Informed Search

Chap. 4

Material in part from http://www.cs.cmu.edu/~awm/tutorials

Uninformed Search Complexity

N = Total number of states
B = Average number of successors (branching factor)

L = Length for start to goal with smallest number of steps

Q = Average size of the priority queue

Lmax = Length of longest path from START to any state

Algorithm | Complete | Optimal Time Space

BFS Breadth First Y Y, If all trans. O(Min(N,BL)) O(Min(N,Bt))
Search have same cost

BIBFS | Bi- Direction. Y Y, If all trans. O(Min(N,2B2)) O(Min(N,2B2))
BFS have same cost

ucs Uniform Cost | Y, If cost > Y, If cost > 0 O(log(Q)*B<4) O(Min(N,BC%))
Search 0

PCDFS | Path Check Y N O(Btmax) O(BL a2
DFS

MEMD | Memorizing Y N O(Min(N, Btmax)) O(Min(N, Btmax))

FS DFS

IDS lterative Y Y, If all trans. o(Bh O(BL)

Deepening

have same cost

Search Revisited

States ready to
be expanded
(the “fringe”)

states expanded
so far

1.Store a value f(s) at each state s
2.Choose the state with lowest f to expand next
3. Insert its successors

If f(.) is chosen carefully, we will eventually find the
lowest-cost sequence

f(A)
g(A) =10 @
o =5 f(B) Q
g =

O S6

f(C) G

Example:

* UCS (Uniform Cost Search): f(A) = g(A) = total cost of current
shortest path from STARTto A
« Store states awaiting expansion in a priority queue for efficient

retrieval of minimum f
» Optimal - Guaranteed to find lowest cost sequence, buit......

* Problem: No guidance as to how “far” any given state is from
the goal

» Solution: Design a function h(.) that gives us an estimate of the
distance between a state and the goal

Our best guess is that A is closer
to GOAL than B so maybe it is a
more promising state to expand

Heuristic Functions

* h(.) is a heuristic function for the search
problem

» h(s) = estimate of the cost of the shortest path
from s to GOAL

* h(.) cannot be computed solely from the states
and transitions in the current problem > If we
could, we would already know the optimal path!

* h(.) is based on external knowledge about the
problem = informed search

« Questions:
1. Typical examples of h?
2. How to use h?
3. What are desirable/necessary properties of h?

Heuristic Functions Example

START.

The straight-line

distance is lower

from s than from s’

so maybe s has a

better chance to be
/’ on the best path

W

GOAL

X

* h(s) = Euclidean distance to GOAL

Heuristic Functions Example

» How could we define h(s)?

\
)
3 4 5
6 7 8
J

GOAL

First Attempt: Greedy Best First
Search

« Simplest use of heuristic function: Always select the
node with smallest h(.) for expansion (i.e., f(s) = h(s))

Initialize PQ
Insert START with value h(START) in PQ

While (PQ not empty and no goal state is in PQ)
Pop the state s with the minimum value of h from PQ
For all s’in succs(s)
If s’is not already in PQ and has not already been visited
Insert s’ in PQ with value h(s’)

Problem
4
ey o (e o{eon
h=4 h=3 h=2 h=1 h=0

« What solution do we find in this case?

» Greedy search clearly not optimal, even
though the heuristic function is non-stupid

Trying to Fix the Problem

f(A) = g(A) + h(A) = 13

d(s) is the cost from START to s only
h(s) estimates the cost from sto GOAL

Key insight: g(s) + h(s) estimates the total cost
of the cheapest path from START to GOAL
going through s

- A* algorithm

Can A* Fix tbe Problem?

h=3 h=1 h=0

h=4 h=2
{(START.4)}
{(A9)}
(f(A) = h(A) + g(A) = 3 + g(START) + cost(START, A) =3 + 0 + 2)
{(B,5) (C,7)}

(f(C)=h(C) +g(C) =1 +9g(A) +cost(A, C)=1+2+4)
{(C.5)}
(f(C)=h(C) +9g(C)=1+9g(B) +cost(B,C) =1 +3 + 1)
{(GOAL,6)}

Can A* Fix t[?e Problem?

h=3 h=2 h=1 h=0

h=4

C is placed in the queue with {(STARTA)}
backpointers {A,START} {(A,5)}

(f(A) = h(A) + (A =\ g(START) + cost(START, A) =3 + 0 + 2)

{(3,5) (C,7)} A lower value of f(C) is found
— — ith backpoint
(C) = h(C) +9(C) = 1 + 9(A) {?gc;;t(A, G i backpainers

(f(C)=h(C) +g(C) =1 +g(B) +cost(B, C) =1 + 3 + 1)
{(GOAL,6)}

Termination condition
Revisiting states
Algorithm

Optimality

Avoiding revisiting states
Choosing good heuristics
Reducing memory usage

A* Termination Condition

Queue:

{(B,4) (A8)}
{(C.4) (A8)}
{(D.,4) (A.8)]

{(A,8) (G,10)}

» Stop when GOAL is popped from the queue!

A* Termination Condition

h=8

h=3

Queue:

{(B,4) (A8)}

{(C.4) (A.8)]

{(D.,4) (A.8)

We have
encountered G
before we have a
chance to visit the
branch going
through A. The
problem is that at
each step we use
only an estimate of
the path cost to the
goal

{(A,8) (G,10)}

» Stop when GOAL is popped from the queue!

