
Planning in
Dynamic Environments

Maxim Likhachev

Robotics Institute

Carnegie Mellon University

2

Autonomous Agents in Dynamic
Environments

ATRV robot

segbot robot

3D map

2D map

3

Search-based Planning
robot’s knowledge of the world

discretize

planning map

4

Search-based Planning

discretize

S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph search the graph
for a least-cost path
from sstart to sgoal

robot’s knowledge of the world planning map

5

Search-based Planning

discretize

S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph search the graph
for a least-cost path
from sstart to sgoal

eight-connected grid

robot’s knowledge of the world planning map

6

Search-based Planning

discretize

S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph search the graph
for a least-cost path
from sstart to sgoal

eight-connected grid why?

robot’s knowledge of the world planning map

7

High Dimensional Search-based
Planning

2D (x, y) planning
54K states

4D (x, y, Ө, V) planning
over 20 million states

8

High Dimensional Search-based
Planning

2D (x, y) planning
54K states

4D (x, y, Ө, V) planning
over 20 million states

fast planning
slow execution

slow planning
fast executionwhy?

9

High Dimensional Search-based
Planning

6 DOF robot arm
> 3*109 states

20 DOF robot arm
> 1026 states

10

Planning in Real World
• need to re-plan often due to

– changes in the environment
• navigation with people around
• autonomous car driving with other cars on the road

– inaccuracy in the model of the environment
– errors in the position estimate

11

Planning in Real World
• need to re-plan often due to

– changes in the environment
• navigation with people around
• autonomous car driving with other cars on the road

– inaccuracy in the model of the environment
– errors in the position estimate

• need to re-plan fast!

12

Planning in Real World
• need to re-plan often due to

– changes in the environment
• navigation with people around
• autonomous car driving with other cars on the road

– inaccuracy in the model of the environment
– errors in the position estimate

• need to re-plan fast!

4D planning with Anytime D* (Anytime Dynamic A*)

13

Planning in Real World
• need to re-plan often due to

– changes in the environment
• navigation with people around
• autonomous car driving with other cars on the road

– inaccuracy in the model of the environment
– errors in the position estimate

• need to re-plan fast!

4D planning with Anytime D* (Anytime Dynamic A*)

14

Planning in Real World
• need to re-plan often due to

– changes in the environment
• navigation with people around
• autonomous car driving with other cars on the road

– inaccuracy in the model of the environment
– errors in the position estimate

• need to re-plan fast!

3D parking planning with Anytime D* (Anytime Dynamic A*)
for the next DARPA Grand Challenge

15

• Replanning algorithms (e.g., D* and D* Lite – incremental versions
of A*)
– speed up the task of repeated planning by reusing previous planning efforts

– well-suited for dynamic and/or partially known environments

• Anytime replanning algorithms (e.g., Anytime D* - anytime
incremental A*)
– combine the benefits of the two

• Anytime planning algorithms (e.g., ARA*- anytime version of A*)
– find first possibly highly-suboptimal solution quickly, use the remaining time

to improve it
– allow to meet time constraints

Planning in Real World

16

• Compute optimal g-values for relevant states

– g(s)– an estimate of the cost of a least-cost path from sstart to s

– optimal values satisfy: g(s) = mins’’∈ pred(s)g(s’’) + c(s’’,s)

Search for a Least-cost Path

S2 S1

Sgoal

2
g=1 g=3

g=52

S4 S3

3

g=2 g=5

1
Sstart

1

1

g=0

the cost c(s1,sgoal) of
an edge from s1 to sgoal

17

• Compute optimal g-values for relevant states

– g(s)– an estimate of the cost of a least-cost path from sstart to s

– optimal values satisfy: g(s) = mins’’∈ pred(s)g(s’’) + c(s’’,s)

Search for a Least-cost Path

S2 S1

Sgoal

2
g=1 g=3

g=52

S4 S3

3

g=2 g=5

1
Sstart

1

1

g=0

the cost c(s1,sgoal) of
an edge from s1 to sgoal

why?

