Planning

R&N Chap. 11

(and a tiny snippet of Chap. 8-9)

Limitations of Prop. Logic

» Not very expressive: To represent the fact
that a flight can originate from any of n
airports, we need n symbols:
FlyFromPITT, FlyFromSFO,
FlyFromORC,...

* |Instead we would like to use more
expressive sentences like:

For any airport x, FlyFrom(x)
—> First order logic (FOL)




FOL (The extremely short version!!)

« Same as before, plus:
— Quantifiers: \/_ 4
— Variables: x, y, z

— Predicates: P(x,y) = logical expression with
value True/False

— Functions: F(x)

V x,y,z Parent(z,x) A Parent(z, y) = Sibling(x, y)

FOL

« Substitution: Replace a part of the
sentence by another one.

SUBST({x/John}, Rich(x)) > Rich(John)

« Unification: Find parts of two sentences
that are identical after some substitution

UNIFY(SameCountry(F(x), y),
SameCountry(John,Mary)) =

{F(x)/John, y/Mary}




FOL Inference: Resolution

* Resolution: Resolution can be extended to
FOL, but more complicated

ll v l2 m, vm, After some substitution,
SUBST(8,l, vm,) I, and =m, are the same

6 = UNIFY(l,,—m.,)

UnHappy(x) v —Rich(x) Rich(John)
UnHappy(John)
6 ={x/John}

FOL Inference: Chaining

» Chaining: Forward/backward chaining idea
can be extended to KBs with sentences of
the form:

WindowsLocked(x) A DoorLocked(x) = RoomSecure(x)




Summary

» FOL provides more compact way of
representing KBs

» CNF, resolution and forward/backward
chaining concepts exists in FOL

» Properties of soundness, completeness

A Simple Task
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+ Task: Find a sequence of moves that will go from the configuration
with 3 blocks on the table to a configuration with the 3 blocks
stacked on top of each other in the A,B,C order.




A Simple Task

1.Move B from the \
table and stack it
on top of A

2.Move C from the

table and stack it
on top of B

+ Task: Find a sequence of moves that will go from the configuration
with 3 blocks on the table to a configuration with the 3 blocks
stacked on top of each other in the A,B,C order.

—

3 s,

Describe the starting Describe the goal

configuration by a configuration by a
KB: KB:

On(A,Table) A On(A,Table) A
On(B,Table) A On(B,A) A
On(C,Table) A On(C,B)

Clear(A) * Clear(B)
A Clear(C)




Q-A

Y Symbols

Predicates representing the
representing the constraints on the

constraints onthe  — components of the

Descr’ components of the | [ €nvironments
conf enwronm(;,\nts
KE: :

On[A,Table) A

On(B,Table) A
On(C,Table) A
Clear(A) A Clear(B)
A Clear(C)

-
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Describe each poséible action by a pairy

Precondition/Effect: In words: Move block r
Action: PutOn(r, x, y) from top of x to top of y

PRECONDITION:
On(r,x) A Clear(r) * Clear(y)
EFFECT:
on(r,y) A Clear(x) » = On(r,x) A = Clear(y)




YL

Describe each possible action by a pair

Precondition/Effect: In words: Move block
Action: PutOnTable(r, x) r from top of x to table

PRECONDITION: On(r,x) A Clear(r)
EFFECT: On(r,Table) A Clear(x) A = On(r,x)

Planning Problem as Search

PutOn(C, Table, A)| On(A,Table) A
n(B,Table) A
on(C, Am 8n§C:T:&3 + | Puton(B, Table, A)
On(B,Table) A Clear(A) A [~
- Clear(A) A Clear(B) A On(B,A) A
Clear(B) # Clear(C) On(C,Table) A
Clear(C) - Clear(A) A
Clear(B) A
Clear(C)
On(B,A) A
On(C,B) A
- Clear(A)

A - Clear(B) PutOn(C, Table, B)

A Clear(C)




On(C,A) A
On(B,Table) A
- Clear(A) A

Each state is a
knowledge base
describing the
configuration of
the world

Planning Problem as Search
PutOn(C, Table, A)

— States are linked by actions. An

on(C,B) ~
- Clear(A)
A - Clear(B
A Clear(C)

On(A,Table) A
On(B,Table) A
On(C,Table) A
LClear(A) A
Clear(B) »
Clear(C)

PutOn(B, Table, A)

R

On
On

) A
ble) A

Cl

action links two states if the
precondition of the action is satisfied
in the starting state and the effect is
consistent with the end state.