Revisiting States
h=8

A state that was already in the
queue is re-visited.
How is its priority updated?

Revisiting States
h=8

A state that had been already
expanded is re-visited.

(Careful: This is a different
example.)

Pop state s with lowest f(s) in queue

If s = GOAL) |
return SUCCESS A* Algorithm
Else expand s: (inside loop)

For all s’in succs (s):
f=9g(s’) + h(s) = g(s) + cost(s,s) + h(s)
If (s’ not seen before OR
s’ previously expanded with f(s) > f OR
s’in PQ with with f(s) > f)
Promote/Insert s’ with new value f'in PQ
previous(s’) < s
Else

Ignore s’ (because it has been visited and
its current path cost f(s) is still the lowest
path cost from STARTto s’)

Under what Conditions is A*
hee Optimal?

Gras) (START.6))
3 {(GOAL,3) (A.8))

Final path:

@ {START, GOAL}
ii/ with cost = 3

» Problem: h(.) is a poor estimate of path
cost to the goal state

1

10

Admissible Heuristics

» Define h*(s) = the true minimal cost to the
goal from s

* h is admissible if
h(s) <= h*(s) for all states s

* In words: An admissible heuristic never
overestimates the cost to the goal.
“Optimistic” estimate of cost to goal.

A* is guaranteed to find the optimal path
if h is admissible

Consistent (Monotonic) Heuristics

Cost(s,s)

h(s) <= h(s) + cost(s,s)

11

Consistent (Monotonic) Heuristics

Cost(s,s)

Sort of triangular inequality
implies that path cost
always increases + need to
expand node only once

h(s) <= h(s) + cost(s,s)

Pop state s with lowest f(s) in queue
If s= GOAL /r
return SUCCESS 4
Else expand s: RO Sy
For all s’in succs (s): Ste
s
f=9g(s) + h(s) = g(s) + cost(s,s) + h(s)
If (s’ not seen before OR
: sl techwith-f(s)>F-OR
s’in PQ with with f(s) >)
Promote/Insert s’ with new value fin PQ
previous(s’) < s
Else

Ilgnore s’ (because it has been visited and
its current path cost f(s)) is still the lowest
path cost from STARTt0 s)

/s

12

Examples

For the navigation problem:
The length of the shortest
path is at least the distance
h(s) | ©94L between s and GOAL -

= - Euclidean distance is an
St admissible heuristic

What about the puzzle?

1 53 h(s) ? 1 2
8 2 4 > 13 45
7 6 6 7 8
S GOAL
<
Comparing Heuristics
L=4steps |L=8steps |L=12
h, = misplaced tiles steps
lterative 112 6,300 3.6 x 108
Deepening
h, = Manhattan A* with 13 39 227
distance heuristic h,
A* with 12 25 73
heuristic h,

» Overestimates A* performance because of the
tendency of IDS to expand states repeatedly

* Number of states expanded does not include
log() time access to queue

Example from Russell&Norvig

13

Q)
- @00 R
288, =
hi(s)=7
h,s)=2+3+3+2+4+2+0+2=1§
Comparing Heuristics
Q)
M 6118 g
'\
h(s) =7

h,s)=2+3+3+2+4+2+0+2=18

h, is larger than h; and, at same time, A* seems to be more
efficient with h,

Is there a connection between these two observations?

h, dominates h;, if hy(s) >= h,(s) for all s

For any two heuristics h, and h; :
If h, dominates h, then A* is more efficient (expands
fewer states) with h,

Intuition: since h <= h*, a larger h is a better approximation of the true path cost

14

Limitations

« Computation: In the worst case, we may
have to explore all the states > O(N)

» The good news: A* is optimally efficient >
For a given h(.), no other optimal algorithm
will expand fewer nodes

» The bad news: Storage is also potentially
large 2> O(N)

IDS (lterative Deepening Search)
* Need to make DFS optimal

« IDS (Iterative Deepening Search):

— Run DFS by searching only path of length 1
(DFS stops if length of path is greater than 1)

— If that doesn’t find a solution, try again by
running DFS on paths of length 2 or less

— If that doesn’t find a solution, try again by
running DFS on paths of length 3 or less

— Continue until a solution is found

15

Example: IDA* (lterative Deepening A*)

+ Same idea as lterative Deepening DFS except use f(s) to
control depth of search instead of the number of transitions

« Example, assuming integer costs:

1. Run DFS, stopping at states s such that f(s) > 0
Stop if goal reached
2. Run DFS, stopping at states s such that f(s) > 1
Stop if goal reached
3. Run DFS, stopping at states s such that f(s) > 2
Stop if goal reached
........ Keep going by increasing the limit on f by 1 every time

Complete (assuming we use loop-avoiding DFS)
Optimal

More expensive in computation cost than A*
Memory order L as in DFS

Summary

 Informed search and heuristics
« First attempt: Best-First Greedy search
« A* algorithm
— Optimality
— Condition on heuristic functions
— Completeness
— Limitations, space complexity issues
— Extensions
Nils Nilsson. Problem Solving Methods in Artificial
Intelligence. McGraw Hill (1971)
Judea Pearl. Heuristics: Intelligent Search Strategies for

Computer Problem Solving (1984)
Chapters 3&4 Russel & Norvig

16