18

• Least-cost path is a greedy path computed by backtracking:

– start with sgoal and from any state s move to the predecessor state
s’ such that)),''()''((minarg')('' sscsgs spreds += ∈

Search for a Least-cost Path

S2 S1

Sgoal

2
g=1 g=3

g=52

S4 S3

3

g=2 g=5

1
Sstart

1

1

g=0

19

• Computes optimal g-values for relevant states

A* Search

h(s)
g(s)

Sstart

S

S2

S1

Sgoal

…

…

…

the cost of a shortest path
from sstart to s found so far

an (under) estimate of the cost
of a shortest path from s to sgoal

• At any point of time:

20

• Computes optimal g-values for relevant states

A* Search

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
expand s;

Main function
g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};
ComputePath();
publish solution;

S2 S1

Sgoal

2

g=∞
h=2

g= ∞
h=1

g= ∞
h=02

S4 S3
3

g= ∞
h=2

g= ∞
h=1

1
Sstart

1

1

g=0
h=3

set of candidates for expansion

for every expanded state
g(s) is optimal

(if heuristics are consistent)

21

• Computes optimal g-values for relevant states

A* Search

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
expand s;

S2 S1

Sgoal

2

g=∞
h=2

g= ∞
h=1

g= ∞
h=02

S4 S3
3

g= ∞
h=2

g= ∞
h=1

1
Sstart

1

1

g=0
h=3

22

• Computes optimal g-values for relevant states

A* Search

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

S2 S1

Sgoal

2

g=∞
h=2

g= ∞
h=1

g= ∞
h=02

S4 S3
3

g= ∞
h=2

g= ∞
h=1

1
Sstart

1

1

g=0
h=3

set of states that have already been expanded

tries to decrease g(s’) using the
found path from sstart to s

23

• Computes optimal g-values for relevant states

A* Search: Example

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

CLOSED = {}
OPEN = {sstart}
next state to expand: sstart

S2 S1

Sgoal

2

g=∞
h=2

g= ∞
h=1

g= ∞
h=02

S4 S3
3

g= ∞
h=2

g= ∞
h=1

1
Sstart

1

1

g=0
h=3

24

• Computes optimal g-values for relevant states

A* Search: Example

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

CLOSED = {}
OPEN = {sstart}
next state to expand: sstart

g(s2) > g(sstart) + c(sstart,s2)

S2 S1

Sgoal

2

g=∞
h=2

g= ∞
h=1

g= ∞
h=02

S4 S3
3

g= ∞
h=2

g= ∞
h=1

1
Sstart

1

1

g=0
h=3

25

• Computes optimal g-values for relevant states

A* Search: Example

S2 S1

Sgoal

2

g=1
h=2

g= ∞
h=1

g= ∞
h=02

S4 S3
3

g= ∞
h=2

g= ∞
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

26

• Computes optimal g-values for relevant states

A* Search: Example

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

CLOSED = {sstart}
OPEN = {s2}
next state to expand: s2

S2 S1

Sgoal

2

g=1
h=2

g= ∞
h=1

g= ∞
h=02

S4 S3
3

g= ∞
h=2

g= ∞
h=1

1
Sstart

1

1

g=0
h=3

27

• Computes optimal g-values for relevant states

A* Search

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= ∞
h=02

S4 S3
3

g= 2
h=2

g= ∞
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

CLOSED = {sstart,s2}
OPEN = {s1,s4}
next state to expand: s1

28

• Computes optimal g-values for relevant states

A* Search

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= ∞
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

CLOSED = {sstart,s2,s1}
OPEN = {s4,sgoal}
next state to expand: s4

29

• Computes optimal g-values for relevant states

A* Search

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

CLOSED = {sstart,s2,s1,s4}
OPEN = {s3,sgoal}
next state to expand: sgoal

30

• Computes optimal g-values for relevant states

A* Search

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

CLOSED = {sstart,s2,s1,s4,sgoal}
OPEN = {s3}
done

31

• Computes optimal g-values for relevant states

A* Search

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

for every expanded state g(s) is optimal
for every other state g(s) is an upper bound
we can now compute a least-cost path

32

• Computes optimal g-values for relevant states

A* Search

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

for every expanded state g(s) is optimal
for every other state g(s) is an upper bound
we can now compute a least-cost path

33

• Computes optimal g-values for relevant states

A* Search

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

for every expanded state g(s) is optimal
for every other state g(s) is an upper bound
we can now compute a least-cost path

why?

34

Weighted A*
• Expands states in the order of: f(s) = g(s)+ εh(s), ε>1

• ε-suboptimal
cost(solution) ≤ ε·cost(optimal solution)

• MUCH faster than A* for many problems

35

Weighted A*: Example

weighted A* with ε =1 (i.e. A*)

11,054 expansions
solution cost=168,204

weighted A* with ε =10

1,138 expansions
solution cost=177,876

36

Constructing anytime search
• Running a series of weighted A* searches with decreasing ε:

ε =2.5

13 expansions
solution=11 moves

ε =1.5

15 expansions
solution=11 moves

ε =1.0

20 expansions
solution=10 moves

set ε to large value;
while ε ≥ 1 and still has some time for planning

run weighted A* search;
publish current ε suboptimal solution;
decrease ε;

