Planning

R&N Chap. 11

(and a tiny snippet of Chap. 8-9)

Limitations of Prop. Logic

» Not very expressive: To represent the fact
that a flight can originate from any of n
airports, we need n symbols:
FlyFromPITT, FlyFromSFO,
FlyFromORC,...

* |Instead we would like to use more
expressive sentences like:

For any airport x, FlyFrom(x)
—> First order logic (FOL)

FOL (The extremely short version!!)

« Same as before, plus:
— Quantifiers: \/_ 4
— Variables: x, y, z

— Predicates: P(x,y) = logical expression with
value True/False

— Functions: F(x)

V x,y,z Parent(z,x) A Parent(z, y) = Sibling(x, y)

FOL

« Substitution: Replace a part of the
sentence by another one.

SUBST({x/John}, Rich(x)) > Rich(John)

« Unification: Find parts of two sentences
that are identical after some substitution

UNIFY(SameCountry(F(x), y),
SameCountry(John,Mary)) =

{F(x)/John, y/Mary}

FOL Inference: Resolution

* Resolution: Resolution can be extended to
FOL, but more complicated

ll v l2 m, vm, After some substitution,
SUBST(8,l, vm,) I, and =m, are the same

6 = UNIFY(l,,—m.,)

UnHappy(x) v —Rich(x) Rich(John)
UnHappy(John)
6 ={x/John}

FOL Inference: Chaining

» Chaining: Forward/backward chaining idea
can be extended to KBs with sentences of
the form:

WindowsLocked(x) A DoorLocked(x) = RoomSecure(x)

Summary

» FOL provides more compact way of
representing KBs

» CNF, resolution and forward/backward
chaining concepts exists in FOL

» Properties of soundness, completeness

A Simple Task

14

+ Task: Find a sequence of moves that will go from the configuration
with 3 blocks on the table to a configuration with the 3 blocks
stacked on top of each other in the A,B,C order.

A Simple Task

1.Move B from the \
table and stack it
on top of A

2.Move C from the

table and stack it
on top of B

+ Task: Find a sequence of moves that will go from the configuration
with 3 blocks on the table to a configuration with the 3 blocks
stacked on top of each other in the A,B,C order.

—

3 s,

Describe the starting Describe the goal

configuration by a configuration by a
KB: KB:

On(A,Table) A On(A,Table) A
On(B,Table) A On(B,A) A
On(C,Table) A On(C,B)

Clear(A) * Clear(B)
A Clear(C)

Q-A

Y Symbols

Predicates representing the
representing the constraints on the

constraints onthe — components of the

Descr’ components of the | [€nvironments
conf enwronm(;,\nts
KE: :

On[A,Table) A

On(B,Table) A
On(C,Table) A
Clear(A) A Clear(B)
A Clear(C)

-
o Mz

Describe each poséible action by a pairy

Precondition/Effect: In words: Move block r
Action: PutOn(r, x, y) from top of x to top of y

PRECONDITION:
On(r,x) A Clear(r) * Clear(y)
EFFECT:
on(r,y) A Clear(x) » = On(r,x) A = Clear(y)

YL

Describe each possible action by a pair

Precondition/Effect: In words: Move block
Action: PutOnTable(r, x) r from top of x to table

PRECONDITION: On(r,x) A Clear(r)
EFFECT: On(r,Table) A Clear(x) A = On(r,x)

Planning Problem as Search

PutOn(C, Table, A)| On(A,Table) A
n(B,Table) A
on(C, Am 8n§C:T:&3 + | Puton(B, Table, A)
On(B,Table) A Clear(A) A [~
- Clear(A) A Clear(B) A On(B,A) A
Clear(B) # Clear(C) On(C,Table) A
Clear(C) - Clear(A) A
Clear(B) A
Clear(C)
On(B,A) A
On(C,B) A
- Clear(A)

A - Clear(B) PutOn(C, Table, B)

A Clear(C)

On(C,A) A
On(B,Table) A
- Clear(A) A

Each state is a
knowledge base
describing the
configuration of
the world

Planning Problem as Search
PutOn(C, Table, A)

— States are linked by actions. An

on(C,B) ~
- Clear(A)
A - Clear(B
A Clear(C)

On(A,Table) A
On(B,Table) A
On(C,Table) A
LClear(A) A
Clear(B) »
Clear(C)

PutOn(B, Table, A)

R

On
On

) A
ble) A

Cl

action links two states if the
precondition of the action is satisfied
in the starting state and the effect is
consistent with the end state.