START

=-GOAL

Sy

a;; is a valid action if
S, satisfies PRECONDITION(a;;)
S, satisfies EFFECT(a;;)




Planning Problem as Search

,a;;is a valid action if
' S; satisfies PRECONDITION(ay)
S, satisfies EFFECT(a;)

S,

T " ~>=-{GOAL

\YJ ~
A SI—\>S

START

. Stazl‘cejs: KBs representing the possible configurations of the
wor

» Arcs: actions allowed between states

* Any of the previous search techniques can be used for planning
in this graph (defined implicitly)

« Forward planning: Search from the start configuration until the
goal configuration is reached

* Backward planning: Search backward from the goal
configuration until the start configuration is reached

Notation

PutOn(r, x, y)
PRECONDITION:
On(r,x) A Clear(r) A Clear(y)
EFFECT:
On(r,y) A Clear(x) A = On(r,x) A = Clear(y)

» Describing the actions is actually quite tricky.

» Frame problem: Should we represent the effect of
“PutOn” on the other variables? If we do, we need to
enumerate explicitly all of the variables in the world!

* One solution: 1t is implicitly assumed that any symbol not
mentioned in the EFFECT remains untouched.

» The particular notation used here (which uses this
approach) is called the STRIPS notation (named after a
famous Stanford system.)




Forward planning can be stupid

START

GOAL= Buy
Al book

START

Looking forward from
the START state, there
is no way to anticipate

which actions are
relevant to reaching the

goal > Need to explore GO b
a large number of

completely irrelevant

actions /)@6‘/
e
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Heuristics

Search is in general inefficient. Can we use heuristics
to speed up the search?

General heuristics: Try to guess a lower bound on the
number of actions necessary to achieve the goal.

Example (relaxed problems): First assume that the
actions have no preconditions and find a set of the
actions leading to the goal configurations (easier
problem) = Provides a lower bound on the number of
actions to reach the goal

A* and related search techniques can be used to take
advantage of heuristics.

Move Block AOn B
Move Block B On A -

GiD

Move Block B On A
v

Move Block C On B

|
Move Block COn A

Move Block A On B \
/
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Another way to look at planning
Move Block AOn B

Move Block B On A = -

Move Block B On A Move Bloizk AOnB \
v
Move Block C On B Move Block C On A /

Instead of searching through the graph of possible world states
linked by actions, we could do the opposite: Search through the
set of possible plans = (informally) sequences of actions

In fact, in many cases we can find partial plans that can be
combined into a complete plan - (hopefully) more efficient
search

Formally: Partial-Order Planning (POP)

Remove(Spare, Trunk)

START PutOn(Spare,Axle)

Remove(Flat,Axle)

FINISH
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Example
/ Remove(Spare,Trunk)

START / PutOn(Spare,Axle)

\ \4
Remove(Flat,Axle)

FINISH
* The nodes are now actions instead of world states
+ START and FINISH are dummy nodes

« Two nodes A and A’ are linked if the effect of A is a
precondition for A’

» The actions are partially ordered: Some actions must occur
before others

* Important: We don’t need a single, totally ordered, sequence
of actions

POP Algorithm

Partial plan is:
« Set of actions included in the plan
— Example: Remove(Flat,Axle))

« Set of ordering constraints: A < B means “action A
must occur before action B”

* Setof links: A 2. B

— Cis an effect of A
— C is a precondition of B
— Example:

Remove(Spare,Trunk) = ayspare. crounay PUtON(Spare,Axle)




POP Algorithm

Two dummy nodes:
« START:
— Precondition = None
— Effect = Initial configuration of the world
* FINISH.:

— Precondition = Goal configuration of the world

— Effect = None

« Initial plan contains only START and FINISH

with the ordering START < FINISH

At(Spare,Trunk)

Remove(Spare,Trunk)

START

At(Spare,Axle) is an
precondition for FINISH
and it is open

At(Spare,Axle)

FINISH
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POP Algorithm

At(Spare,Trunk)

Remove(Spare, Trunk)

START

precondition for FINISH FINISH
and it is open

At(Spare,Axle) is an %At(Spare,Axle)

» Open preconditions = Precondition of an
action in the plan that is not an effect of
another action in the plan

» The plan is incomplete as long as there
are open preconditions

POP Algorithm
« Initialize with {START, FINISH} nodes

* Repeat:

—Find an open precondition C of an
action B in the plan

—Find an action A such that the effect of
A meets the precondition C and add:

A>_B
* A < B (A must take place before B)
—Verify that the plan is still consistent

 Until there are no open preconditions
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At(Spare,Trunk)

START At(Flat,Axle)
At(Spare,Axle)
FINISH
Initialize with two actions:
START with two effects
FINISH with one precondition
START| At(Spare,Trunk) At(Spare,Ground)
At(Flat, Axle) -At(Flat,Axle)
PutOn(Spare,Axle)
At(Spare,Axle)
\ FINISH

Find an action to resolve the open

precondition At(Spare,Axle)

We now have two more open preconditions

16



At(Spare,Trunk)

Remove(Spare,Trunk) \

START | At(Spare,Trunk) At(Spare,Ground)
At(Flat,Axle) —At(Flat,Axle)
v
PutOn(Spare,Axle)
At(Spare,Axle)
\ FINISH

Find an action to resolve the open
precondition At(Spare,Ground)
We now have two open preconditions

At(Spare,Trunk)