37

Constructing anytime search
• Running a series of weighted A* searches with decreasing ε:

• Inefficient because
– many state values remain the same between search iterations

– we should be able to reuse the results of previous searches

ε =2.5

13 expansions
solution=11 moves

ε =1.5

15 expansions
solution=11 moves

ε =1.0

20 expansions
solution=10 moves

38

ARA*: Efficient anytime search

• Runs a series of weighted A* searches with decreasing ε

• Each weighted A* search is modified to reuse previous
search results

• Continues to guarantee ε suboptimality bounds

39

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [g(s)+ εh(s)] from OPEN;
insert s into CLOSED;

all v-values initially are infinite;

Weighted A* Search with Reuse

for every successor s’ of s such that s’ not in CLOSED
if g(s’) > (s) + c(s,s’)

g(s’) = (s) + c(s,s’);
insert s’ into OPEN;

v(s)=g(s);

g
g

40

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [g(s)+ εh(s)] from OPEN;
insert s into CLOSED;

all v-values initially are infinite;

Weighted A* Search with Reuse

for every successor s’ of s such that s’ not in CLOSED
if g(s’) > (s) + c(s,s’)

g(s’) = (s) + c(s,s’);
insert s’ into OPEN;

v(s)=g(s);

g
g

v-value – the value of a state
during its expansion

41

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [g(s)+ εh(s)] from OPEN;
insert s into CLOSED;

• g(s’) = mins’’∈ pred(s’) v(s’’) + c(s’’,s’)

all v-values initially are infinite;

Weighted A* Search with Reuse

for every successor s’ of s such that s’ not in CLOSED
if g(s’) > (s) + c(s,s’)

g(s’) = (s) + c(s,s’);
insert s’ into OPEN;

v(s)=g(s);

g
g

42

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [g(s)+ εh(s)] from OPEN;
insert s into CLOSED;

• g(s’) = mins’’∈ pred(s’) v(s’’) + c(s’’,s’)
• OPEN: a set of states with v(s) > g(s)

all other states have v(s) = g(s)

all v-values initially are infinite;

Weighted A* Search with Reuse

for every successor s’ of s such that s’ not in CLOSED
if g(s’) > (s) + c(s,s’)

g(s’) = (s) + c(s,s’);
insert s’ into OPEN;

v(s)=g(s);

g
g

overconsistent state

consistent state

43

ComputePathwithReuse function
while(sgoal is not expanded)

remove s with the smallest [g(s)+ εh(s)] from OPEN;
insert s into CLOSED;

• g(s’) = mins’’∈ pred(s’) v(s’’) + c(s’’,s’)
• OPEN: a set of states with v(s) > g(s)

all other states have v(s) = g(s)

initialize OPENwith all overconsistent states;

Weighted A* Search with Reuse

for every successor s’ of s such that s’ not in CLOSED
if g(s’) > (s) + c(s,s’)

g(s’) = (s) + c(s,s’);
insert s’ into OPEN;

v(s)=g(s);

g
g

overconsistent state

consistent state

all you need to do to
make it reuse old values!

44

Example: A* (ε=1) with reuse

S2 S1

Sgoal

2

g=1
v= 1
h=2

g= 3
v= 3
h=1 g= 5

v= ∞
h=02

S4 S3

3

g= 2
v= ∞
h=2

g= ∞
v= ∞
h=1

1
Sstart

1

1

g=0
v=0
h=3

g(s’) = mins’’∈ pred(s’) v(s’’) + c(s’’,s’)
initially OPEN contains all overconsistent states

CLOSED = {}
OPEN = {s4,sgoal}
next state to expand: s4

45

S2 S1

Sgoal

2

g=1
v= 1
h=2

g= 3
v= 3
h=1 g= 5

v= ∞
h=02

S4 S3

3

g= 2
v= 2
h=2

g= 5
v= ∞
h=1

1
Sstart

1

1

g=0
v=0
h=3

CLOSED = {s4}
OPEN = {s3,sgoal}
next state to expand: sgoal

Example: A* (ε=1) with reuse

46

S2 S1

Sgoal

2

g=1
v= 1
h=2

g= 3
v= 3
h=1 g= 5

v= 5
h=02

S4 S3

3

g= 2
v= 2
h=2

g= 5
v= ∞
h=1

1
Sstart

1

1

g=0
v=0
h=3

after ComputePath terminates:
all g-values of states are equal to final A* g-values

