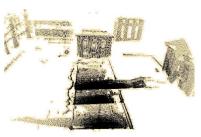
Planning in Dynamic Environments

Maxim Likhachev
Robotics Institute
Carnegie Mellon University

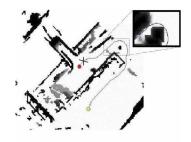
Autonomous Agents in Dynamic Environments

ATRV robot

segbot robot

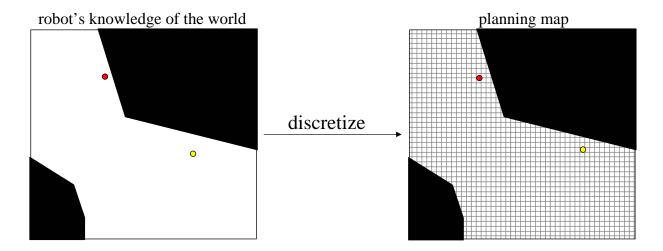


3D map

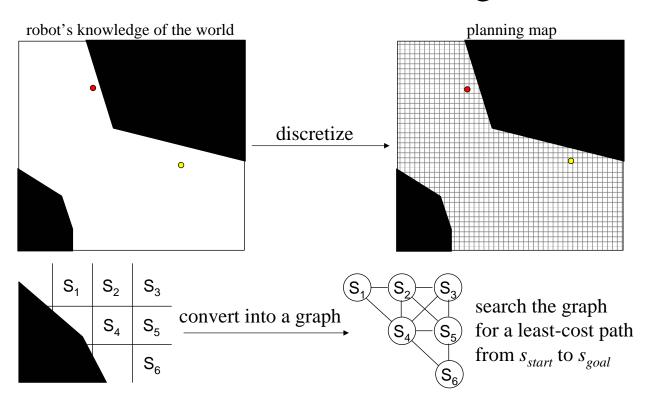


2D map

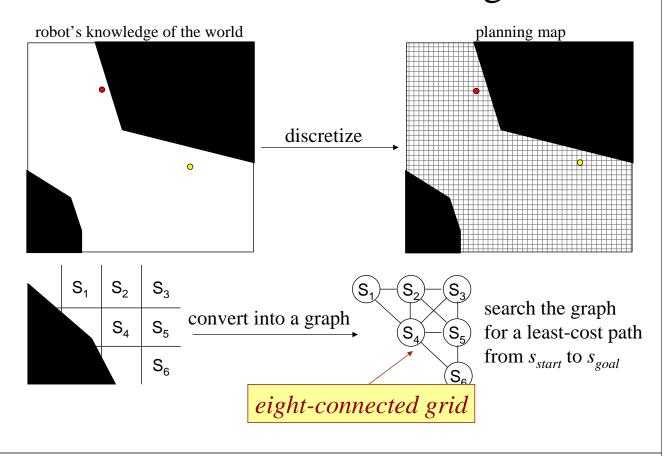
Search-based Planning



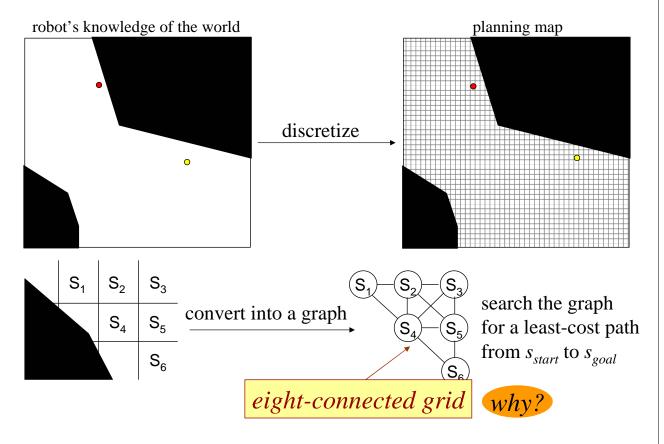
Search-based Planning



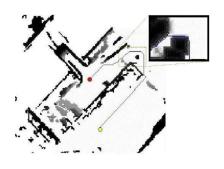
Search-based Planning



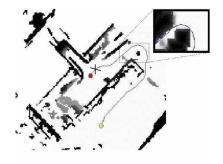
Search-based Planning



High Dimensional Search-based Planning



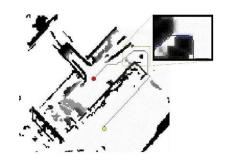
2D (x, y) planning 54K states



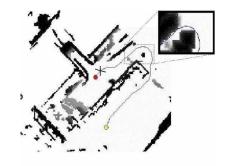
 $4D(x, y, \Theta, V)$ planning over 20 million states

High Dimensional Search-based Planning

why?

