Planning in
Dynamic Environments
Maxim Likhachev

Robotics Institute
Carnegie Mellon University

Autonomous Agents in Dynamic
Environments

segbot robot

Search-based Planning

robot’s knowledge of the world planning map

discretize

Search-based Planning

robot’'s knowledge of the world planning map

discretize

from Sstart to Sgoal

Search-based Planning

robot’s knowledge of the world planning map

discretize

eight-connected grid

Search-based Planning

robot’s knowledge of the world planning map

discretize

search the graph
for a least-cost patl

from Sstart to Sgoal

eight-connected gridavhy?

High Dimensional Search-based
Planning

2D (X, y) planning 4D (x, y,0, V) planning
54K states over 20 million states

High Dimensional Search-based
Planning

2D (X, y) planning 4D (x, y,0, V) planning
54K states over 20 million states
fast planning slow planning

slow execution——— why? fast execution

High Dimensional Search-based

Planning
o I ﬂ . I
o ! . /
E—1 —
6 DOF robot arm 20 DOF robot arm
> 3*1(° states > 10?6 states

Planning in Real World

* need to re-plan often due to

— changes in the environment
* navigation with people around
e autonomous car driving with other cars on the road

— inaccuracy in the model of the environment
— errors in the position estimate

Planning in Real World

* need to re-plan often due to

— changes in the environment
* navigation with people around
e autonomous car driving with other cars on the road

— inaccuracy in the model of the environment
— errors in the position estimate

* need tore-plan fast!

Planning in Real World

* need to re-plan often due to

— changes in the environment
* navigation with people around
e autonomous car driving with other cars on the road

— inaccuracy in the model of the environment
— errors in the position estimate
* need tore-plan fast!

i |

7
Y

4D planning with Anytime D* (Anytime Dynamic A¥*)

Planning in Real World

* need to re-plan often due to

— changes in the environment
* navigation with people around
e autonomous car driving with other cars on the road

— inaccuracy in the model of the environment
— errors in the position estimate

* need tore-plan fast!

Stanlond Umiversily
RPA MARS Pl Mecting
"._ﬂ"l_l_;'li!'!glllnl D, Sept 2003

4D planning with Anytime D* (Anytime Dynamic A¥)

Planning in Real World

* need to re-plan often due to

— changes in the environment
* navigation with people around
e autonomous car driving with other cars on the road

— inaccuracy in the model of the environment
— errors in the position estimate

* need tore-plan fast!

]

3D parking planning with Anytirhe D (Antime Dynanii*)
for the next DARPA Grand Challenge

Planning in Real World

Anytime planning algorithms (e.g., ARA*- anytime version of A*)

— find first possibly highly-suboptimal solution quickly, use the remaining time
to improve it

— allow to meet time constraints

Replanning algorithms (e.g., D* and D* Lite — incremental version:
of A¥)

— speed up the task of repeated planning by reusing previous planning efforts
— well-suited for dynamic and/or partially known environments

Anytime replanning algorithms (e.g., Anytime D* - anytime
incremental A*)
— combine the benefits of the two

Search for a Least-cost Path

» Compute optimal g-values for relevant states

— g(s)— an estimate of the cost of a least-cost path §Qmto s
— optimal values satisfy: g(s) =ming. ;e 9(S”) + C(S”,S)

the cost c(§S,04) Of
an edge from, 20 §yq

go CS[);»@\QS

‘%@

Search for a Least-cost Path

« Compute optimal g-values for relevant states

— g(s)— an estimate of the cost of a least-cost path fQmto s

— optimal values satisfy: g(s) =mMing. ;64 9(S”) + €(S”,S)
why?

the cost c(§s,0,) Of
an edge from 20 S04

go CT)%@\M

‘%@

Search for a Least-cost Path
» Least-cost path is a greedy path computed by tmakhg:

— start withs,,, and from any statemove to the predecessor state
s’ such that +
S argmms Dpred(s)(g(S) C(S S))

A* Search

« Computes optimal g-values for relevant states

« At any point of time:

an (under) estimate of the cost
of a shortest path from s tg g

L a(s) o

the cost of a shortest pat
from g, t0 s found so far

h(s)
-
e % . . e

A* Search

« Computes optimal g-values for relevant states

Main function
9(Sa) = O0; all otherg-values are infiniteOPEN = {s,4;
ComputePath();
publish solution;

ComputePath function set of candidates for expansion
while(sy,, is Not expanded)
removes with the smallesff(s) = g(s)+h(s)] from OPEN
expands;