CLOSED = {s4,sgoal}
OPEN = {s3}
done

Example: A* (ε=1) with reuse

47

S2 S1

Sgoal

2

g=1
v= 1
h=2

g= 3
v= 3
h=1 g= 5

v= 5
h=02

S4 S3

3

g= 2
v= 2
h=2

g= 5
v= ∞
h=1

1
Sstart

1

1

g=0
v=0
h=3

we can now compute a least-cost path

Example: A* (ε=1) with reuse

48

Back to Our Example
ε =2.5

13 expansions
solution=11 moves

ε =1.5

15 expansions
solution=11 moves

ε =1.0

20 expansions
solution=10 moves

• A series of weighted A* searches with decreasing ε:

49

Back to Our Example

• ARA*: a series of calls to ComputePathwithReuse with decreasing ε:

ε =2.5

13 expansions
solution=11 moves

ε =1.5

15 expansions
solution=11 moves

ε =1.0

20 expansions
solution=10 moves

ε =2.5

13 expansions
solution=11 moves

ε =1.5

1 expansion
solution=11 moves

ε =1.0

9 expansions
solution=10 moves

• A series of weighted A* searches with decreasing ε:

50

Planning with ARA* in High-dimensional
State-spaces

after 0.05 secs of planning with ARA*

51

after 90 secs of planning with ARA*

Planning with ARA* in High-dimensional
State-spaces

52

Adding Replanning Capability

• In dynamic environments edge costs change

• Can use the same ComputePathwithReuse to re-compute a
path if edge costs decrease and very similar function if
edge costs increase

53

Optimal re-planners: D* and D* Lite

set ε to 1;
until goal is reached

ComputePathwithReuse();
publish current ε suboptimal solution path;
follow the path until sense something that is not in the map;
update the corresponding edge costs;
set sgoal to the current state of the agent;

54

Optimal re-planners: D* and D* Lite

set ε to 1;
until goal is reached

ComputePathwithReuse();
publish current ε suboptimal solution path;
follow the path until sense something that is not in the map;
update the corresponding edge costs;
set sgoal to the current state of the agent;

Important detail! search is done backwards:
sstart = agent’s goal, sgoal = agent’s current state, all edges are reversed

55

Optimal re-planners: D* and D* Lite

set ε to 1;
until goal is reached

ComputePathwithReuse();
publish current ε suboptimal solution path;
follow the path until sense something that is not in the map;
update the corresponding edge costs;
set sgoal to the current state of the agent;

Important detail! search is done backwards:
sstart = agent’s goal, sgoal = agent’s current state, all edges are reversed

This way, sstart always remains the same and g-values are more likely to remain

the same in between two calls to ComputePathwithReuse

56

Optimal re-planners: D* and D* Lite

set ε to 1;
until goal is reached

ComputePathwithReuse();
publish current ε suboptimal solution path;
follow the path until sense something that is not in the map;
update the corresponding edge costs;
set sgoal to the current state of the agent;

Important detail! search is done backwards:
sstart = agent’s goal, sgoal = agent’s current state, all edges are reversed

This way, sstart always remains the same and g-values are more likely to remain

the same in between two calls to ComputePathwithReuse
why?

why care?

57

cells in gray
have g-values
changed

D* & D* Lite: Example
initial knowledge and initial goal distances

knowledge and goal distances after the robot moves

58

D* & D* Lite: Example
initial A* search

second A* search

initial D* Lite search

second D* Lite search

59

Anytime re-planner: Anytime D*

set ε to large value;
until goal is reached

ComputePathwithReuse();
publish current ε suboptimal solution path;
follow the path until sense something that is not in the map;
update the corresponding edge costs;
set sgoal to the current state of the agent;

if significant changes were observed

increase εεεε or replan from scratch;
else

decrease εεεε;

60

Anytime re-planner: Anytime D*

set ε to large value;
until goal is reached

ComputePathwithReuse();
publish current ε suboptimal solution path;
follow the path until sense something that is not in the map;
update the corresponding edge costs;
set sgoal to the current state of the agent;

if significant changes were observed

increase εεεε or replan from scratch;
else

decrease εεεε;

why?

61

Planning with Anytime D*

• 3 DOF robotic arm manipulating an end-effector through dynamic
environment

• 1 sec of deliberation (improving and/or replanning) in between each
step

• Initially, ε = 20

62

Summary
• Planning is often a repeated process and needs to be fast

– dynamic environments
– inaccurate initial model
– errors in the position of the agent

• Family of A*-based planners:
– ARA*

• anytime A* search
• outputs ε suboptimal solutions
• can be used under time constraints

– D* and D* Lite
• incremental A* search
• computes optimal solutions by reusing previous search efforts
• can often drastically speed up repeated planning

– Anytime D* (AD*)
• anytime incremental A* search
• outputs ε suboptimal solutions
• can be used under time constraints
• can often drastically speed up repeated planning

– all based on the ComputePathwithReuse function