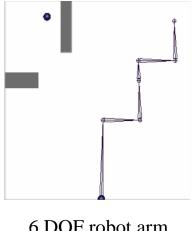


2D (x, y) planning 54K states fast planning slow execution –

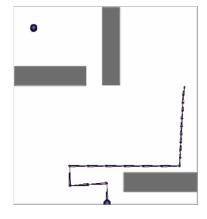


4D (x, y, θ, V) planning over 20 million states slow planning —fast execution

High Dimensional Search-based Planning



6 DOF robot arm > 3*10⁹ states



20 DOF robot arm $> 10^{26}$ states

Planning in Real World

- need to re-plan often due to
 - changes in the environment
 - navigation with people around
 - autonomous car driving with other cars on the road
 - inaccuracy in the model of the environment
 - errors in the position estimate

Planning in Real World

- need to re-plan often due to
 - changes in the environment
 - navigation with people around
 - autonomous car driving with other cars on the road
 - inaccuracy in the model of the environment
 - errors in the position estimate
- need to re-plan fast!

Planning in Real World

- need to re-plan often due to
 - changes in the environment
 - navigation with people around
 - autonomous car driving with other cars on the road
 - inaccuracy in the model of the environment
 - errors in the position estimate
- need to re-plan fast!

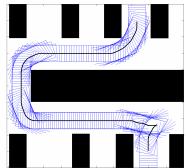
Planning in Real World

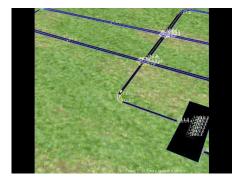
- need to re-plan often due to
 - changes in the environment
 - navigation with people around
 - autonomous car driving with other cars on the road
 - inaccuracy in the model of the environment
 - errors in the position estimate
- need to re-plan fast!

4D planning with Anytime D^* (Anytime Dynamic A^*)

Planning in Real World

- need to re-plan often due to
 - changes in the environment
 - navigation with people around
 - autonomous car driving with other cars on the road
 - inaccuracy in the model of the environment
 - errors in the position estimate
- need to re-plan fast!





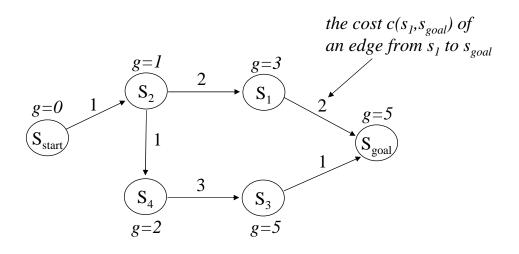
3D parking planning with Anytime D* (Anytime Dynamic A*) for the next DARPA Grand Challenge

Planning in Real World

- Anytime planning algorithms (e.g., ARA*- anytime version of A*)
 - find first possibly highly-suboptimal solution quickly, use the remaining time to improve it
 - allow to meet time constraints
- Replanning algorithms (e.g., D* and D* Lite incremental versions of A*)
 - speed up the task of repeated planning by reusing previous planning efforts
 - well-suited for dynamic and/or partially known environments
- Anytime replanning algorithms (e.g., Anytime D* anytime incremental A*)
 - combine the benefits of the two

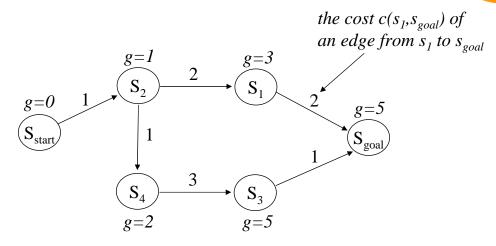
Search for a Least-cost Path

- Compute optimal g-values for relevant states
 - -g(s) an estimate of the cost of a least-cost path from s_{start} to s
 - optimal values satisfy: $g(s) = \min_{s'' \in pred(s)} g(s'') + c(s'',s)$



