, s′)V ∗(s′)

]

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session

MDPs

• Iterative techniques to solve for optimal policies

• Value iteration

• Then after convergence the optimal policy is:

31

π∗(s) = arg max
a

[
∑

s′

T (s, a, s′)V ∗(s′)

]

Vi+1(s) = R(s) + γ max
a

∑

s′

T (s, a, s′)Vi(s
′)

V ∗(s) = lim
i→∞

Vi(s)

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session

MDPs

• Iterative techniques to solve for optimal policies

• Policy iteration

• Both value and policy iteration are guaranteed to converge to the optimal value
and policy function.

32

πk+1(s) = arg max
a

[
∑

s′

T (s, a, s′)Vk(s′)

]

Vk+1 = R(s) + γ
∑

s′

T (s, a, s′)Vk(s′), with a = πk+1(s)

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session

Reinforcement Learning

• Basic problem: Same as before, except we don’t know T(.,.,.) or R(.). We need to
discover the MDP through exploration.

• Model-Based (Certainty Equivalent learning): We estimate T(.,.,.) by
recording the states we move through by applying actions during the exploration

• Given estimates of T(.,.,.) (and R(.)), we can compute the optimal V and " by using
the previous algorithms (value or policy iteration)

• The problem is that running value/policy iteration is expensive and we’ll have to
run it many times as we explore. A cheaper way is to update V by using our
current estimate of T(.,.,.) at the current visited state (this amounts to doing one
step of value iteration at that state only).

33

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session

Reinforcement Learning

• The model-based techniques requires building estimates of T(.,.,.), which we would
like to avoid. One solution: incrementally update V at the state currently visited.
This is temporal difference or TD learning

• # is the learning rate and it controls how fast the system converges (low # =
slower convergence). This incremental update (Temporal Differencing) is
guaranteed to converge, provided that # decreases as the iterations progress.

• Note: The precise conditions on # are stated in the notes, but you do not need to
remember these exact conditions. Just the fact that TD can be made to converge.

34

V (s) ← V (s) + α(R(s) + γV (s′) − V (s))

or

V new(s) = V old(s) + α(R(s) + γV old(s′) − V old(s))

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session

Reinforcement Learning

• The limitation of TD-like algorithms is that they converge to the optimal V*, but
they don’t say anything about the optimal policy. An extension is to keep track of
the utility of the (state,action) pairs instead of the utility of the states. This is
stored in a Q table Q(s,a). This is Q-learning:

• Note on notation: Q $ f(Q) is the same as Qnew = f(Qold).

• The optimal policy is computed from our current Q table as (action with the
largest utility for each state):

• Also: you are not expected to know how these equations are derived.

35

Qnew(s, a) = Qold(s, a) + α
[
R(s) + γ max

a′
Qold(s′, a′)−Qold(s, a)

]

π(s) = arg max
a

Q(s, a)

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session

Reinforcement Learning

• Exploration / exploitation dilemma.

• In Q-learning care must be taken in how we choose the policy since a poor
choice could lead to a sub-optimal policy.

• Exploration strategies:

- random: ie no learning estimate best policy at end

- greedy: always choose best estimated action "(s)

- %-greedy: choose best estimated action with probability 1-%

- softmax (or Boltzmann): choose best estimated action with probability, e.g.

36

p ∼

e
Q(si,a)/T

∑
j eQ(sj ,a)/T

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session 37

some more examples

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session

(+/- is same as True/False)

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session

• In the previous slide, the decomposition

• is kind of obvious, given that we have a CPT of C conditioned on E, so we know
that we’ll need to use E. A more mechanical reasoning using factorization works
as follows (not that it is not necessary to work through this entire derivation for
this kind of question; this only added FYI):

• (The values a,b,c,.. are ‘+’ or ‘-’)

• We can order the sums by moving them as far in as we can:

• Three sums disappear because

39

),|(),|()()()|(

),,,,()(
,,,

cCbBdDPcCaAbBPaAPeEPeEcCP

eEdDcCbBaAPcCP

e dba

edba

==========

========

! !!!

!

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session 40

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session 41

We can replace P(C|A) by P(C)
because A and C are independent

We went from P(B,C|A) to P(B|C,A)P(C|A) by
using the chain rule in a slightly different way:

Normal chain rule (basically the definition of
cond. Prob. and the formula to always
remember):
P(X,Y) = P(X|Y)P(Y)
Same thing but with a conditional added:
P(X,Y|Z) = P(X|Y,Z)P(Y|Z)
(Exactly the same formula with “|Z” added!)

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session 42

P(E|A,C)/P(E|A) =

P(C|A) =

P(B|D) =

AI 02

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session 43

• Q: Find the value function V (also commonly called the utility function U) if the
policy "o(s) = N for all the states is used.

