
1

Informed Search

Material in part from http://www.cs.cmu.edu/~awm/tutorials

Chap. 4

Uninformed Search Complexity
• N = Total number of states

• B = Average number of successors (branching factor)

• L = Length for start to goal with smallest number of steps

• Q = Average size of the priority queue

• Lmax = Length of longest path from START to any state

O(Min(N,2BL/2))O(Min(N,2BL/2))Y, If all trans.

have same cost

YBi- Direction.

BFS

BIBFS

O(BL)O(BL)Y, If all trans.
have same cost

YIterative
Deepening

IDS

O(Min(N,BLmax))O(Min(N,BLmax))NYMemorizing
DFS

MEMD
FS

O(BLmax)O(BLmax)NYPath Check
DFS

PCDFS

O(Min(N,BC/ε))O(log(Q)*BC/ε))Y, If cost > 0Y, If cost >
0

Uniform Cost
Search

UCS

O(Min(N,BL))O(Min(N,BL))Y, If all trans.

have same cost

YBreadth First

Search

BFS

SpaceTimeOptimalCompleteAlgorithm

2

states expanded
so far

D

E

F

Search Revisited

1.Store a value f(s) at each state s
2.Choose the state with lowest f to expand next
3. Insert its successors

If f(.) is chosen carefully, we will eventually find the
lowest-cost sequence

START

f(A)

f(B)

f(C)

A

B

C

States ready to

be expanded

(the “fringe”)

START

A

B

C

f(A)

f(B)

f(C)

D

E

F

Example:

• UCS (Uniform Cost Search): f(A) = g(A) = total cost of current

shortest path from START to A

• Store states awaiting expansion in a priority queue for efficient

retrieval of minimum f

• Optimal � Guaranteed to find lowest cost sequence, but……

g(A) =10

g(A) =5

3

• Problem: No guidance as to how “far” any given state is from

the goal
• Solution: Design a function h(.) that gives us an estimate of the

distance between a state and the goal

START

A

B

C

GOAL

h(A) = 3

h(B) = 6

Our best guess is that A is closer

to GOAL than B so maybe it is a

more promising state to expand

h(B) = 10

Heuristic Functions

• h(.) is a heuristic function for the search
problem

• h(s) = estimate of the cost of the shortest path
from s to GOAL

• h(.) cannot be computed solely from the states
and transitions in the current problem � If we
could, we would already know the optimal path!

• h(.) is based on external knowledge about the
problem � informed search

• Questions:
1. Typical examples of h?

2. How to use h?

3. What are desirable/necessary properties of h?

4

Heuristic Functions Example

• h(s) = Euclidean distance to GOAL

X

X

xX

START

GOAL

The straight-line

distance is lower

from s than from s’

so maybe s has a

better chance to be

on the best path

s’

s

Heuristic Functions Example

• How could we define h(s)?

28

31

6

4

7

5 2

8

3

1

6

4

7

5

s GOAL

5

First Attempt: Greedy Best First
Search

• Simplest use of heuristic function: Always select the
node with smallest h(.) for expansion (i.e., f(s) = h(s))

Initialize PQ

Insert START with value h(START) in PQ

While (PQ not empty and no goal state is in PQ)
Pop the state s with the minimum value of h from PQ

For all s’ in succs(s)

If s’ is not already in PQ and has not already been visited

Insert s’ in PQ with value h(s’)

Problem

• What solution do we find in this case?

• Greedy search clearly not optimal, even

though the heuristic function is non-stupid

START A B C GOAL

h = 4 h = 3 h = 2 h = 1 h = 0

2 1 1 2

4

6

Trying to Fix the Problem

• g(s) is the cost from START to s only
• h(s) estimates the cost from s to GOAL
• Key insight: g(s) + h(s) estimates the total cost

of the cheapest path from START to GOAL
going through s

• � A* algorithm

START

A

B

C

GOAL

h(A) = 3

f(A) = g(A) + h(A) = 13

g(A) = 10

h(B) = 6

f(B) = g(B) + h(B) = 11 g(A) = 5

Can A* Fix the Problem?