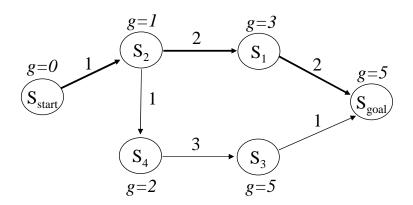
Search for a Least-cost Path

- Compute optimal g-values for relevant states
 - -g(s) an estimate of the cost of a least-cost path from s_{start} to s
 - optimal values satisfy: $g(s) = \min_{s'' \in pred(s)} g(s'') + c(s'',s)$

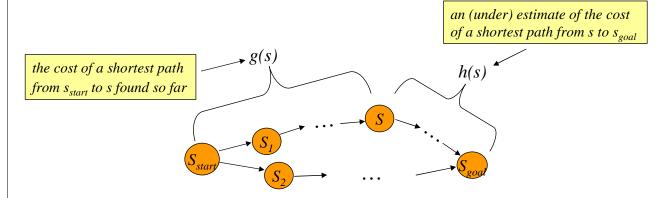


Search for a Least-cost Path

- Least-cost path is a greedy path computed by backtracking:
 - start with s_{goal} and from any state s move to the predecessor state s' such that $s' = \arg\min_{s' \in pred(s)} (g(s'') + c(s'', s))$



- Computes optimal g-values for relevant states
- At any point of time:



A* Search

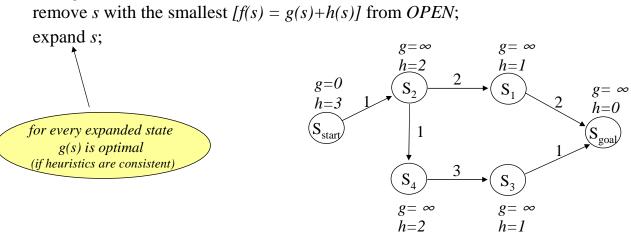
• Computes optimal g-values for relevant states

Main function

 $g(s_{start}) = 0$; all other g-values are infinite; $OPEN = \{s_{start}\}$; ComputePath(); publish solution;

ComputePath function

while (s_{goal} is not expanded)

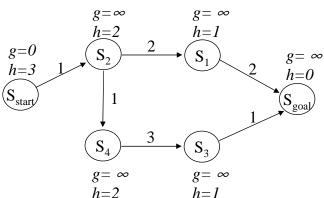


set of candidates for expansion

• Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded) remove s with the smallest [f(s) = g(s) + h(s)] from OPEN; expand s;



A* Search

• Computes optimal g-values for relevant states

ComputePath function

while $(s_{goal} \text{ is not expanded})$

remove s with the smallest [f(s) = g(s) + h(s)] from *OPEN*;

insert s into CLOSED;

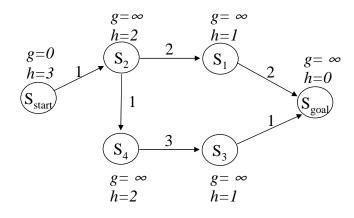
for every successor s' of s such that s' not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s')$;
insert s' into *OPEN*;

tries to decrease g(s') using the found path from s_{start} to s

set of states that have already been expanded



A* Search: Example

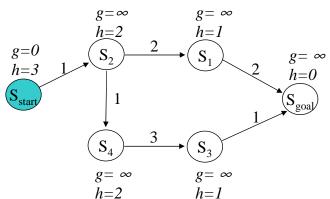
• Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s' of s such that s' not in CLOSEDif g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s');
insert s' into OPEN;

$$CLOSED = \{\}$$

 $OPEN = \{s_{start}\}$
 $next\ state\ to\ expand:\ s_{start}$



A* Search: Example

• Computes optimal g-values for relevant states

ComputePath function

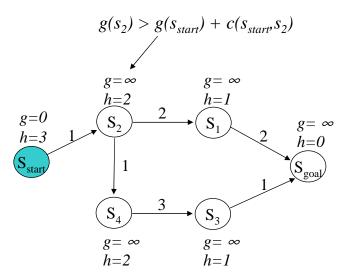
while(s_{goal} is not expanded) remove s with the smallest [f(s) = g(s) + h(s)] from OPEN; insert s into CLOSED; for every successor s' of s such that s' not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s')$;
insert s' into *OPEN*;

$$CLOSED = \{\}$$

 $OPEN = \{s_{start}\}$
 $next \ state \ to \ expand: \ s_{start}$

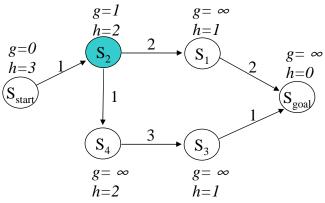


A* Search: Example

• Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s' of s such that s' not in CLOSEDif g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s');
insert s' into OPEN;