Remove(Spare,Trunk) \

START | At(Spare,Trunk) At(Spare,Ground)
At(Flat,Axle) - At(Flat,Axle)
'
PutOn(Spare,Axle)
At(Spare,Axle)
\ FINISH

Find an action to resolve the open
precondition At(Spare,Trunk)
We now have one open precondition
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At(Spare,Trunk)

START At(Spare,Trunk)

At(Flat,Axle)

Remove(Spare,Trunk) \

At(Spare,Ground)
—At(Flat,Axle)

At(Flat,Axle)

Remove(Flat,Axle)

PutOn(Spare,Axle)
At(Spare,Axle)
\ FINISH

Find an action to resolve the open
precondition —At(Flat,Axle)
We now have one open precondition

At(Spare,Trunk)

START At(Spare,Trunk)

\ At(Flat,Axle)

Remove(Spare,Trunk) \

At(Spare,Ground)
—At(Flat,Axle)

PutOn(Spare,Axle)

At(Flat,Axle)

Remove(Flat,Axle)

At(Spare,Axle)
\ FINISH

Find an action to resolve the open
precondition At(Flat,Axle)
We now have no open precondition left
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* Initialize with {START, FINISH} nodes

* Repeat:
—Find an open precondition C of an
action B in the plan

—Find an action A such that the effect of
A meets the precondition C and add:

A>_B
* A < B (A must take place before B)
Verify that the plan is still consistent

 Until there are no open preconditions

Consistency:
If an existing action E in the plan conflicts
*lwithA >_B:
Try to add the ordering constraint E > B or
A>E
If no consistent ordering can be found -
Give up on adding A

A->_B
* A < B (A must take pl before B)

Verify that the plan is still consistent
 Until there are no open preconditions

f
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At(Spare,Trunk)

Remove(Spare,Trunk) \

At(Spare,Trunk) At(Spare,Ground)
TART
S At(Flat,Axle) -At(Flat,Axle)

¥
PutOn(Spare,Axle)

LeaveCar -At(Spare,Ground) At(Spare,Axle)
-At(Flat,Axle) \ FINISH

At(Spare,Trunk)

Remove(Spare,Trunk) \

START | At(Spare,Trunk) At(Spare,Ground)

At(Flat,Axle) —At(Flat,Axle)
¥

PutOn(Spare,Axle)

LeaveCar | "At(Spare,Ground) At(Sp;re, Axle)
—At(Flat,Axle)

\ FINISH

The new action LeaveCar could be inserted to
fulfill the open precondition —At(Flat,Axle).
However, the order in which the actions are
inserted is important.
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At(Spare, Trunk) Remove(Spare,Trunk)
.
/
At(Spare,Trunk) ,’ At(Spare,Ground)
START ,
At(Flat,Axle) _- -At(Flat,Axle)
P !
'/ PutOn(Spare,Axle)
LeaveCar At(Spare,Axle)
= At(Spare,Ground) \
~At(Flat,Axle) FINISH
At(Spare,Trunk) Remove(Spare, Trunk)
A
/
START | At(Spare,Trunk) /,’ At(Spare,Ground)
At(Flat,Axle) _- —At(Flat,Axle)
LT !
l/ PutOn(Spare,Axle)
LeaveCar | "At(Spare,Ground) At(Spare,Axle)
—At(Flat,Axle) \
llllllllllll FINISH

The effect —At(Spare,Ground) of LeaveCar
conflicts with the link:

Remove(Spare, Trunk)= sy spare, crouna) PUtON(Spare,Axle)
It must be ordered before Remove(Spare,Trunk)




The POP Algorithm

» POP is particularly effective when the
problem can be decomposed into
subproblems > More flexibility in the
search because we do not require a
strictly ordered sequence of actions.

« POP is sound

* POP is complete (e.g., with breadth first
search or iterative deepening)

Summary

» Configuration of the world = KB
» Actions = Preconditions + Effect
« STRIPS notation

» Planning = Find set of actions from start to goal
configurations of the world

» Planning as search through the valid world
configurations linked by valid actions between
configurations

— Backward search generally more effective
— All the arsenal of heuristic search can be used

 Partial-Order Planning (POP): Planning as search
through the possible plans.

— Construct partial plans, combined by taking into account ordering
constraints.

— Takes advantages of decomposable sub-plans and sub-goals
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Summary

» Configuration of the world = KB
» Actions = Preconditions + Effect
« STRIPS notation

» Planning = Find set of actions from start to goal
configurations of the world

» Planning as search through the valid world
configurations linked by valid actions between

configurations _ 110
; n
— Backward search apn~+- “ef'\OUS \‘\m'\tat\on n g;j\'\ng an
AL o S ) S
. potent\a\\\/ a tations for 1e&

AWhat 1S based representat’’ 2

use 1091090 (yorid scenario=”

p\anﬂ\ng \tn real s, combined by taking into account ordering

~unot/alnts.

— Takes advantages of decomposable sub-plans and sub-goals
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