Search: Uninformed Search

Russel & Norvig Chap. 3

Material in part from http://www.cs.cmu.edu/~awm/tutorials

A Search Problem

» Find a path from START to GOAL
* Find the minimum number of transitions




Example

o ) - D
1 5 3 1 2
—_—

8 2 4 3 4 5
7 6 6 7 8
& J A S J
START GOAL

Example
1 53 1 2
8 2 4 > 13 45
7 6 6 7 8
START GOAL

State: Configuration of puzzle

Transitions: Up to 4 possible moves (up, down,
left, right)

Solvable in 22 steps (average)

But: 1.8 10° states (1.3 10'2 states for the 15-
puzzle)

- Cannot represent set of states explicitly




Example: Robot Navigation

States =
positions in the map

Transitions =
allowed motions

N
x +— GOAL
W E
X S
START

Navigation: Going from point START to
point GOAL given a (deterministic) map

Other Real-Life Examples

Protein design
http://www.blueprint.org/proteinfolding/trades/trades_problem.html

Scheduling/Manufacturiné

http://www.ozone.ri.cmu.edu/projects/dms/dmsmain.html

Robot navigation

http://www.frc.ri.cmu.edu/projects/mars/dstar.html

Route planning

Don’t necessarily know explicitly the

structure of a search problem Scheduling/Science

http://www.ozone.ri.cmu.edu/projects/hsts/hstsmain.html




10cm resolution
4km2=4 108 states

What we are not addressing (yet)

* Uncertainty/Chance - State and transitions are known and deterministic
« Game against adversary

* Multiple agents/Cooperation

+ Continuous state space = For now, the set of states is discrete




Overview

Definition and formulation

Optimality, Completeness, and Complexity
Uninformed Search

— Breadth First Search

— Search Trees

— Depth First Search

— Iterative Deepening

Informed Search

— Best First Greedy Search

— Heuristic Search, A*

A Search Problem




> L=

Formulation

Q: Finite set of states

S C Q: Non-empty set of start states

GC Q: Non-empty set of goal states

succs: function Q 2 A Q)

succs(s) = Set of states that can be reached from s in one step

cost: function QxQ - Positive Numbers
cost(s,s’) = Cost of taking a one-step transition from state s to state s’

Problem: Find a sequence {s;,...,S«} such that:

S{€S
ske G
S;,1 € succs(s)

)Y cost(s, s, 4) is the smallest among all possible
sequences (desirable but optional)

Q={START, GOAL, a, b, c,d, e, f,h,p, q, n
S={START} G={GOAL}

succs(d) = {b,c}

succs(START) = {p,e,d}

succs(a) = NULL

cost(s,s’) = 1 for all transitions




Desirable Properties

+ Completeness: An algorithm is complete if it is
guaranteed to find a path if one exists

« Optimality: The total cost of the path is the lowest
among all possible paths from start to goal

+ Time Complexity
« Space Complexity

Breadth-First Search

+ Label all states that are 0 steps from S >
Call that set V,




Breadth-First Search

— 0 steps
— 1step

« Label the successors of the states in V
that are not yet labelled >Set V, of states
that are 1 step away from the start

Breadth-First Search
— oo

— 2 steps

+ Label the successors of the states in V/,
that are not yet labelled >Set V, of states
that are 1 step away from the start




Breadth-First Search

« Label the successors of the states in V.,
that are not yet labelled >Set  of states
that are 1 step away from the start

wes  Breadth-First Search

« Stop when goal is reached in the current
expansion set - goal can be reached in 4
steps




Recovering the Path

* Record the predecessor state when labeling a new state

* When | labeled GOAL, | was expanding the neighbors of
f-> fis the predecessor of GOAL

* When | labeled £, | was expanding the neighbors of r> r
is the predecessor of f

» Final solution: {START, e, r, f, GOAL}

Using Backpointers

a

o
8
[R5

A backpointer previous(s) point to the node that
stored the state that was expanded to label s

» The path is recovered by following the
backpointers starting at the goal state

10



Example: Robot Navigation

States =
positions in the map

Transitions =
allowed motions

N

x +— GOAL

START
Navigation: Going from point START to

point GOAL given a (deterministic) map

Breadth First Search

V, € S (the set of start states)
previous(START) := NULL
k< 0

while (no goal state is in V, and V, is not empty) do

V,,; € empty set
For each state sin V,
For each state s’in succs(s)
If s”has not already been labeled
Set previous(s) € s
Add s’into V,,,

k & k+1

if V, is empty signal FAILURE

else build the solution path thus:
Define S, = GOAL, and forall i <= k, define S, = previous(S)

Return path = {S,,.., S/}

11



Properties

BFS can handle multiple start and goal
states

Can work either by searching forward from
the start or backward for the goal
(forward/backward chaining)

(Which way is better?)

Guaranteed to find the lowest-cost path in
terms of number of transitions??

See maze example

Complexity

* N = Total number of states
» B = Average number of successors (branching factor)
» L = Length from start to goal with smallest number of steps

Algorithm Complete | Optimal | Time Space

BFS Breadth First
Search

12



Bidirectional Search
BFS search simultaneously forward from
START and backward from GOAL
When do the two search meet?
What stopping criterion should be used?
Under what condition is it optimal?