\ g:O @—2, g=

h=3 2 h=0

for every expanded staté @ 1 @
g(s) is optimal g

if heuristics are consisten - 3 ®/

A* Search

Computes optimal g-values for relevant states

ComputePath function
while(sy,, is not expanded)

removes with the smallesff(s) = g(s)+h(s)] from OPEN

expands, g=c 9= o
h=2 5 h=1
=0 _ <
=JOS N
I
g
O ©
g:oo = o
h=2 h=1

A* Search

Computes optimal g-values for relevant states
ComputePath function
while(sy,, is not expanded)

removes with the smallesff(s) = g(s)+h(s)] from OPEN

insertsinto CLOSED

for every successa of ssuch thas’ not inCLOSED

i g(s) > g(s) + c(s,5) \
g(S,) = g(S) * C(S’S’); set of states that have already been expanded

/ inserts’ into OPEN
tries to decrease g(s’) using the
found path fromg,;to s @ ’@\

:00

—2 hl

ILQ
II 1l

OOO

T Q
TRl
3

@

A* Search: Example

« Computes optimal g-values for relevant states

ComputePath function
while(sy,, is not expanded)

removes with the smallesff(s) = g(s)+h(s)] from OPEN
insertsinto CLOSED
for every successa of ssuch thas’ not inCLOSED
if g(s’) > g(s) + c(s,s)
9(s’) = g(s) + c(s.s);
inserts’ into OPEN

g0 ()2
CLOSED = {} %

OPEN = {Sard

next state to expand;,s; . 3 @/

A* Search: Example

« Computes optimal g-values for relevant states
ComputePath function
while(sy,, is not expanded)
removes with the smallesff(s) = g(s)+h(s)] from OPEN
insertsinto CLOSED
for every successa of ssuch thas’ not inCLOSED

if g(s’) > g(s) + c(s,s) 9(S) > 9(Ssian) * C(SsarnS)
g(s’) = g(s) + c(s,s); /
inserts’ into OPEN B _
hs h1

“PFOSSONg
CLOSED = {} ’ <

OPEN = {Sard

next state to expand;,s; . 3 @/

A* Search: Example

« Computes optimal g-values for relevant states

ComputePath function
while(sy,, is not expanded)

removes with the smallesff(s) = g(s)+h(s)] from OPEN
insertsinto CLOSED
for every successa of ssuch thas’ not inCLOSED
if g(s’) > g(s) + c(s,s)
9(s’) = g(s) + c(s.s);
inserts’ into OPEN

A* Search: Example

« Computes optimal g-values for relevant states
ComputePath function
while(sy,, is not expanded)
removes with the smallesff(s) = g(s)+h(s)] from OPEN
insertsinto CLOSED
for every successa of ssuch thas’ not inCLOSED
if g(s’) > g(s) + c(s.s)
9(s’) = g(s) + c(s,s);
inserts’ into OPEN g=1
h=2
g=0
) 0 @
CLOSED = {§
OPEN = {s}

next state to expandé S . @/

:00 oo

:2 hl

;?

A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(sy,, is not expanded)

removes with the smallesff(s) = g(s)+h(s)] from OPEN
insertsinto CLOSED
for every successa of ssuch thas’ not inCLOSED
if g(s’) > g(s) + c(s,s)
9(s’) = g(s) + c(s.s);
inserts’ into OPEN

= 2 _
EPECE Y
CLOSED - {%tart!SZ} ~

OPEN ={s,s;} /
next state to expand; s . 3 @
S

A* Search

« Computes optimal g-values for relevant states
ComputePath function
while(sy,, is not expanded)
removes with the smallesff(s) = g(s)+h(s)] from OPEN
insertsinto CLOSED
for every successa of ssuch thas’ not inCLOSED
if g(s’) > g(s) + c(s.s)
9(s’) = g(s) + c(s,s);
inserts’ into OPEN

_ 2
o S,
CLOSED = {§iar:SS1} % =Y

OPEN = {8, Syalt

next state to expand,; S . 3 @/

A* Search

« Computes optimal g-values for relevant states
ComputePath function
while(sy,, is not expanded)
removes with the smallesff(s) = g(s)+h(s)] from OPEN
insertsinto CLOSED
for every successa of ssuch thas’ not inCLOSED
if g(s’) > g(s) + c(s.s)
9(s’) = 9(s) + c(s.s");
inserts’ into OPEN