A* Search: Example

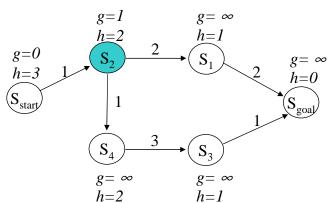
• Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s' of s such that s' not in CLOSEDif g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s');
insert s' into OPEN;

$$CLOSED = \{s_{start}\}\$$

 $OPEN = \{s_2\}\$
 $next\ state\ to\ expand:\ s_2$



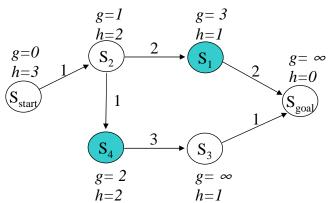
• Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s' of s such that s' not in CLOSEDif g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s');
insert s' into OPEN;

$$CLOSED = \{s_{start}, s_2\}$$

 $OPEN = \{s_1, s_4\}$
 $next \ state \ to \ expand: \ s_1$



A* Search

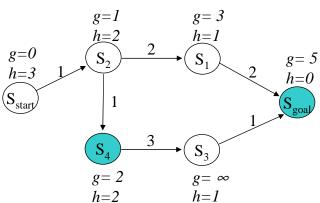
• Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s' of s such that s' not in CLOSEDif g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s');
insert s' into OPEN;

$$CLOSED = \{s_{start}, s_2, s_1\}$$

 $OPEN = \{s_4, s_{goal}\}$
 $next \ state \ to \ expand: \ s_4$



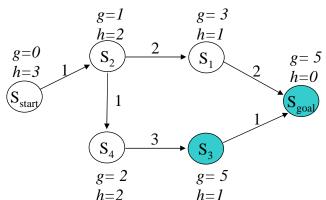
• Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s' of s such that s' not in CLOSEDif g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s');
insert s' into OPEN;

$$CLOSED = \{s_{start}, s_2, s_1, s_4\}$$

 $OPEN = \{s_3, s_{goal}\}$
 $next \ state \ to \ expand: \ s_{goal}$



A* Search

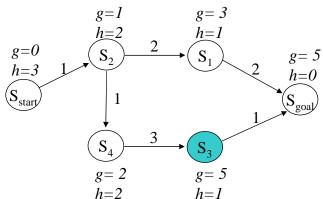
• Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s' of s such that s' not in CLOSEDif g(s') > g(s) + c(s,s'), g(s') = g(s) + c(s,s');
insert s' into OPEN;

$$CLOSED = \{s_{start}, s_2, s_1, s_4, s_{goal}\}$$

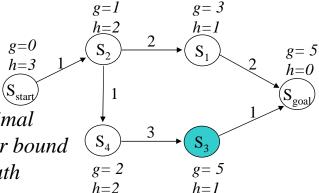
 $OPEN = \{s_3\}$
 $done$



• Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s' of s such that s' not in CLOSEDif g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s');
insert s' into OPEN;



for every expanded state g(s) is optimal for every other state g(s) is an upper bound we can now compute a least-cost path

A* Search

• Computes optimal g-values for relevant states

ComputePath function

insert s into CLOSED;

while(s_{goal} is not expanded) remove s with the smallest [f(s) = g(s) + h(s)] from *OPEN*;

for every successor s' of s such that s' not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s')$;
insert s' into *OPEN*;

h=1

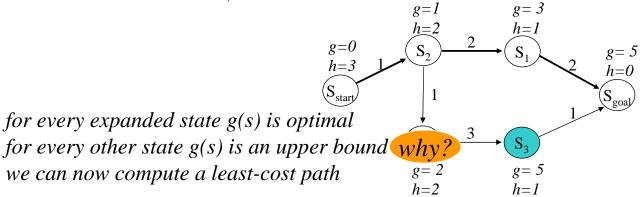
h=2

for every expanded state g(s) is optimal for every other state g(s) is an upper bound we can now compute a least-cost path