START

=-GOAL

Sy

a;; is a valid action if
S, satisfies PRECONDITION(a;;)
S, satisfies EFFECT(a;;)

Planning Problem as Search

,a;;is a valid action if
' S; satisfies PRECONDITION(ay)
S, satisfies EFFECT(a;)

S,

T " ~>=-{GOAL

\YJ ~
A SI—\>S

START

. Stazl‘cejs: KBs representing the possible configurations of the
wor

» Arcs: actions allowed between states

* Any of the previous search techniques can be used for planning
in this graph (defined implicitly)

« Forward planning: Search from the start configuration until the
goal configuration is reached

* Backward planning: Search backward from the goal
configuration until the start configuration is reached

Notation

PutOn(r, x, y)
PRECONDITION:
On(r,x) A Clear(r) A Clear(y)
EFFECT:
On(r,y) A Clear(x) A = On(r,x) A = Clear(y)

» Describing the actions is actually quite tricky.

» Frame problem: Should we represent the effect of
“PutOn” on the other variables? If we do, we need to
enumerate explicitly all of the variables in the world!

* One solution: 1t is implicitly assumed that any symbol not
mentioned in the EFFECT remains untouched.

» The particular notation used here (which uses this
approach) is called the STRIPS notation (named after a
famous Stanford system.)

Forward planning can be stupid

START

GOAL= Buy
Al book

START

Looking forward from
the START state, there
is no way to anticipate

which actions are
relevant to reaching the

goal > Need to explore GO b
a large number of

completely irrelevant

actions /)@6‘/
e

10

Heuristics

Search is in general inefficient. Can we use heuristics
to speed up the search?

General heuristics: Try to guess a lower bound on the
number of actions necessary to achieve the goal.

Example (relaxed problems): First assume that the
actions have no preconditions and find a set of the
actions leading to the goal configurations (easier
problem) = Provides a lower bound on the number of
actions to reach the goal

A* and related search techniques can be used to take
advantage of heuristics.

Move Block AOn B
Move Block B On A -

GiD

Move Block B On A
v

Move Block C On B

|
Move Block COn A

Move Block A On B \
/

11

Another way to look at planning
Move Block AOn B

Move Block B On A = -

Move Block B On A Move Bloizk AOnB \
v
Move Block C On B Move Block C On A /

Instead of searching through the graph of possible world states
linked by actions, we could do the opposite: Search through the
set of possible plans = (informally) sequences of actions

In fact, in many cases we can find partial plans that can be
combined into a complete plan - (hopefully) more efficient
search

Formally: Partial-Order Planning (POP)

Remove(Spare, Trunk)

START PutOn(Spare,Axle)

Remove(Flat,Axle)

FINISH

12

Example
/ Remove(Spare,Trunk)

START / PutOn(Spare,Axle)

\ \4
Remove(Flat,Axle)

FINISH
* The nodes are now actions instead of world states
+ START and FINISH are dummy nodes

« Two nodes A and A’ are linked if the effect of A is a
precondition for A’

» The actions are partially ordered: Some actions must occur
before others

* Important: We don’t need a single, totally ordered, sequence
of actions

POP Algorithm

Partial plan is:
« Set of actions included in the plan
— Example: Remove(Flat,Axle))

« Set of ordering constraints: A < B means “action A
must occur before action B”

* Setof links: A 2. B

— Cis an effect of A
— C is a precondition of B
— Example:

Remove(Spare,Trunk) = ayspare. crounay PUtON(Spare,Axle)

POP Algorithm

Two dummy nodes:
« START:
— Precondition = None
— Effect = Initial configuration of the world
* FINISH.:

— Precondition = Goal configuration of the world

— Effect = None

« Initial plan contains only START and FINISH

with the ordering START < FINISH

At(Spare,Trunk)

Remove(Spare,Trunk)

START

At(Spare,Axle) is an
precondition for FINISH
and it is open

At(Spare,Axle)

FINISH

14

POP Algorithm

At(Spare,Trunk)

Remove(Spare, Trunk)

START

precondition for FINISH FINISH
and it is open

At(Spare,Axle) is an %At(Spare,Axle)

» Open preconditions = Precondition of an
action in the plan that is not an effect of
another action in the plan

» The plan is incomplete as long as there
are open preconditions

POP Algorithm
« Initialize with {START, FINISH} nodes

* Repeat:

—Find an open precondition C of an
action B in the plan

—Find an action A such that the effect of
A meets the precondition C and add:

A>_B
* A < B (A must take place before B)
—Verify that the plan is still consistent

 Until there are no open preconditions

15

At(Spare,Trunk)

START At(Flat,Axle)
At(Spare,Axle)
FINISH
Initialize with two actions:
START with two effects
FINISH with one precondition
START| At(Spare,Trunk) At(Spare,Ground)
At(Flat, Axle) -At(Flat,Axle)
PutOn(Spare,Axle)
At(Spare,Axle)
\ FINISH

Find an action to resolve the open

precondition At(Spare,Axle)

We now have two more open preconditions

16

At(Spare,Trunk)

Remove(Spare,Trunk) \

START | At(Spare,Trunk) At(Spare,Ground)
At(Flat,Axle) —At(Flat,Axle)
v
PutOn(Spare,Axle)
At(Spare,Axle)
\ FINISH

Find an action to resolve the open
precondition At(Spare,Ground)
We now have two open preconditions

At(Spare,Trunk)

