Game Theory
Preliminaries: Playing and Solving Games

Zero-sum games with perfect information

R&N 6

• Definitions
• Game evaluation
• Optimal solutions
 – Minimax
• Non-deterministic games (first take)
Types of Games (informal)

<table>
<thead>
<tr>
<th></th>
<th>Deterministic</th>
<th>Chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfect</td>
<td>Chess, Checkers, Go</td>
<td>Backgammon, Monopoly</td>
</tr>
<tr>
<td>Information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imperfect</td>
<td>Battleship</td>
<td>Bridge, Poker, Scrabble, wargames</td>
</tr>
<tr>
<td>Information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: This initial material uses the common definition of what a “game” is. More interesting is the generalization of the theory to scenarios that are far more useful to a wide range of decision making problems. Stay tuned….
Definitions

• *Two-player game*: Player A and B. Player A starts.
• *Deterministic*: None of the moves/states are subject to chance (no random draws).
• *Perfect information*: Both players see all the states and decisions. Each decision is made sequentially.
• *Zero-sum*: Player’s A gain is exactly equal to player B’s loss. One of the player’s must win or there is a draw (both gains are equal).

Example

• Initially a stack of pennies stands between two players
• Each player divides one of the current stacks into two unequal stacks.
• The game ends when every stack contains one or two pennies
• The first player who cannot play loses
Search Problem

- **States**: Board configuration + next player to move
- **Successor**: List of states that can be reached from the current state through of legal moves
- **Terminal state**: States at which the games ends
- **Payoff/Utility**: Numerical value assigned to each terminal state. Example:
 - \(U(s) = +1 \) for A win, \(-1\) for B win, \(0\) for draw
- **Game value**: The value of a terminal that will be reached assuming optimal strategies from both players (minimax value)
- **Search**: Find move that maximizes game value from current state
Optimal (minimax) Strategies

- Search the game tree such that:
 - A’s turn to move → find the move that yields maximum payoff from the corresponding subtree → This is the move most favorable to A
 - B’s turn to move → find the move that yields minimum payoff (best for B) from the corresponding subtree → This is the move most favorable to B
Minimax

Minimax \((s)\)

If \(s\) is terminal
Return \(U(s)\)

If next move is \(A\)
Return \(\max \ \text{Minimax}(s')_{s' \in \text{Succ}(s)}\)

Else
Return \(\min \ \text{Minimax}(s')_{s' \in \text{Succ}(s)}\)

\[3 = \max(3,2,2)\]

\[3 = \min(3,12,8)\]
Minimax Properties

- Complete: If finite game
- Optimal: If opponent plays optimally
- Essentially DFS
- Efficiency:
 - αβ pruning
 - Use heuristic evaluation functions to cut off search early
 - Example: Weighted sum of number of pieces (material value of state)
 - Stop search based on cutoff test (e.g., maximum depth)

Choice of Value?

- Absolute game value is different in the two cases
- Minimax solution is the same
- Only the relative ordering of values matters, not the absolute values → ordinal utility values
- True only for deterministic games
- Evaluation functions can be any function that preserves the ordering of the utility values
Non-Deterministic Games

A\[\begin{array}{c}
\text{Chance} \\
\quad 0.5 \\
\quad 0.5 \\
\quad 0.5 \\
\quad 0.5 \\
\end{array}\]

B\[\begin{array}{c}
\quad 2 \\
\quad 4 \\
\quad 7 \\
\quad 4 \\
\quad 6 \\
\quad 0 \\
\quad 5 \\
\quad -2 \\
\end{array}\]
Non-Deterministic Games

Includes states where neither player makes a choice. A random decision is made (e.g., rolling dice)

Use expected value of successors at chance nodes:
$$\sum_{s' \in \text{Succes}(s)} p(s') \text{MiniMax}(s')$$