• Computes optimal g-values for relevant states

ComputePath function

```
while(s_{goal} is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s' of s such that s' not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s' into OPEN;
```

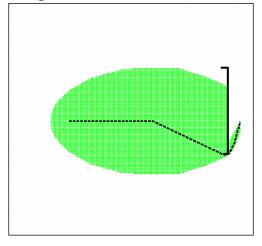


Weighted A*

- Expands states in the order of: $f(s) = g(s) + \varepsilon h(s)$, $\varepsilon > 1$
- ε -suboptimal cost(solution) $\varepsilon \cdot cost(optimal\ solution)$
- MUCH faster than A* for many problems

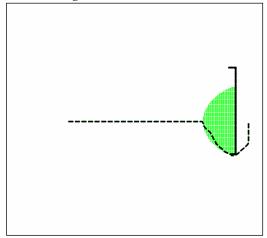
Weighted A*: Example

weighted A^* *with* $\varepsilon = 1$ (i.e. A^*)



11,054 expansions solution cost=168,204

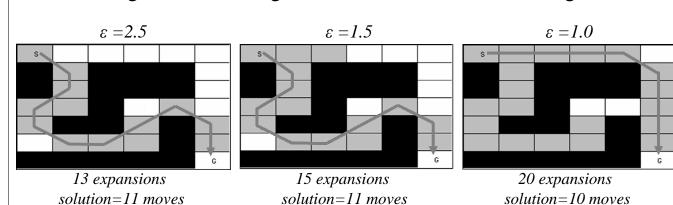
*weighted A** *with* $\varepsilon = 10$



1,138 expansions solution cost=177,876

Constructing anytime search

• Running a series of weighted A* searches with decreasing ε :

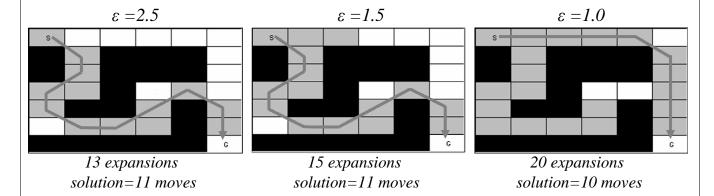


set \varepsilon to large value;

while ε 1 and still has some time for planning run weighted A^* search; publish current ε suboptimal solution; decrease ε ;

Constructing anytime search

• Running a series of weighted A* searches with decreasing ε :



- Inefficient because
 - many state values remain the same between search iterations
 - we should be able to reuse the results of previous searches

ARA*: Efficient anytime search

- Runs a series of weighted A* searches with decreasing ε
- Each weighted A* search is modified to reuse previous search results
- Continues to guarantee ε suboptimality bounds

Weighted A* Search with Reuse

all *v*-values initially are infinite;

```
ComputePath function
```

```
while(s_{goal} is not expanded)
remove s with the smallest [g(s) + \varepsilon h(s)] from OPEN;
insert s into CLOSED;
v(s) = g(s);
for every successor s' of s such that s' not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s' into OPEN;
```

Weighted A* Search with Reuse

```
all v-values initially are infinite; 

ComputePath function

while(s_{goal} is not expanded)

remove s with the smallest [g(s) + \varepsilon h(s)] from OPEN;

insert s into CLOSED;

v(s) = g(s);

for every successor s of s such that s not in CLOSED

if g(s') > g(s) + c(s,s')

g(s') = g(s) + c(s,s');

insert s into SED
```

Weighted A* Search with Reuse

```
all v-values initially are infinite;
```

```
ComputePath function
```

```
while(s_{goal} is not expanded)
remove s with the smallest [g(s) + \varepsilon h(s)] from OPEN;
insert s into CLOSED;
v(s) = g(s);
for every successor s' of s such that s' not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s' into OPEN;
```