{(START,4)}

{(A,5)}

(f(A) = h(A) + g(A) = 3 + g(START) + cost(START, A) = 3 + 0 + 2)

{(B,5) (C,7)}

(f(C) = h(C) + g(C) = 1 + g(A) + cost(A, C) = 1 + 2 + 4)

{(C,5)}

(f(C) = h(C) + g(C) = 1 + g(B) + cost(B, C) = 1 + 3 + 1)

{(GOAL,6)}

START A B C GOAL

h = 4 h = 3 h = 2 h = 1 h = 0

2 1 1 2

4

7

Can A* Fix the Problem?

{(START,4)}

{(A,5)}

(f(A) = h(A) + g(A) = 3 + g(START) + cost(START, A) = 3 + 0 + 2)

{(B,5) (C,7)}

(f(C) = h(C) + g(C) = 1 + g(A) + cost(A, C) = 1 + 2 + 4)

{(C,5)}

(f(C) = h(C) + g(C) = 1 + g(B) + cost(B, C) = 1 + 3 + 1)

{(GOAL,6)}

START A B C GOAL

h = 4 h = 3 h = 2 h = 1 h = 0

2 1 1 2

4

C is placed in the queue with

backpointers {A,START}

A lower value of f(C) is found

with backpointers

{B,A,START}

• Termination condition

• Revisiting states

• Algorithm

• Optimality

• Avoiding revisiting states

• Choosing good heuristics

• Reducing memory usage

8

A* Termination Condition

• Stop when GOAL is popped from the queue!

Queue:

{(B,4) (A,8)}

{(C,4) (A,8)}

{(D,4) (A,8)}

{(A,8) (G,10)}

S

A

D

B

C

G

1
1

1

1

7

1

h = 3

h = 2

h = 1

h = 7

h = 8

A* Termination Condition

• Stop when GOAL is popped from the queue!

Queue:

{(B,4) (A,8)}

{(C,4) (A,8)}

{(D,4) (A,8)}

{(A,8) (G,10)}

We have

encountered G

before we have a

chance to visit the

branch going

through A. The

problem is that at

each step we use

only an estimate of

the path cost to the

goal

S

A

D

B

C

G

1
1

1

1

7

1

h = 3

h = 2

h = 1

h = 7

h = 8

9

Revisiting States

1

h = 7 A C

B

START

D

GOAL

1
1

1

7

h = 8
h = 3

h = 8

h = 1

1/2

A state that was already in the

queue is re-visited.
How is its priority updated?

Revisiting States

1

h = 7 A C

B

START

D

GOAL

1
1

1

7

h = 8
h = 3

h = 2

h = 1

1/2

A state that had been already

expanded is re-visited.

(Careful: This is a different

example.)

10

A* Algorithm
(inside loop)

Pop state s with lowest f(s) in queue

If s = GOAL

return SUCCESS

Else expand s:

For all s’ in succs (s):

f’ = g(s’) + h(s’) = g(s) + cost(s,s’) + h(s’)

If (s’ not seen before OR

s’ previously expanded with f(s’) > f’ OR

s’ in PQ with with f(s’) > f’)

Promote/Insert s’ with new value f’ in PQ

previous(s’)  s

Else

Ignore s’ (because it has been visited and
its current path cost f(s’) is still the lowest
path cost from START to s’)

Under what Conditions is A*
Optimal?

• Problem: h(.) is a poor estimate of path

cost to the goal state

START

A GOAL

h = 6

h = 7

1

1

3
{(START,6)}

{(GOAL,3) (A,8)}

Final path:
{START, GOAL}
with cost = 3

11

Admissible Heuristics
• Define h*(s) = the true minimal cost to the

goal from s

• h is admissible if

h(s) <= h*(s) for all states s
• In words: An admissible heuristic never

overestimates the cost to the goal.
“Optimistic” estimate of cost to goal.