Non-Deterministic Minimax

Minimax \((s)\)
- If \(s\) is terminal
 - Return \(U(s)\)
- If next move is \(A\): Return \(\max_{s' \in \text{Succes}(s)} \text{MiniMax}(s')\)
- If next move is \(B\): Return \(\min_{s' \in \text{Succes}(s)} \text{MiniMax}(s')\)
- If chance node
 - Return \(\sum_{s' \in \text{Succes}(s)} p(s') \text{MiniMax}(s')\)
• Different utility values may yield radically different result even though the order is the same → Absolute utility values do matter
• Utility should be proportional to actual payoff, it is not sufficient to follow the same order
• Think of choosing between 2 lotteries with same odds but radically different payoff distributions
• Implication: Evaluation functions must be linear positive functions of utility
• Kind of obvious but important consideration for later developments

Choice of Utility Values
• Definitions
• Game evaluation
• Optimal solutions
 – Minimax
• Non-deterministic games

Matrix Form of Games

R&N Chapter 6
R&N Section 17.6
• Assumptions so far:
 – Two-player game: Player A and B.
 – Perfect information: Both players see all the states and decisions. Each decision is made sequentially.
 – Zero-sum: Player’s A gain is exactly equal to player B’s loss.
• We are going to eliminate these constraints. We will eliminate first the assumption of “perfect information” leading to far more realistic models.
 – Some more game-theoretic definitions ➔
 Matrix games
 – Minimax results for perfect information games
 – Minimax results for hidden information games

Extensive form of game: Represent the game by a tree
A *pure strategy* for a player defines the move that the player would make for every possible state that the player would see.

Pure strategies for A:
- Strategy I: (1 → L, 4 → L)
- Strategy II: (1 → L, 4 → R)
- Strategy III: (1 → R, 4 → L)
- Strategy IV: (1 → R, 4 → R)

Pure strategies for B:
- Strategy I: (2 → L, 3 → L)
- Strategy II: (2 → L, 3 → R)
- Strategy III: (2 → R, 3 → L)
- Strategy IV: (2 → R, 3 → R)

In general: If N states and B moves, how many pure strategies exist?
Matrix form of games

Pure strategies for A:
- Strategy I: (1 → L, 4 → L)
- Strategy II: (1 → L, 4 → R)
- Strategy III: (1 → R, 4 → L)
- Strategy IV: (1 → R, 4 → R)

Pure strategies for B:
- Strategy I: (2 → L, 3 → L)
- Strategy II: (2 → L, 3 → R)
- Strategy III: (2 → R, 3 → L)
- Strategy IV: (2 → R, 3 → R)

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>-1</td>
<td>-1</td>
<td>+2</td>
<td>+2</td>
</tr>
<tr>
<td>II</td>
<td>+4</td>
<td>+4</td>
<td>+2</td>
<td>+2</td>
</tr>
<tr>
<td>III</td>
<td>+5</td>
<td>+1</td>
<td>+5</td>
<td>+1</td>
</tr>
<tr>
<td>IV</td>
<td>+5</td>
<td>+1</td>
<td>+5</td>
<td>+1</td>
</tr>
</tbody>
</table>

Player A’s payoff if game is played with strategy I by Player A and strategy III by Player B

• Matrix normal form of games: The table contains the payoffs for all the possible combinations of pure strategies for Player A and Player B.
• The table characterizes the game completely, there is no need for any additional information about rules, etc.
• Although, in many cases, the number of pure strategies may be too large for the table to be represented explicitly, the matrix representation is the basic representation that is used for deriving fundamental properties of games.
Minimax → Matrix version

For each strategy (each row of the game matrix), Player A should assume that Player B will use the optimal strategy given Player A’s strategy (the strategy with the minimum value in the row of the matrix). Therefore the best value that Player can achieve is the maximum over all the rows of the minimum values across each of the rows:

\[\text{Max value} = \max \min \ M(i, j) \]

Rows i Columns j

The corresponding pure strategy is the optimal solution for this game. It is the optimal strategy for A assuming that B plays optimally.
Minimax or Maximin?