Complexity

* N = Total number of states
» B = Average number of successors (branching factor)
» L = Length for start to goal with smallest number of steps

Algorithm Complete | Optimal | Time Space

BFS Breadth First
Search

BIBFS | Bi-directional
Breadth First
Search

Major savings when bidirectional search is possible because
2BM2 << BL

B =10, L =6 = 22,200 states generated vs. ~10’




Counting Transition Costs Instead of Transitions

PO s @)
182

(e) 5
3 0 1 \9 a
5
L) —C
()—3

Counting Transition Costs Instead of Transitions

22 2 @

182 5
3 19
& (1) 5
0 ’
O

» BFS finds the shortest path in number of steps but
does not take into account transition costs

« Simple modification finds the least cost path

* New field: At iteration k, g(s) = least cost pathto sin k
or fewer steps

14



Uniform Cost Search

» Strategy to select state to expand next

» Use the state with the smallest value of g()

so far

» Use priority queue for efficient access to
minimum g at every iteration

Priority Queue

* Priority queue = data structure in which data of
the form (item, value) can be inserted and the
item of minimum value can be retrieved
efficiently

» Operations:

— Init (PQ): Initialize empty queue

— Insert (PQ, item, value): Insert a pair in the queue

— Pop (PQ): Returns the pair with the minimum value
* In our case:

— item = state value = current cost ¢()

Complexity: O(log(number of pairs in PQ)) for
insertion and pop operations - very efficient

http://www.leekillough.com/heaps/ Knuth&Sedwick ....

15



Uniform Cost Search

 PQ = Current set of evaluated states

« Value (priority) of state = g(s) = current cost
of pathto s

» Basic iteration:
1. Pop the state s with the lowest path cost from PQ
2. Evaluate the path cost to all the successors of s
3. Add the successors of sto PQ

We add the successors of s that have
not yet been visited and we update the
cost of those currently in the queue

PQ = {(START,O)} 1. Pop the state s with the

lowest path cost from PQ
2. Evaluate the path cost to
all the successors of s
3. Add the successors of sto
PQ

16



PQ = {(p,1) (d,3) (e,9)} 1. Pop the state s with the

lowest path cost from PQ
2. Evaluate the path cost to
all the successors of s
3. Add the successors of st
PQ

PQ = {(d,3) (e,9) (q,1 6)} 1. Pop the state s with the

lowest path cost from PQ
2. Evaluate the path cost to
all the successors of s
3. Add the successors of st
PQ

17



PQ = {(b,4) (e,5) (c,11) (q,16)} 1. Pop the state s with the

lowest path cost from PQ
2. Evaluate the path cost to
all the successors of s
3. Add the successors of st
PQ

o (U

<' 9 | Important: We realized that

.................. 4 going to e through dis
o ‘ cheaper than going to e
v ,,,,,,, directly - the value of e is

updated from 9 to 5 and it
moves up in PQ

. POPUE SAIE SW e
PQ = {(b!4) (9,5 (051 1) (q! . lowest path cost from PQ
2. Evaluate the path cost to
all the successors of s
3. Add the successors of st
PQ

18



PQ - {(9,5) (3,6) (C,11) (q,16)} 1. Pop the state s with the

lowest path cost from PQ
2. Evaluate the path cost to
all the successors of s
3. Add the successors of st
PQ

PQ = {(a,6) (h,6) (c,11) (r,14) (q,16)}

1. Pop the state s with the
lowest path cost from PQ

2. Evaluate the path cost to
all the successors of s

3. Add the successors of s to)
PQ

19



PQ = {(h,6) (c,11) (r,14) (q,16)}

1. Pop the state s with the
lowest path cost from PQ)|

2. Evaluate the path cost to
all the successors of s

3. Add the successors of s

DA

PQ = {(q,‘lO) (c,‘l 1) (,;14)} 1. Pop the state s with the

lowest path cost from PQ
2. Evaluate the path cost to
all the successors of s
3. Add the successors of sto
PQ

20



Important: We realized that
PQ = {(q,10) going to q through his
cheaper than going through
p — the value of qis updated
from 16 to 10 and it moves
up in PQ

t to

f sto

PQ = {(C,11) (r,13)} 1. Pop the state s with the

lowest path cost from PQ
2. Evaluate the path cost to
all the successors of s
3. Add the successors of sto

PQ

21



PQ = {(r,13)} 1. Pop the state s with the

lowest path cost from PQ
PQ - {(f 1 8)} 2. Evaluate the path cost to
= ’ all the successors of s
3. Add the successors of sto
PQ

15
PQ = {(GOAL,23)}

1. Pop the state s with the
lowest path cost from PQ

2. Evaluate the path cost to
all the successors of s

3. Add the successors of sto
PQ

22



Final path: {START, d, e, h, q, r, f, GOAL}

* This path is optimal in total cost even though it has more
transitions than the one found by BFS

» What should be the stopping condition?