• $g(s') = \min_{s'' \in pred(s')} v(s'') + c(s'',s')$

Weighted A* Search with Reuse

```
all v-values initially are infinite;
```

ComputePath function

```
while (s_{goal} \text{ is not expanded})

remove s with the smallest [g(s) + \varepsilon h(s)] from OPEN;

insert s into CLOSED;

v(s) = g(s);

for every successor s' of s such that s' not in CLOSED

if g(s') > g(s) + c(s,s');

g(s') = g(s) + c(s,s');

insert s' into OPEN;
```

overconsistent state

consistent state

g(s') = min_{s''∈ pred(s')} v(s'') + c(s'',s')
OPEN: a set of states with v(s) > g(s)
all other states have v(s) = g(s)

Weighted A* Search with Reuse

initialize *OPEN* with all overconsistent states;

ComputePathwithReuse function

while $(s_{goal}$ is not expanded)

all you need to do to make it reuse old values.

remove *s* with the smallest $[g(s) + \varepsilon h(s)]$ from *OPEN*; insert *s* into *CLOSED*;

$$v(s)=g(s);$$

for every successor s' of s such that s' not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s')$;
insert s' into *OPEN*;

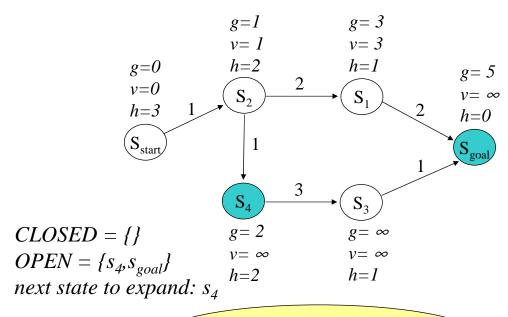
overconsistent state

• $g(s') = \min_{s'' \in pred(s')} v(s'') + c(s'',s')$

consistent state

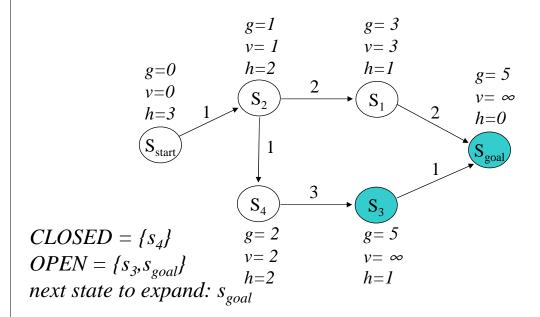
• *OPEN*: a set of states with v(s) > g(s) all other states have v(s) = g(s)

Example: A* $(\varepsilon=1)$ with reuse

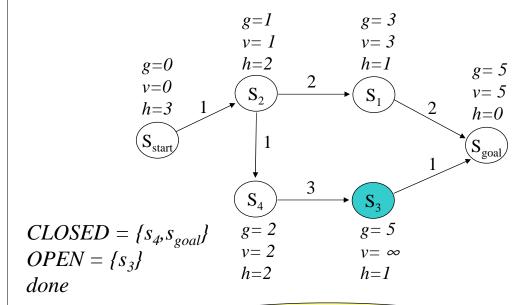


 $g(s') = \min_{s'' \in pred(s')} v(s'') + c(s'',s')$ initially OPEN contains all overconsistent states

Example: A^* ($\varepsilon = 1$) with reuse

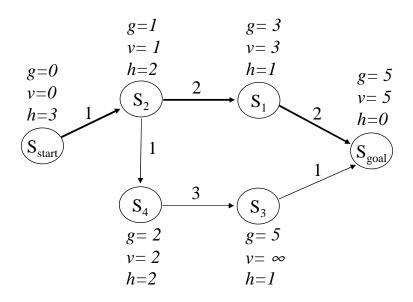


Example: A* $(\varepsilon=1)$ with reuse



after ComputePath terminates:
all g-values of states are equal to final A* g-values

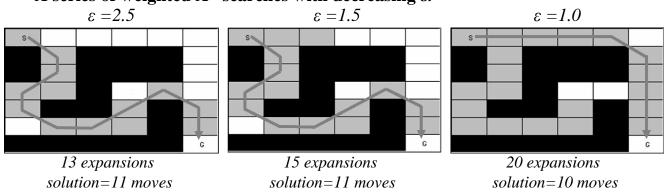
Example: A^* ($\varepsilon = 1$) with reuse



we can now compute a least-cost path

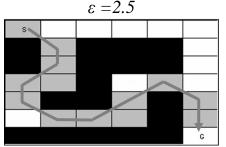
Back to Our Example

• A series of weighted A^* searches with decreasing ε :

