Informed Search

Chap. 4

Uninformed Search Complexity

- \(N \) = Total number of states
- \(B \) = Average number of successors (branching factor)
- \(L \) = Length for start to goal with smallest number of steps
- \(Q \) = Average size of the priority queue
- \(L_{\text{max}} \) = Length of longest path from START to any state

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>Y</td>
<td>Y, If all trans. have same cost</td>
<td>(O(\text{Min}(N,B^L)))</td>
<td>(O(\text{Min}(N,B^L)))</td>
</tr>
<tr>
<td>BiBFS</td>
<td>Y</td>
<td>Y, If all trans. have same cost</td>
<td>(O(\text{Min}(N,2B^{L-2})))</td>
<td>(O(\text{Min}(N,2B^{L-2})))</td>
</tr>
<tr>
<td>UCS</td>
<td>Y, If cost > 0 I</td>
<td>Y, If cost > 0 I</td>
<td>(O(\log(Q)*B^{C/\varepsilon}))</td>
<td>(O(\text{Min}(N,B^{C/\varepsilon})))</td>
</tr>
<tr>
<td>PCDFS</td>
<td>Y</td>
<td>N</td>
<td>(O(B^{L_{\text{max}}}))</td>
<td>(O(B_{L_{\text{max}}}))</td>
</tr>
<tr>
<td>MEMDFS</td>
<td>Y</td>
<td>N</td>
<td>(O(\text{Min}(N,B^{L_{\text{max}}})))</td>
<td>(O(\text{Min}(N,B^{L_{\text{max}}})))</td>
</tr>
<tr>
<td>IDS</td>
<td>Y</td>
<td>Y, If all trans. have same cost</td>
<td>(O(B^L))</td>
<td>(O(BL))</td>
</tr>
</tbody>
</table>

Material in part from http://www.cs.cmu.edu/~swm/tutorials
Search Revisited

1. Store a value $f(s)$ at each state s
2. Choose the state with lowest f to expand next
3. Insert its successors

If $f(.)$ is chosen carefully, we will eventually find the lowest-cost sequence

Example:
- UCS (Uniform Cost Search): $f(A) = g(A)$ = total cost of current shortest path from START to A
- Store states awaiting expansion in a priority queue for efficient retrieval of minimum f
- Optimal \rightarrow Guaranteed to find lowest cost sequence, but......
• Problem: No guidance as to how “far” any given state is from the goal
• Solution: Design a function $h(.)$ that gives us an estimate of the distance between a state and the goal

Our best guess is that A is closer to GOAL than B so maybe it is a more promising state to expand

Heuristic Functions

- $h(.)$ is a heuristic function for the search problem
- $h(s) =$ estimate of the cost of the shortest path from s to GOAL
- $h(.)$ cannot be computed solely from the states and transitions in the current problem \(\Rightarrow\) If we could, we would already know the optimal path!
- $h(.)$ is based on external knowledge about the problem \(\Rightarrow\) *informed* search

Questions:
1. Typical examples of h?
2. How to use h?
3. What are desirable/necessary properties of h?
Heuristic Functions Example

- $h(s) = $ Euclidean distance to GOAL

The straight-line distance is lower from s than from s' so maybe s has a better chance to be on the best path

Heuristic Functions Example

- How could we define $h(s)$?

• $h(s) = $ Euclidean distance to GOAL
First Attempt: Greedy Best First Search

- Simplest use of heuristic function: Always select the node with smallest $h(.)$ for expansion (i.e., $f(s) = h(s)$)

Initialize PQ
Insert $START$ with value $h(START)$ in PQ

While (PQ not empty and no goal state is in PQ)
 Pop the state s with the minimum value of h from PQ
 For all s' in $\text{succs}(s)$
 If s' is not already in PQ and has not already been visited
 Insert s' in PQ with value $h(s')$

Problem

- What solution do we find in this case?
- Greedy search clearly not optimal, even though the heuristic function is non-stupid
Trying to Fix the Problem

- \(g(s) \) is the cost from \(START \) to \(s \) only
- \(h(s) \) estimates the cost from \(s \) to \(GOAL \)
- Key insight: \(g(s) + h(s) \) estimates the **total** cost of the cheapest path from \(START \) to \(GOAL \) going through \(s \)
- \(\rightarrow A^* \) algorithm

Can A* Fix the Problem?

\[
\begin{align*}
(f(A) &= h(A) + g(A) = 3 + g(START) + \text{cost}(START, A) = 3 + 0 + 2) \\
&\{(A,5)\} \\
(f(C) &= h(C) + g(C) = 1 + g(A) + \text{cost}(A, C) = 1 + 2 + 4) \\
&\{(C,5)\} \\
(f(C) &= h(C) + g(C) = 1 + g(B) + \text{cost}(B, C) = 1 + 3 + 1) \\
&\{(GOAL,6)\}
\end{align*}
\]
Can A* Fix the Problem?

- Termination condition
- Revisiting states
- Algorithm
- Optimality
- Avoiding revisiting states
- Choosing good heuristics
- Reducing memory usage
A* Termination Condition

- Stop when GOAL is popped from the queue!

Queue:

{(B, 4) (A, 8)}
{(C, 4) (A, 8)}
{(D, 4) (A, 8)}
{(A, 8) (G, 10)}
A state that was already in the queue is re-visited.
How is its priority updated?