• Use " = 0.5

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session 44

• This is a direct application of

• U(s1) = 10 + 0.5 x U(s1) therefore U(s1) = 20

• U(s2) = 0 + 0.5 x U(s2) therefore U(s2) = 0

• U(s3) = 0 + 0.5 x (0.5 x U(s3) + 0.5 x U(s1)) therefore U(s3) = U(s1)/3 = 20/3

• U(s4) = -5 + 0.5 x U(s1) = 5

U(s) = R(s) + ! "
s’ T(s,a,s’) U(s’)

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session

Q: Run one step of policy iteration after "o

• This is a direct application of the formula:

"
k+1

(s) = argmax
a
 (&

s’
 T(s,a,s’) U

k
(s’))

• "1(s1) = argmax(Uo(s1),Uo(s2)) = argmax(20,0) = N

• "1(s2) = argmax(Uo(s2),Uo(s3)) = argmax(0,20/3)= E

• "1(s3) = argmax(0.5xUo(s1)+0.5xUo(s3),Uo(s4)) = argmax(10+10/3,5) = N

• "1(s4) = argmax(Uo(s1),Uo(s4)) = argmax(20,5) = N

45

Expected rewards when
a = N

Expected rewards when
a = E

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session

Q: What is the optimal policy after convergence?

• We can explicitly run another round of iteration to see what happens to ".

• U1(s1) = 10 + 0.5 x U1(s1) therefore U1(s1) = 20

• U1(s3) = 0 + 0.5 x (0.5 x U1(s3) + 0.5 x U1(s1)) therefore U1(s3) = U1(s1)/3 = 20/3

• U1(s4) = -5 + 0.5 x U1(s1) = 5

• U1(s2) = 0 + 0.5 x U1(s3) therefore U1(s2) = U1(s3)/2 = 10/3

46

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session

• "2(s1) = argmax(U1(s1),U1(s2)) = argmax(20,0) = N

• "2 (s2) = argmax(U1(s2),U1(s3)) = argmax(10/3,20/3) = E

• "2 (s3) = argmax(0.5xU1(s1)+0.5xU1(s3),U1(s4)) = argmax(10+10/3,5) = N

• "2 (s4) = argmax(U1(s1),U1(s4)) = argmax(20,5) = N

• The policy has not changed from iteration 1 to iteration 2, therefore the optimal
policy is "* = "1:

"*(s1) = "*(s3) = "*(s4) = N "*(s2) = E

47

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session

A faster way to do this

• We could have reached the same result without all of these painful calculations.
Observe that "1 is the same as "' for the states 1,3,4 (action ‘N’). Observe
also that after applying an action from this policy from any one of these 3
states, it remains in one of the same three states 1,3,4. Therefore, the utility is
unchanged and U1 is the same as Uo for 1,3,4.

• "1 is different from "' for state 2 and it is easy to compute its utility U2. Given
that, it is easy to verify (one line in the previous page) that ‘E’ is still the
optimal policy for state 2.

• The conclusion is that "2 is the same as "1 and we have converged. The main
point is that we have save ourselves the pain of computing U1 explicitly for
1,3,4.

• Important: In this kind of problem, it often useful to look carefully at the
structure of the graph and the transition probabilities (especially when they
are mostly 1!). Many of these problems can be solved at least partially “by
inspection”, thus saving painful computations (or, as a minimum, enabling a
sanity check on the computations).

48

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session 49

AI 04

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session

Q-learning

• We run Q-learning on this MDP. We use the following strategy for exploration:
We start at X and we alternate between choosing action u and action v, starting
with action u.

• What are the values in the Q table after 5 iterations?

• Optimal policy from Q table? Optimal policy from the underlying MDP above?

• Call the learning rate #, and set the discount to " = 1

50

v v

u u
1 1

1

1

X
-10

Y
10

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session 51

Iteration 1: Reward = -10, action u, move from X to X

Iteration 2: Reward = -10, action v, move from X to Y

X Y

u -10# 0

v 0 0

X Y

u -10# 0

v -10# 0

Direct application of the formula:
Q(s,a) ! Q(s,a) + #(R(s) + ! max

a’Q(s’,a’) – Q(s,a))

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session 52

Iteration 3: Reward = 10, action u, move from Y to Y

Iteration 4: Reward = 10, action v, move from Y to X

X Y

u -10# 10#

v -10# 0

X Y

u -10# 10#

v -10# #(10-10#)

Direct application of the formula:
Q(s,a) ! Q(s,a) + #(R(s) + ! max

a’Q(s’,a’) – Q(s,a))

Note that -10# =

max (Q(X,u),Q(X,v))

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session 53

Iteration 5: Reward = -10, action u, move from X to X

X Y

u -20# 10#

v -10# #(10-10#)

The complete expression for this
entry is:
-10# + #(-10 + 1x(-10#) – (-10#))

The optimal policy from the Q table is formed by choosing for
each state the action that maximizes Q:
$(X) = v

$(Y) = u (recall that we always choose # between 0 and 1)

This is also the optimal policy for the actual MDP (that fact should
be obvious by inspection of the diagram)

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Final Review Session

Q-learning: Policy exploration

54

AI 03

ES1 = random
ES2 = optimal
ES3 = in between