- But we could have used the opposite argument:
- For each strategy (each column of the game matrix), Player B should assume that Player A will use the optimal strategy given Player B’s strategy (the strategy with the maximum value in the column of the matrix):

 \[
 \begin{array}{cccc}
 \text{Min} & \text{Max} & M(i, j) \\
 \hline
 \text{Columns} & \text{Rows} \end{array}
 \]

- Therefore the best value that Player B can achieve is the minimum over all the columns of the maximum values across each of the columns:
- Problem: Do we get to the same result??
- Is there always a solution?
Minimax vs. Maximin

- Fundamental Theorem I (von Neumann):
 - For a two-player, zero-sum game with perfect information:
 - There always exists an optimal pure strategy for each player
 - Minimax = Maximin

- Note: This is a game-theoretic formalization of the minimax search algorithm that we studied earlier.
Another (Seemingly Simple) Game

- The two Players A and B each have a coin
- They show each other their coin, choosing to show either head or tail.
- If they both choose head → Player B pays Player A $2
- If they both choose tail → Player B pays Player A $1
- If they choose different sides → Player A pays Player B $1
Side Note about all toy examples

• If you find this kind of toy example annoying, it models a large number of real-life situations.
• For example: Player A is a business owner (e.g., a restaurant, a plant..) and Player B is an inspector. The inspector picks a day to conduct the inspection; the owner picks a day to hide the bad stuff. Player B wins if the days are different; Player A wins if the days are the same.
• This class of problems can be reduced to the “coin game” (with different payoff distributions, perhaps).

Extensive Form

Player A

Player B

<table>
<thead>
<tr>
<th>H</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>+2</td>
</tr>
<tr>
<td>T</td>
<td>-1</td>
</tr>
<tr>
<td>H</td>
<td>-1</td>
</tr>
<tr>
<td>T</td>
<td>+1</td>
</tr>
</tbody>
</table>
Extensive Form

Problem: Since the moves are simultaneous, Player B does not know which move Player A chose → This is no longer a game with perfect information → we have to deal with *hidden information*.
Matrix Normal Form

- It is no longer the case that maximin = minimax (easy to verify: -1 vs. +1)
- Therefore: It appears that there is no pure strategy solution
- In fact, in general, *none of the pure strategies* are solutions to a zero-sum game with *hidden information*

Why no Pure Strategy Solutions?

- Intuition:
 - If Player A considers move H, he has to assume that Player B will choose the worst-case move (for A), which is move T
 - Therefore Player A should try move T instead, but then he has to assume that Player B will choose the worst-case move (for A), which is move H.
 - Therefore Player A should consider move H, but then he has to assume that Player B will choose the worst-case move (for A), which is move T.
 » Therefore Player A should consider move H, but then he has to assume that Player B will choose the worst-case move (for A), which is move T.
Using Random Strategies

- Suppose that, instead of choosing a fixed pure strategy, Player A chooses randomly strategy H with probability \(p \), and strategy T with probability \(1-p \).

- If Player B chooses move H, the expected payoff for Player A is:
 \[
 p \times (+2) + (1-p) \times (-1) = 3p - 1
 \]

- If Player B chooses move T, the expected payoff for Player A is:
 \[
 p \times (-1) + (1-p) \times (+1) = -2p + 1
 \]

- So, the worst case is when Player B chooses a strategy that minimizes the payoff between the 2 cases:
 \[
 \min(3p - 1, -2p + 1)
 \]

- Player A should then adjust the probability \(p \) so that its payoff is maximized (note the similarity with the standard maximin procedure described earlier):
 \[
 \max \min(3p - 1, -2p + 1)
 \]

Graphical Solution

- For Player B choosing H:
 \[
 \text{Expected payoff if Player B chooses H} = 3p - 1
 \]
- For Player B choosing T:
 \[
 \text{Expected payoff if Player B chooses T} = -2p + 1
 \]
Graphical Solution

Expected payoff if Player B chooses T: \(-2p + 1\)

Expected payoff if Player B chooses H: \(3p - 1\)

No matter what strategy Player B follows (choosing a move at random with prob. \(q\) for H), the resulting payoffs will still be between the two lines corresponding to B’s pure strategies.