A state that had been already expanded is re-visited.
(Careful: This is a different example.)
A* Algorithm
(inside loop)

Pop state s with lowest $f(s)$ in queue
If $s = GOAL$
 return $SUCCESS$
Else expand s:
 For all s' in $\text{succs}(s)$:
 $f' = g(s') + h(s') = g(s) + \text{cost}(s,s') + h(s')$
 If (s' not seen before OR s' previously expanded with $f(s') > f'$ OR s' in PQ with with $f(s') > f'$)
 Promote/Insert s' with new value f' in PQ
 $\text{previous}(s') \leftarrow s$
 Else
 Ignore s' (because it has been visited and its current path cost $f(s')$ is still the lowest path cost from $START$ to s')

Under what Conditions is A* Optimal?

- Problem: $h(.)$ is a poor estimate of path cost to the goal state

Final path:
\{(START,6)\}
\{(GOAL,3) (A,8)\}

with cost = 3
Admissible Heuristics

- Define $h^*(s) = \text{the true minimal cost to the goal from } s$
- h is admissible if $h(s) \leq h^*(s) \text{ for all states } s$
- In words: An admissible heuristic never overestimates the cost to the goal. "Optimistic" estimate of cost to goal.

A^* is guaranteed to find the optimal path if h is admissible

Consistent (Monotonic) Heuristics

$\text{Cost}(s, s')$

$h(s) \leq h(s') + \text{cost}(s, s')$
Consistent (Monotonic) Heuristics

\[h(s) \leq h(s') + \text{cost}(s, s') \]

Sort of triangular inequality implies that path cost always increases + need to expand node only once

Pop state \(s \) with lowest \(f(s) \) in queue
If \(s = \text{GOAL} \)
 return \text{SUCCESS}
Else expand \(s \):
For all \(s' \) in \text{succs} \((s)\):
 \[f' = g(s') + h(s') = g(s) + \text{cost}(s, s') + h(s') \]
If (\(s' \) not seen before OR \(s' \) previously expanded with \(f(s') > f' \) OR \(s' \) in \(PQ \) with with \(f(s') > f' \))
 Promote/Insert \(s' \) with new value \(f' \) in \(PQ \)
 previous\((s') \leftarrow s \)
Else
 Ignore \(s' \) (because it has been visited and its current path cost \(f(s') \) is still the lowest path cost from \text{START} to \(s' \))
Examples

For the navigation problem:
The length of the shortest path is at least the distance between s and \texttt{GOAL} →
Euclidean distance is an admissible heuristic

What about the puzzle?

Comparing Heuristics

<table>
<thead>
<tr>
<th>Heuristic</th>
<th>$L = 4$ steps</th>
<th>$L = 8$ steps</th>
<th>$L = 12$ steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1 = misplaced tiles</td>
<td>112</td>
<td>6,300</td>
<td>3.6×10^6</td>
</tr>
<tr>
<td>h_2 = Manhattan distance</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
<tr>
<td>A^* with heuristic h_1</td>
<td>12</td>
<td>25</td>
<td>73</td>
</tr>
<tr>
<td>A^* with heuristic h_2</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
</tbody>
</table>

- Overestimates A^* performance because of the tendency of IDS to expand states repeatedly
- Number of states expanded does not include \log() time access to queue

Example from Russell&Norvig
Comparing Heuristics

\(h_1(s) = 7 \)
\(h_2(s) = 2 + 3 + 3 + 2 + 4 + 2 + 0 + 2 = 18 \)

\(h_2 \) is larger than \(h_1 \) and, at same time, A* seems to be more efficient with \(h_2 \).

Is there a connection between these two observations?

\(h_2 \) dominates \(h_1 \) if \(h_2(s) \geq h_1(s) \) for all \(s \)

For any two heuristics \(h_2 \) and \(h_1 \):
- If \(h_2 \) dominates \(h_1 \), then A* is more efficient (expands fewer states) with \(h_2 \)

Intuition: since \(h \leq h^* \), a larger \(h \) is a better approximation of the true path cost
Limitations

• Computation: In the worst case, we may have to explore all the states $\rightarrow O(N)$

• The good news: A* is optimally efficient \rightarrow For a given $h(.)$, no other optimal algorithm will expand fewer nodes

• The bad news: Storage is also potentially large $\rightarrow O(N)$

IDS (Iterative Deepening Search)

• Need to make DFS optimal

• IDS (Iterative Deepening Search):
 – Run DFS by searching only path of length 1 (DFS stops if length of path is greater than 1)
 – If that doesn’t find a solution, try again by running DFS on paths of length 2 or less
 – If that doesn’t find a solution, try again by running DFS on paths of length 3 or less
 – ………..
 – Continue until a solution is found
Example: IDA* (Iterative Deepening A*)

- Same idea as Iterative Deepening DFS except use $f(s)$ to control depth of search instead of the number of transitions
- Example, assuming integer costs:

1. Run DFS, stopping at states s such that $f(s) > 0$
 Stop if goal reached
2. Run DFS, stopping at states s such that $f(s) > 1$
 Stop if goal reached
3. Run DFS, stopping at states s such that $f(s) > 2$
 Stop if goal reached
 Keep going by increasing the limit on f by 1 every time

- Complete (assuming we use loop-avoiding DFS)
- Optimal
- More expensive in computation cost than A*
- Memory order L as in DFS

Summary

- Informed search and heuristics
- First attempt: Best-First Greedy search
- A* algorithm
 - Optimality
 - Condition on heuristic functions
 - Completeness
 - Limitations, space complexity issues
 - Extensions

Chapters 3&4 Russel & Norvig