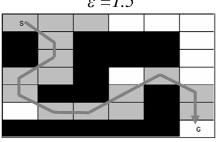


Back to Our Example

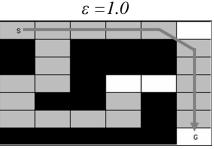
• A series of weighted A^* searches with decreasing ε :



13 expansions solution=11 moves

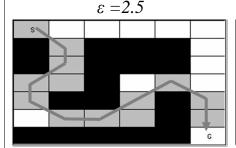


15 expansions solution=11 moves

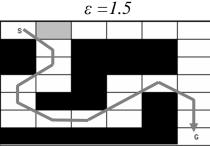


20 expansions solution=10 moves

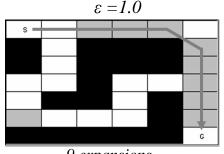
• ARA*: a series of calls to ComputePathwithReuse with decreasing ε :



13 expansions solution=11 moves

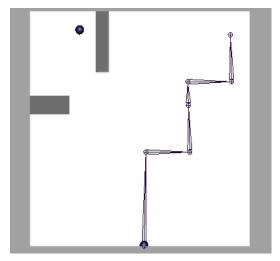


1 expansion solution=11 moves



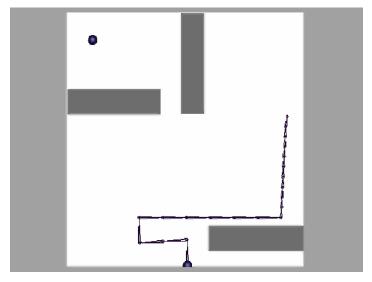
9 expansions solution=10 moves

Planning with ARA* in High-dimensional State-spaces



after 0.05 secs of planning with ARA*

Planning with ARA* in High-dimensional State-spaces



after 90 secs of planning with ARA*

Adding Replanning Capability

- In dynamic environments edge costs change
- Can use the same ComputePathwithReuse to re-compute a path if edge costs decrease and very similar function if edge costs increase

Optimal re-planners: D* and D* Lite

```
set \mathcal{E} to 1;
until goal is reached
ComputePathwithReuse();
publish current \mathcal{E} suboptimal solution path;
follow the path until sense something that is not in the map;
update the corresponding edge costs;
set s_{goal} to the current state of the agent;
```

Optimal re-planners: D* and D* Lite

```
set \mathcal{E} to 1;
until goal is reached
ComputePathwithReuse();
publish current \mathcal{E} suboptimal solution path;
follow the path until sense something that is not in the map;
update the corresponding edge costs;
set s_{goal} to the current state of the agent;
```

Important detail! search is done backwards: $s_{start} = agent$'s goal, $s_{eoal} = agent$'s current state, all edges are reversed

Optimal re-planners: D* and D* Lite

```
set \mathcal{E} to 1;
until goal is reached
ComputePathwithReuse();
publish current \mathcal{E} suboptimal solution path;
follow the path until sense something that is not in the map;
update the corresponding edge costs;
set s_{goal} to the current state of the agent;
```

Important detail! search is done backwards: $s_{start} = agent's \ goal, \ s_{goal} = agent's \ current \ state, \ all \ edges \ are \ reversed$

This way, s_{start} always remains the same and g-values are more likely to remain the same in between two calls to ComputePathwithReuse

Optimal re-planners: D* and D* Lite

```
set \mathcal{E} to 1;
until goal is reached
ComputePathwithReuse();
publish current \mathcal{E} suboptimal solution path;
follow the path until sense something that is not in the map;
update the corresponding edge costs;
set s_{goal} to the current state of the agent;
```

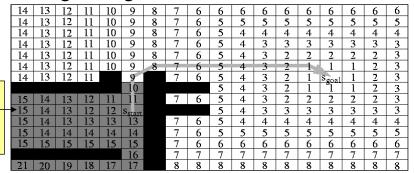
Important detail! search is done backwards: $s_{start} = agent$'s goal, $s_{goal} = agent$'s current state, all edges are reversed

This way, s_{start} always remains the same and g-values are more likely to remain why? the same in between two calls to ComputePathwithReuse why care?