N @—2'%
CLOSED = {§12115:5,,8) l

OPEN = {8;,Syat

next state to expand;g, . 3 @ /

A* Search

« Computes optimal g-values for relevant states
ComputePath function
while(sy,, is not expanded)
removes with the smallesff(s) = g(s)+h(s)] from OPEN
insertsinto CLOSED
for every successa of ssuch thas’ not inCLOSED
if g(s’) > g(s) + c(s.s)
9(s’) = g(s) + c(s,s);
inserts’ into OPEN

=0 —2,
) 323 @ %
CLOSED = {§tart’SZ’Sl’S4’SJoal}

OPEN = {s}

done . 3 @/

A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(sy,, is not expanded)

removes with the smallesff(s) = g(s)+h(s)] from OPEN
insertsinto CLOSED
for every successa of ssuch thas’ not inCLOSED
if g(s’) > g(s) + c(s,s)
9(s’) = g(s) + c(s.s);
inserts’ into OPEN

for every expanded state g(s) is opt|mal

for every other state g(s) is an upper bou.—'

we can now compute a least-cost path ﬂf

A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(sy,, is not expanded)

removes with the smallesff(s) = g(s)+h(s)] from OPEN
insertsinto CLOSED
for every successa of ssuch thas’ not inCLOSED
if g(s’) > g(s) + c(s,s)
9(s’) = g(s) + c(s,s);
inserts’ into OPEN

g=1 9
h=2 h

g=0 —2
for every expanded state g(s) is opt|mal

for every other state g(s) is an upper bou.—'@

we can how compute a least-cost path ﬁf ﬁ 15

3
1

5
0

©)

A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(sy,, is not expanded)

removes with the smallesff(s) = g(s)+h(s)] from OPEN
insertsinto CLOSED
for every successa of ssuch thas’ not inCLOSED
if g(s’) > g(s) + c(s,s)
9(s’) = g(s) + c(s.s);
inserts’ into OPEN

g=1 9=3
) h=2 h=l
PO O
1 50
for every expanded state g(s) is optimal +_ 2 /
for every other state g(s) is an upper botwhy?—
we can now compute a least-cost path 3222 3215

Weighted A*

* Expands states in the order f§§) = g(s)+¢h(s),e>1

* ¢-suboptimal
cost(solutionkx &-cost(optimal solution)

 MUCH faster than A* for many problems

Weighted A*: Example

weighted A* withe =1 (i.e. A¥) weighted A* withe =10
11,054 expansions 1,138 expansions
solution cost=168,204 solution cost=177,876

Constructing anytime search

* Running a series of weighted A* searches with decreasing

=25

¢=1.0

13 expansions 15 expansions
solution=11 moves solution=11 moves

seteto large value;

20 expansions
solution=10 moves

while £= 1 and still has some time for planning

run weighted A* search;
publish currents suboptimal solution;
decrease

Constructing anytime search

* Running a series of weighted A* searches with decreasing

e=2.5 =15

e—

13 expansions 15 expansions 20 expansions
solution=11 moves solution=11 moves solution=10 moves

» Inefficient because
— many state values remain the same between search iterations
— we should be able to reuse the results of previous searches

ARA*: Efficient anytime search

* Runs a series of weighted A* searches with deargas

« Each weighted A* search is modified to reuse pnesio
search results

« Continues to guaranteesuboptimality bounds

Weighted # Search with Reu

all v-values initially are infinite;
ComputePath function
while(s,, is not expanded)
removes with the smallesfg(s)+ ¢h(s)] from OPEN
insertsinto CLOSED
v(s)=g(s);
for every successa of ssuch thas’ not inCLOSED
if g(s’)>9(s) + c(s,s’)
9(s’) =g(s) + c(s.s");
inserts’ into OPEN

Weighted £/ Search with Reu

all v-values initially are infinites— [\, 5116 _ the value of a state

ComputePath function during its expansion

while(s,, is not expanded)
removes with the smalle
insertsinto CLO
v(s)=9(s);
for every successa of ssuch thas’ not inCLOSED
if g(s’)>9(s) + c(s,s’)
9(s’) =g(s) + c(s.s);
inserts’ into OPEN

+ eh(s)] from OPEN

Weighted # Search with Reu

all v-values initially are infinite;
ComputePath function
while(s,, is not expanded)
removes with the smallesfg(s)+ ¢h(s)] from OPEN
insertsinto CLOSED
v(s)=g(s);
for every successa of ssuch thas’ not inCLOSED
if g(s’)>9(s) + c(s,s’)
9(s’) =g(s) + c(s.s");
inserts’ into OPEN

