Informed Search

Chap. 4

Material in part from http://www.cs.cmu.edu/~awm/tutorials

Uninformed Search Complexity

- N = Total number of states
- B = Average number of successors (branching factor)
- L = Length for start to goal with smallest number of steps
- Q = Average size of the priority queue
- Lmax = Length of longest path from START to any state

	Algorithm	Complete	Optimal	Time	Space
BFS	Breadth First Search	Y	Y, If all trans. have same cost	$O(Min(N,B^L))$	$O(Min(N,B^L))$
BIBFS	Bi- Direction. BFS	Y	Y, If all trans. have same cost	O(Min(<i>N</i> ,2 <i>B</i> ^{L/2}))	O(Min(<i>N</i> ,2 <i>B</i> ^{L/2}))
UCS	Uniform Cost Search	Y, If cost > 0	Y, If cost > 0	$O(\log(Q)^*B^{C/\epsilon}))$	$O(Min(N,B^{C/\varepsilon}))$
PCDFS	Path Check DFS	Y	N	O(B ^{Lmax})	O(BL _{max})
MEMD FS	Memorizing DFS	Y	N	O(Min(<i>N</i> , <i>B</i> ^{Lmax}))	O(Min(<i>N</i> , <i>B</i> ^{Lmax}))
IDS	Iterative Deepening	Y	Y, If all trans. have same cost	$O(B^L)$	O(BL)
		•			

Search Revisited

- 1. Store a value $\mathbf{f}(s)$ at each state s
- 2. Choose the state with lowest **f** to expand next
- 3. Insert its successors
- If **f**(.) is chosen carefully, we will eventually find the lowest-cost sequence

Example:

- UCS (Uniform Cost Search): $\mathbf{f}(A) = \mathbf{g}(A) = \text{total cost of current}$ shortest path from START to A
- Store states awaiting expansion in a priority queue for efficient retrieval of minimum ${\bf f}$
- Optimal → Guaranteed to find lowest cost sequence, but.....

- Problem: No guidance as to how "far" any given state is from the goal
- Solution: Design a function $\mathbf{h}(.)$ that gives us an estimate of the distance between a state and the goal

Heuristic Functions

- h(.) is a heuristic function for the search problem
- h(s) = estimate of the cost of the shortest path from s to GOAL
- h(.) cannot be computed solely from the states and transitions in the current problem → If we could, we would already know the optimal path!
- h(.) is based on external knowledge about the problem → informed search
- Questions:
 - 1. Typical examples of h?
 - 2. How to use h?
 - 3. What are desirable/necessary properties of h?

First Attempt: Greedy Best First Search

 Simplest use of heuristic function: Always select the node with smallest h(.) for expansion (i.e., f(s) = h(s))

Initialize PQ

Insert START with value h(START) in PQ

While (PQ not empty and no goal state is in PQ)

Pop the state s with the minimum value of h from PQ For all s' in succs(s)

If s' is not already in PQ and has not already been visited Insert s' in PQ with value $\mathbf{h}(s')$

- · What solution do we find in this case?
- Greedy search clearly not optimal, even though the heuristic function is non-stupid

Trying to Fix the Problem f(A) = g(A) + h(A) = 13 g(A) = 10 h(A) = 3 g(A) = 5 f(B) = g(B) + h(B) = 11 GOAL

- **g**(s) is the cost from START to s only
- **h**(s) estimates the cost from s to GOAL
- Key insight: g(s) + h(s) estimates the total cost of the cheapest path from START to GOAL going through s
- → A* algorithm

- Termination condition
- Revisiting states
- Algorithm
- Optimality
- Avoiding revisiting states
- Choosing good heuristics
- Reducing memory usage

Pop state s with lowest f(s) in queue If s = GOALA* Algorithm return SUCCESS (inside loop) Else expand s: For all s' in **succs** (s): f' = g(s') + h(s') = g(s) + cost(s,s') + h(s')If (s' not seen before OR s' previously expanded with $\mathbf{f}(s') > f' OR$ s' in PQ with with $\mathbf{f}(s') > f'$ Promote/Insert s' with new value f' in PQ $previous(s') \leftarrow s$ Else Ignore s' (because it has been visited and its current path cost f(s) is still the lowest path cost from START to s')

 Problem: h(.) is a poor estimate of path cost to the goal state

Admissible Heuristics

- Define h*(s) = the true minimal cost to the goal from s
- h is admissible if

$$\mathbf{h}(s) \ll \mathbf{h}^*(s)$$
 for all states s

 In words: An admissible heuristic never overestimates the cost to the goal.
 "Optimistic" estimate of cost to goal.