A* is guaranteed to find the optimal path

if h is admissible

Consistent (Monotonic) Heuristics

h(s) <= h(s’) + cost(s,s’)

GOAL

s

s’Cost(s,s’)

h(s’)

h(s)

12

Consistent (Monotonic) Heuristics

h(s) <= h(s’) + cost(s,s’)

GOAL

s

s’Cost(s,s’)

h(s’)

h(s)

Sort of triangular inequality
implies that path cost
always increases + need to

expand node only once

Pop state s with lowest f(s) in queue

If s = GOAL

return SUCCESS

Else expand s:

For all s’ in succs (s):

f’ = g(s’) + h(s’) = g(s) + cost(s,s’) + h(s’)

If (s’ not seen before OR

s’ previously expanded with f(s’) > f’ OR

s’ in PQ with with f(s’) > f’)

Promote/Insert s’ with new value f’ in PQ

previous(s’)  s

Else

Ignore s’ (because it has been visited and
its current path cost f(s’) is still the lowest
path cost from START to s’)

If h is consistent

13

Examples

X

X

x

GOAL

s

h(s)

For the navigation problem:

The length of the shortest

path is at least the distance
between s and GOAL �

Euclidean distance is an

admissible heuristic

28

31

6

4

7

5 2

8

3

1

6

4

7

5

s GOAL

h(s) ?

What about the puzzle?

Comparing Heuristics

• Overestimates A* performance because of the
tendency of IDS to expand states repeatedly

• Number of states expanded does not include
log() time access to queue

732512A* with

heuristic h2

2273913A* with

heuristic h1

3.6 x 1066,300112Iterative

Deepening

L = 12

steps

L = 8 stepsL = 4 steps

h1 = misplaced tiles

h2 = Manhattan
distance

Example from Russell&Norvig

14

5 4

3

6 1 8

7 2

s
2

8

31

6

4

7 5

G
O

A
L

h1(s) = 7

h2(s) = 2 + 3 + 3 + 2 + 4 + 2 + 0 + 2 = 18

Comparing Heuristics

h1(s) = 7

h2(s) = 2 + 3 + 3 + 2 + 4 + 2 + 0 + 2 = 18

h2 is larger than h1 and, at same time, A* seems to be more
efficient with h2.

Is there a connection between these two observations?

5 4

3

6 1 8

7 2

s

2

8

31

6

4

7 5

G
O

A
L

h2 dominates h1 if h2(s) >= h1(s) for all s

For any two heuristics h2 and h1 :

If h2 dominates h1 then A* is more efficient (expands
fewer states) with h2

Intuition: since h <= h*, a larger h is a better approximation of the true path cost

15

Limitations

• Computation: In the worst case, we may
have to explore all the states � O(N)

• The good news: A* is optimally efficient �
For a given h(.), no other optimal algorithm
will expand fewer nodes

• The bad news: Storage is also potentially
large � O(N)

IDS (Iterative Deepening Search)

• Need to make DFS optimal

• IDS (Iterative Deepening Search):

– Run DFS by searching only path of length 1
(DFS stops if length of path is greater than 1)

– If that doesn’t find a solution, try again by
running DFS on paths of length 2 or less

– If that doesn’t find a solution, try again by
running DFS on paths of length 3 or less

– ………..

– Continue until a solution is found

16

Example: IDA* (Iterative Deepening A*)
• Same idea as Iterative Deepening DFS except use f(s) to

control depth of search instead of the number of transitions

• Example, assuming integer costs:

1. Run DFS, stopping at states s such that f(s) > 0
Stop if goal reached

2. Run DFS, stopping at states s such that f(s) > 1

Stop if goal reached

3. Run DFS, stopping at states s such that f(s) > 2

Stop if goal reached
……..Keep going by increasing the limit on f by 1 every time

• Complete (assuming we use loop-avoiding DFS)

• Optimal

• More expensive in computation cost than A*
• Memory order L as in DFS

Summary

• Informed search and heuristics

• First attempt: Best-First Greedy search

• A* algorithm

– Optimality

– Condition on heuristic functions

– Completeness

– Limitations, space complexity issues

– Extensions

Nils Nilsson. Problem Solving Methods in Artificial

Intelligence. McGraw Hill (1971)

Judea Pearl. Heuristics: Intelligent Search Strategies for

Computer Problem Solving (1984)

Chapters 3&4 Russel & Norvig