* g(s’) = mins”ﬂpred(s’) V(S”) + C(S”’S’)

Weighted £/ Search with Reu

all v-values initially are infinite;
ComputePath function
while(s,, is not expanded)
removes with the smallesfg(s)+ ¢h(s)] from OPEN
insertsinto CLOSED
v(s)=9(s);
for every successa of ssuch thas’ not inCLOSED
if g(s’)>9(s) + c(s,s’)
9(s’) = g(s) + c(s.s);

inserts’ into OPEN overconsistent state

* g(s") = MiNg: 7preqsn V(S”) + C(S",S consistent state

* OPEN:a set of states with(s) ;g})/
all other states hawgs) = g(s

Weighted # Search with Reu

initialize OPENwith all overconsistent states;
ComputePathwithReuse function
while(s,, is not expanded)
removes with the smallesfg(s)+ ¢h(s)] from OPEN
insertsinto CLOSED
v(s)=g(s);
for every successa of ssuch thas’ not inCLOSED
if g(s’)>9(s) + c(s,s’)
9(s’) = 9(s) + c(s.s");

all you need to do to
make it reuse old value

inserts’ into OPEN

overconsistent state

* g(s") = Ming. 7preqsn V(S”) + C(S",S consistent state

 OPEN:a set of states witl(s) ;g})/
all other states hawgs) = g(s

Example: A* ¢=1) with reuse

ég' 2
& | @\
0%@

T—iﬁ“ﬁ

wOO
o< @Q
TR

CLOSED = {} = e
OPEN = {5, S0at K;Z"" Kzl‘”

next state to expand; s

o g(s’) = mins“_ﬂpred(s’)v(s”)) C(S”-S’)
initially OPEN contains all overconsistent state

Example: A* ¢=1) with reuse

g:l g= 3
v=1 v=3
g=0 h=2 h=1 g=5
v=0 V= oo
h:3 CS[ZD @\ h=0
CLOSED = {s} g9=3
OPEN = {8,§,0a} ‘ézzz Ny

next state to expand,

Example: A* ¢=1) with reuse

g=1 g=3
v=1 v=3
g:O h=2 h=1 g= 5
v=0 v="5
h:3 CS(D @\ h=0
CLOSED = {8,Sy0at \9:; 9= fo
oPEN=(g 2L

done

after ComputePath terminates:
all g-values of states are equal to final A* g-values

Example: A* ¢=1) with reuse

we can now compute a least-cost path

Back to Our Example

* A seriesof weighted A* searcheswith decreasing &:
£=2.5 e=1.5 £=1.0
|

|

|

13 expansions 15 expansions 20 expansions
solution=11 moves solution=11 moves solution=10 moves

Back to Our Example

* A seriesof weighted A* searcheswith decreasing &:
£=2.5 e=1.5 ¢=1.0
|

|

|

S

13 expansions 15 expansions 20 expansions
solution=11 moves solution=11 moves solution=10 moves

 ARA*: aseriesof callsto ComputePathwithReuse with decreasing &:
£=2.5 ¢=1.5 e=1.0

13 expansions 1 expansion 9 expansions
solution=11 moves solution=11 moves solution=10 moves

Planning with ARA* in High-dimensional
State-spaces

.I J

after 0.05 secs of planning with ARA*

Planning with ARA* in High-dimensional
State-spaces

i

after 90 secs of planning with ARA*

Adding Replanning Capabillity
 In dynamic environments edge costs change

» Can use the same ComputePathwithReuse to re-cerapt
path if edge costs decrease and very similar foncti
edge costs increase

Optimal re-planners: D* and D* Lite

seteto 1;
until goal is reached
ComputePathwithReuse();
publish currents suboptimal solution path;
follow the path until sense something that is not in the map;
update the corresponding edge costs;
set g, t0 the current state of the agent;

Optimal re-planners: D* and D* Lite

seteto 1;
until goal is reached
ComputePathwithReuse();
publish currents suboptimal solution path;
follow the path until sense something that is not in the map;
update the corresponding edge costs;
set g, t0 the current state of the agent;

Important detail! search is done backwards:
Sstart = @g€Nt's goal, §, = agent’s current state, all edges are reversed

Optimal re-planners: D* and D* Lite

seteto 1;
until goal is reached
ComputePathwithReuse();
publish currents suboptimal solution path;
follow the path until sense something that is not in the map;
update the corresponding edge costs;
set g, t0 the current state of the agent;