» Under what conditions is UCS complete/optimal?

Example: Robot Navigation

States =
positions in the map

Transitions =
allowed motions

x +— GOAL

N Cost = sqrt(2)

E
Cost =1

X
/
START S
Navigation: Going from point START to
point GOAL given a (deterministic) map

23



Complexity

N = Total number of states

B = Average number of successors (branching factor)

L = Length for start to goal with smallest number of steps
Q = Average size of the priority queue

Algorithm Complete | Optimal Time Space

BFS Breadth First
Search

BIBFS | Bi-directional
Breadth First
Search

ucs Uniform Cost
Search

Limitations of BFS

« Memory usage is O(B") in general
« Limitation in many problems in which the

states cannot be enumerated or stored
explicitly, e.g., large branching factor

« Alternative: Find a search strategy that
requires little storage for use in large
problems

24



Depth First Search

START
START d
START db
START dba
START dc¢
START dca
START d e

* General idea:

— Expand the most recently expanded node if it has
successors

— Otherwise backup to the previous node on the current path

DFS Implementation

DFS (s)
if s= GOAL
return SUCCESS In 3 recursive
else implementation, the program
For all s in succs(s) stack keeps track of the
DFS (s) states in the current path

return FAILURE

S is current state being expanded,
starting with START

25



Depth First Search

START (a)

START d

STARTdb (b) (o
START db a >

START dc R
START dca @.

May explore the
same state over
again. Potential

START de Broblom

STARTder o

START derf

START derfc

START derfca Memory usage never

|START derf GOALI exceeds maximum length of
a path through the graph

Search Tree Interpretation

BFS: START

DFS

d

e

b c
[
a a h

p
|
f

P q eGOALQq

c GOAL q

a

a

* Root: START state

+ Children of node containing state s: All states in succs(s)
 In the worst case the entire tree is explored > O(BLmax)

* Infinite branches if there are loops in the graph!

26



Complexity

N = Total number of states

B = Average number of successors (branching factor)

L = Length for start to goal with smallest number of steps
C = Cost of optimal path

Q = Average size of the priority queue

Lmax = Length of longest path from START to any state

Algorithm Complete | Optimal Time Space

BFS Breadth First
Search

BIBFS | Bi-directional
Breadth First
Search

ucs Uniform Cost
Search

DFS Depth First
Search

DFS Limitation 1

» Need to prevent DFS from looping
 Avoid visiting the same states repeatedly

Because B? may be much larger
than the number of states d steps
away from the start

« PC-DFS (Path Checking DFS):

— Don’t use a state that is already in the
current path

« MEMDFS (Memorizing DFS):

— Keep track of all the states expanded so
far. Do not expand any state twice

« Comparison PC-DFS vs. MEMDFS?

27



Example: Robot Navigation

States =

positions in the map

Transitions =

allowed motions

N

4+— GOAL

START

N, W, S
,E,N, S

Try to guess MEMDFS for 2 different order of neighbors:

Complexity

N = Total number of states
B = Average number of successors (branching factor)

L = Length for start to goal with smallest number of steps
C = Cost of optimal path
Q = Average size of the priority queue

Lmax = Length of longest path from START to any state

Algorithm | Complete | Optimal Time Space
BFS Breadth First
Search
BIBFS | Bi- Direction.
BFS
UCs Uniform Cost
Search
PCDFS | Path Check
DFS
MEMD | Memorizing
FS DFS

28



DFS Limitation 2

* Need to make DFS optimal “Depth-Limited

Search”

 IDS (lterative Deepening Search):

— Run DFS by searching only path of length 1
(DFS stops if length of path is greater than 1)

— If that doesn’t find a solution, try again by
running DFS on paths of length 2 or less

— If that doesn’t find a solution, try again by
running DFS on paths of length 3 or less

— Continue until a solution is found

lterative Deepening Search

« Sounds horrible: We need to run DFS
many times

« Actually not a problem:
O(LB'+(L-1)B?+...+B" = O(BY)

Nodes generated Nodes generated Nodes generated at
at depth 1 at depth 2 depth L

« Compare B- and B-max
» Optimal if transition costs are equal

29



lterative Deepening Search

Memory usage same as DFS

Computation cost comparable to BFS
even with repeated searches, especially
for large B.

Example:

- B=10, L=5

—BFS: 111,111 expansions

—IDS: 123,456 expansions

Complexity
N = Total number of states
B = Average number of successors (branching factor)
L = Length for start to goal with smallest number of steps
C = Cost of optimal path
Q = Average size of the priority queue
Lmax = Length of longest path from START to any state

Algorithm | Complete | Optimal Time Space

BFS Breadth First
Search

BIBFS | Bi- Direction.
BFS

ucs Uniform Cost
Search

PCDFS | Path Check
DFS

MEMD | Memorizing

FS DFS

IDS lterative
Deepening

30



Summary

Basic search techniques: BFS, UCS,
PCDFS, MEMDFS, ....

Property of search algorithms:
Completeness, optimality, time and space
complexity

lterative deepening and bidirectional
search ideas

Trade-offs between the different
techniques and when they might be used

31