D* & D* Lite: Example initial knowledge and initial goal distances

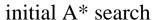
14	13	12	11	10	9	8	7	6	6	6	6	6	6	6	6	6	6
14	13	12	11	10	9	8	7	6	5	5	5	5	5	5	5	5	5
14	13	12	11	10	9	8	7	6	5	4	4	4	4	4	4	4	4
14	13	12	11	10	9	8	7	6	5	4	3	3	3	3	3	3	3
14	13	12	11	10	9	8	7	6	5	4	3	2	2	2	2	2	3
14	13	12	11	10	9	8	7	6	5	4	3	2	1	1	1	2	3
14	13	12	11		9		7	6	5	4	3	2	1	Sgoal	1	2	3
					9				5	4	3	2	1	ı "İ	1	2	3
14	13	12	11	10	9	8	7	-6	-5	4	3	2	2	2	2	2	3
14	13	12	11	10	9				5	4	3	3	3	3	3	3	3
14	13	12	11	10	10		7	6	5	4	4	4	4	4	4	4	4
14	13	12	11	11	11		7	6	5	5	5	5	5	5	5	5	5
14	13	12	12	12	12		7	6	6	6	6	6	6	6	6	6	6
					13		7	7	7	7	7	7	7	7	7	7	7
18	Setant	16	15	14	14		8	8	8	8	8	8	8	8	8	8	8

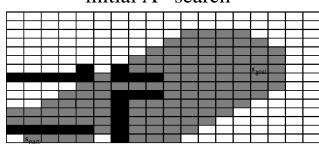
knowledge and goal distances after the robot moves



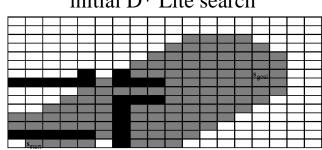
cells in gray have g-values changed

D* & D* Lite: Example



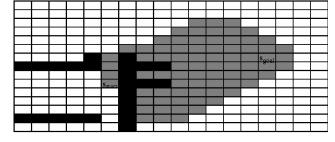


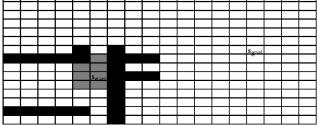
initial D* Lite search



second A* search

second D* Lite search





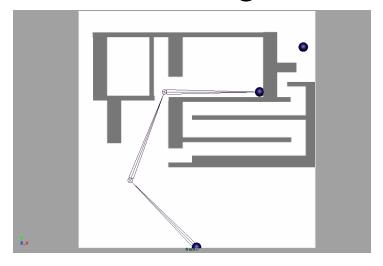
Anytime re-planner: Anytime D*

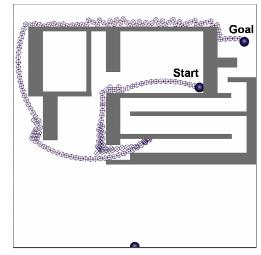
```
set & to large value;
until goal is reached
ComputePathwithReuse();
publish current & suboptimal solution path;
follow the path until sense something that is not in the map;
update the corresponding edge costs;
set s<sub>goal</sub> to the current state of the agent;
if significant changes were observed
increase & or replan from scratch;
else
decrease &
```

Anytime re-planner: Anytime D*

```
set & to large value;
until goal is reached
ComputePathwithReuse();
publish current & suboptimal solution path;
follow the path until sense something that is not in the map;
update the corresponding edge costs;
set s<sub>goal</sub> to the current state of the agent;
if significant changes were observed
increase & or replan from scratch;
else
decrease &;
```

Planning with Anytime D*





- 3 DOF robotic arm manipulating an end-effector through dynamic environment
- 1 sec of deliberation (improving and/or replanning) in between each step
- Initially, $\varepsilon = 20$

Summary

- Planning is often a repeated process and needs to be fast
 - dynamic environments
 - inaccurate initial model
 - errors in the position of the agent
- Family of A*-based planners:
 - ARA*
 - anytime A* search
 - outputs \varepsilon suboptimal solutions
 - can be used under time constraints
 - D* and D* Lite
 - · incremental A* search
 - · computes optimal solutions by reusing previous search efforts
 - · can often drastically speed up repeated planning
 - Anytime D* (AD*)
 - anytime incremental A* search
 - outputs ε suboptimal solutions
 - can be used under time constraints
 - can often drastically speed up repeated planning
 - all based on the ComputePathwithReuse function