Important detail! search is done backwards:
Ssart = @g€Nt's goal, §, = agent’s current state, all edges are reversed
This way, s, always remains the same and g-values are more likely to T in
the same in between two calls@@OmputePathwithReuse

Optimal re-planners: D* and D* Lite

seteto 1;
until goal is reached
ComputePathwithReuse();
publish currents suboptimal solution path;
follow the path until sense something that is not in the map;
update the corresponding edge costs;
set g, t0 the current state of the agent;

Important detail! search is done backwards:
Sstart = @g€Nt's goal, §, = agent’s current state, all edges are reversed
This way, s, always remains the same and g-values are more likely to T Why')
the same in between two calls@omputePathwithReusz
P why care?

D* & D* Lite: Example

initial knowledge and initial goal distances

4131211 liol9 876666 16[6[6[61616
“l3[12|11lio|l9[8[7]6]5[5[5]15[5[5[5]5][5
13121110 9[8[76|54 4444444
413[12[11 10|98 [765|413 [3[3[3]|3]3]3
4l13[1z]11lio]l 98 [7]6]s[4[3]2[3[2]2a]2]3
1312l lwleo g7 l6é6(s5|alz3 211|123
14113 [12 [11 ER 7165 (a3l 2 1lse 11213

ER s|l4 (32l T 1[2]3
14 13[12[11 [10] 9 [8= =Ff=f-Sg=q=lcd” | 3 [32 | 2 | 2 | 3
4] 13[12]11]i0] 9 s 4]3]13[3[3[3]3[3
4131211] 10 7165144444444
43121111 7165 [s5[s5[5]5]|5[s5[5][5
14| 13/ 1212]12]12 7166616166666 6
FS 7177717177717 717
18 s pprl6==15-=14| 14 8| 8|88 [8 8|88]8]3]38

knowledge and goal distances after the robot moves

14113 12|11 |10 6
1413121110
14113121110
1413121110
1413|1211] 10
14131211 10
14 | 13 | 12] 11

3
8
8
3
3
8

— (1 [l [|tn [N

O[O DD O[O D
e [[| [[

£

cells in gray
have g-values
changed

Q4 |1 (S |tn [Lh |un [Ln[Un |Uh DA [Uh [fLa | [Lh (O
00|~ [o | [[| e [| [| fun o
Q0 [[T [T | [| L [Fd [T [T (LD [[[Lh (O
QO |~ [N | [[(1 1 1 (1 1 (e | [tn (O
Q0 | (TN | [[1D = = [1 [| [(O
O |~ (TN |0 [[Tnd [[t e [t [0 [Ed | [t [N
Q= | [| L) [1D |1 (1 L Bl [s [t | O
Q0 [~ | [| e | Tad 10 [1ad | Lad [0 | LD L [[t

00 [~ | |wn | [|12 |[—B

D* & D* Lite: Example

initial A* search initial D* Lite search

=

second A* search second D* Lite search

—p

Anytime re-planner: Anytime D*

seteto large value;
until goal is reached
ComputePathwithReuse();
publish currents suboptimal solution path;
follow the path until sense something that is not in the map;
update the corresponding edge costs;
set g, 10 the current state of the agent;
if significant changes were observed
increase € or replan from scratch;
else

decrease €

Anytime re-planner: Anytime D*

seteto large value;
until goal is reached
ComputePathwithReuse();
publish currents suboptimal solution path;
follow the path until sense something that is not in the map;
update the corresponding edge costs;
set g, 10 the current state of the agent;
if significant changes were observed
increase € or replan from scratch; why?
else

decrease €

Planning with Anytime D*

» 3 DOF robotic arm manipulating an end-effector through dynami
environment

» 1 sec of deliberation (improving and/or replanning) in between e;
step

e Initially, £= 20

Summary

» Planning is often a repeated process and needs to be fast
— dynamic environments
— inaccurate initial model
— errors in the position of the agent

» Family of A*-based planners:
— ARA*
e anytime A* search
¢ outputse suboptimal solutions
e can be used under time constraints

— D*and D* Lite
¢ incremental A* search
« computes optimal solutions by reusing previous search efforts
¢ can often drastically speed up repeated planning

— Anytime D* (AD*)
* anytime incremental A* search
¢ outputse suboptimal solutions
« can be used under time constraints
e can often drastically speed up repeated planning

— all based on the ComputePathwithReuse function