Excepted payoff for Player A

Graphical Solution
Mixed Strategies

- It is no longer possible to find an optimal pure strategy for Player A.
- We need to change the problem a bit: We assume that Player A chooses a pure strategy randomly at the beginning of the game.
- In that scenario, Player A selects one pure strategy probability p and the other one with probability $1-p$.
- This strategy of choosing pure strategies randomly is called a mixed strategy for Player A and is entirely defined by the probability p.
- Question: We know that we cannot find an optimal pure strategy for Player A, but can we find an optimal mixed strategy p?
- Answer: Yes! The result that we derived for the simple example holds for general games. It yields a procedure for finding the optimal mixed strategy for zero-sum games.
Minimax with Mixed Strategies

• Theorem II (von Neumann):
 – For a two-player, zero-sum game with hidden information:
 • There always exists an optimal mixed strategy with value
 \[
 \max_p \min_q (p \times m_{11} + (1 - p) \times m_{21}, p \times m_{12} + (1 - p) \times m_{22})
 \]

 • Where the matrix form of the game is:
 \[
 \begin{pmatrix}
 m_{11} & m_{12} \\
 m_{21} & m_{22}
 \end{pmatrix}
 \]

 • Note: This is a direct generalization of the minimax result to mixed strategies.
Recipe for 2x2 games

\[\min(p \times m_{11} + (1 - p) \times m_{21}, p \times m_{12} + (1 - p) \times m_{22}) \]

- Since the two functions of \(p \) are linear, the maximum is attained either for:
 - \(p = 0 \)
 - \(p = 1 \)
 - The intersection of the two lines, if it occurs for \(p \) between 0 and 1
General Case: $N \times M$ Games

- We have illustrated the problem on 2x2 games (2 strategies for each of Player A and Player B).
- The result generalizes to $N \times M$ games, although it is more difficult to compute.
- A mixed strategy is a vector of probabilities (summing to 1!) $p = (p_1, ..., p_N)$. p_i is the probability with which strategy i will be chosen by Player A.
- The optimal strategy is found by solving the problem:

$$\max_p \min_j \sum_i p_i m_{ij}$$

$$\sum_i p_i = 1$$

This is solved by using "Linear Programming".
The criterion for selecting the optimal mixed strategy is the average payoff that Player A would receive over many runs of the game.

It may seem strange to use random choices of pure strategies as “mixed” strategies and to search for optimal mixed strategies.

In fact, it formalizes what happens in common situations. For example, in poker, if Player A follows a single pure strategy (taking the same action every time a particular configuration of cards is dealt), Player B can guess and respond to that strategy and lower Player A’s payoffs. The right thing to do is for Player A to change randomly the way each configuration is handled, according to some policy. A good player would use a good policy.

The game theory results formalize the need for things like “bluffing” in games with hidden information.

The theory assumes rational players → Roughly speaking, the players make decision based on increasing their respective payoffs (utility values, preferences,..).
Another Example: Sort of Poker

- Players A and B play with two types of cards: Red and Black
- Player A is dealt one card at random (50% prob. of being Red)
- If the card is red, Player A may *resign* and loses $20
- Or Player A may *hold*
 - B may then *resign* → A wins $10
 - B may *see*
 - A loses $40 if the card is Red
 - A wins $30 otherwise

Modified version of an example from Andrew Moore
The game is non-deterministic because of the initial random choice of cards.

Hidden information: Player B cannot know which of these 2 states it’s in.

The game is non-deterministic because of the initial random choice of cards.

Hidden information: Player B cannot know which of these 2 states it’s in.

• Generate the matrix form of the game (be careful: It’s not a deterministic game)
• Find the optimal mixed strategy
• Find the expected payoff for Player A
Summary

- Matrix form of games
- Minimax procedure and theorem for games with perfect information \(\Rightarrow\) Always a *pure strategy* solution
- Minimax procedure and theorem for games with hidden information \(\Rightarrow\) Always a *mixed strategy* solution
- Procedure for solving 2x2 games with hidden information
- Understanding of how the problem is formalized for \(N \times M\) games (actually solving them requires linear programming tools which will not be covered here)

- Important: These results apply only to *zero-sum games*. This is still a severe restrictions as most realistic decision-making problems cannot be modeled as *zero-sum games* \(\Rightarrow\) This restriction will be eliminated next!