Remove(Spare,Trunk) \

START | At(Spare,Trunk) At(Spare,Ground)
At(Flat,Axle) - At(Flat,Axle)
'
PutOn(Spare,Axle)
At(Spare,Axle)
\ FINISH

Find an action to resolve the open
precondition At(Spare,Trunk)
We now have one open precondition

17

At(Spare,Trunk)

START At(Spare,Trunk)

At(Flat,Axle)

Remove(Spare,Trunk) \

At(Spare,Ground)
—At(Flat,Axle)

At(Flat,Axle)

Remove(Flat,Axle)

PutOn(Spare,Axle)
At(Spare,Axle)
\ FINISH

Find an action to resolve the open
precondition —At(Flat,Axle)
We now have one open precondition

At(Spare,Trunk)

START At(Spare,Trunk)

\ At(Flat,Axle)

Remove(Spare,Trunk) \

At(Spare,Ground)
—At(Flat,Axle)

PutOn(Spare,Axle)

At(Flat,Axle)

Remove(Flat,Axle)

At(Spare,Axle)
\ FINISH

Find an action to resolve the open
precondition At(Flat,Axle)
We now have no open precondition left

18

* Initialize with {START, FINISH} nodes

* Repeat:
—Find an open precondition C of an
action B in the plan

—Find an action A such that the effect of
A meets the precondition C and add:

A>_B
* A < B (A must take place before B)
Verify that the plan is still consistent

 Until there are no open preconditions

Consistency:
If an existing action E in the plan conflicts
*lwithA >_B:
Try to add the ordering constraint E > B or
A>E
If no consistent ordering can be found -
Give up on adding A

A->_B
* A < B (A must take pl before B)

Verify that the plan is still consistent
 Until there are no open preconditions

f

19

At(Spare,Trunk)

Remove(Spare,Trunk) \

At(Spare,Trunk) At(Spare,Ground)
TART
S At(Flat,Axle) -At(Flat,Axle)

¥
PutOn(Spare,Axle)

LeaveCar -At(Spare,Ground) At(Spare,Axle)
-At(Flat,Axle) \ FINISH

At(Spare,Trunk)

Remove(Spare,Trunk) \

START | At(Spare,Trunk) At(Spare,Ground)

At(Flat,Axle) —At(Flat,Axle)
¥

PutOn(Spare,Axle)

LeaveCar | "At(Spare,Ground) At(Sp;re, Axle)
—At(Flat,Axle)

\ FINISH

The new action LeaveCar could be inserted to
fulfill the open precondition —At(Flat,Axle).
However, the order in which the actions are
inserted is important.

20

At(Spare, Trunk) Remove(Spare,Trunk)
.
/
At(Spare,Trunk) ,’ At(Spare,Ground)
START ,
At(Flat,Axle) _- -At(Flat,Axle)
P !
'/ PutOn(Spare,Axle)
LeaveCar At(Spare,Axle)
= At(Spare,Ground) \
~At(Flat,Axle) FINISH
At(Spare,Trunk) Remove(Spare, Trunk)
A
/
START | At(Spare,Trunk) /,’ At(Spare,Ground)
At(Flat,Axle) _- —At(Flat,Axle)
LT !
l/ PutOn(Spare,Axle)
LeaveCar | "At(Spare,Ground) At(Spare,Axle)
—At(Flat,Axle) \
llllllllllll FINISH

The effect —At(Spare,Ground) of LeaveCar
conflicts with the link:

Remove(Spare, Trunk)= sy spare, crouna) PUtON(Spare,Axle)
It must be ordered before Remove(Spare,Trunk)

The POP Algorithm

» POP is particularly effective when the
problem can be decomposed into
subproblems > More flexibility in the
search because we do not require a
strictly ordered sequence of actions.

« POP is sound

* POP is complete (e.g., with breadth first
search or iterative deepening)

Summary

» Configuration of the world = KB
» Actions = Preconditions + Effect
« STRIPS notation

» Planning = Find set of actions from start to goal
configurations of the world

» Planning as search through the valid world
configurations linked by valid actions between
configurations

— Backward search generally more effective
— All the arsenal of heuristic search can be used

 Partial-Order Planning (POP): Planning as search
through the possible plans.

— Construct partial plans, combined by taking into account ordering
constraints.

— Takes advantages of decomposable sub-plans and sub-goals

22

Summary

» Configuration of the world = KB
» Actions = Preconditions + Effect
« STRIPS notation

» Planning = Find set of actions from start to goal
configurations of the world

» Planning as search through the valid world
configurations linked by valid actions between

configurations _ 110
; n
— Backward search apn~+- “ef'\OUS \‘\m'\tat\on n g;j\'\ng an
AL o S) S
. potent\a\\\/ a tations for 1e&

AWhat 1S based representat’’ 2

use 1091090 (yorid scenario=”

p\anﬂ\ng \tn real s, combined by taking into account ordering

~unot/alnts.

— Takes advantages of decomposable sub-plans and sub-goals

23