A* is guaranteed to find the optimal path if **h** is admissible

Consistent (Monotonic) Heuristics

$$h(s) \ll h(s') + cost(s,s')$$


```
Pop state s with lowest f(s) in queue
                                       If h is consistent
If s = GOAL
  return SUCCESS
Else expand s:
  For all s' in succs (s):
    f' = \mathbf{g}(s') + \mathbf{h}(s') = \mathbf{g}(s) + \mathbf{cost}(s,s') + \mathbf{h}(s')
    If (s' not seen before OR
       s' previously expanded with f(s') > f' OR
       s' in PQ with with \mathbf{f}(s') > f'
         Promote/Insert s' with new value f' in PQ
         previous(s') \leftarrow s
     Else
         Ignore s' (because it has been visited and
         its current path cost f(s) is still the lowest
         path cost from START to s')
```


Comparing Heuristics

 \mathbf{h}_1 = misplaced tiles

h₂ = Manhattan distance

	L = 4 steps	L = 8 steps	L = 12 steps
Iterative Deepening	112	6,300	3.6 x 10 ⁶
A* with heuristic h ₁	13	39	227
A* with heuristic h ₂	12	25	73

- Overestimates A* performance because of the tendency of IDS to expand states repeatedly
- Number of states expanded does not include log() time access to queue

Example from Russell&Norvig

s 5 4 6 1 8 7 3 2

1 2 3 8 4 7 6 5

GOAL

$$\mathbf{h}_1(s) = 7$$

$$\mathbf{h}_2(s) = 2 + 3 + 3 + 2 + 4 + 2 + 0 + 2 = 18$$

Comparing Heuristics

σ 54 618 732

GOAL

 $h_1(s) = 7$

$$\mathbf{h}_2(s) = 2 + 3 + 3 + 2 + 4 + 2 + 0 + 2 = 18$$

 \mathbf{h}_2 is larger than \mathbf{h}_1 and, at same time, \mathbf{A}^* seems to be more efficient with \mathbf{h}_2 .

Is there a connection between these two observations?

 \mathbf{h}_2 dominates \mathbf{h}_1 if $\mathbf{h}_2(s) >= \mathbf{h}_1(s)$ for all s

For any two heuristics \mathbf{h}_2 and \mathbf{h}_1 :

If \mathbf{h}_2 dominates \mathbf{h}_1 then \mathbf{A}^* is more efficient (expands fewer states) with \mathbf{h}_2

Intuition: since $\mathbf{h} \leftarrow \mathbf{h}^*$, a larger \mathbf{h} is a better approximation of the true path cost

Limitations

- Computation: In the worst case, we may have to explore all the states → O(N)
- The good news: A* is optimally efficient →
 For a given h(.), no other optimal algorithm
 will expand fewer nodes
- The bad news: Storage is also potentially large → O(N)

IDS (Iterative Deepening Search)

- Need to make DFS optimal
- IDS (Iterative Deepening Search):
 - Run DFS by searching only path of length 1
 (DFS stops if length of path is greater than 1)
 - If that doesn't find a solution, try again by running DFS on paths of length 2 or less
 - If that doesn't find a solution, try again by running DFS on paths of length 3 or less

 - Continue until a solution is found

Example: IDA* (Iterative Deepening A*)

- Same idea as Iterative Deepening DFS except use f(s) to control depth of search instead of the number of transitions
- Example, assuming integer costs:
- 1. Run DFS, stopping at states s such that $\underline{\mathbf{f}(s)} > 0$ Stop if goal reached
- 2. Run DFS, stopping at states s such that $\underline{\mathbf{f}(s)} > 1$ Stop if goal reached
- 3. Run DFS, stopping at states s such that $\underline{\mathbf{f}(s)} > 2$ Stop if goal reached
-Keep going by increasing the limit on f by 1 every time
- Complete (assuming we use loop-avoiding DFS)
- Optimal
- More expensive in computation cost than A*
- Memory order L as in DFS

Summary

- · Informed search and heuristics
- First attempt: Best-First Greedy search
- · A* algorithm
 - Optimality
 - Condition on heuristic functions
 - Completeness
 - Limitations, space complexity issues
 - Extensions

Nils Nilsson. Problem Solving Methods in Artificial Intelligence. McGraw Hill (1971) Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving (1984) Chapters 3&4 Russel & Norvig