
1

Search: Uninformed Search

Material in part from http://www.cs.cmu.edu/~awm/tutorials

Russel & Norvig Chap. 3

A Search Problem

• Find a path from START to GOAL

• Find the minimum number of transitions

b

a

d

p
q

h

e

c

f

r

START

GOAL

2

Example

28

31

6

4

7

5 2

8

3

1

6

4

7

5

START GOAL

Example

• State: Configuration of puzzle

• Transitions: Up to 4 possible moves (up, down,
left, right)

• Solvable in 22 steps (average)

• But: 1.8 105 states (1.3 1012 states for the 15-
puzzle)

� Cannot represent set of states explicitly

28

31

6

4

7

5 2

8

3

1

6

4

7

5

START GOAL

3

Example: Robot Navigation

X

x

START

GOAL

States =

positions in the map

Transitions =

allowed motions

N

E

S

W

Navigation: Going from point START to

point GOAL given a (deterministic) map

Other Real-Life Examples

Protein design
http://www.blueprint.org/proteinfolding/trades/trades_problem.html

Scheduling/Manufacturing
http://www.ozone.ri.cmu.edu/projects/dms/dmsmain.html

Scheduling/Science
http://www.ozone.ri.cmu.edu/projects/hsts/hstsmain.html

Route planning
Robot navigation

http://www.frc.ri.cmu.edu/projects/mars/dstar.html

Don’t necessarily know explicitly the

structure of a search problem

4

10cm resolution
4km2 = 4 108 states

What we are not addressing (yet)
• Uncertainty/Chance � State and transitions are known and deterministic

• Game against adversary

• Multiple agents/Cooperation

• Continuous state space � For now, the set of states is discrete

5

Overview

• Definition and formulation

• Optimality, Completeness, and Complexity

• Uninformed Search
– Breadth First Search

– Search Trees

– Depth First Search

– Iterative Deepening

• Informed Search
– Best First Greedy Search

– Heuristic Search, A*

A Search Problem

b

a

d

p
q

h

e

c

f

r

START

GOAL

6

Formulation
• Q: Finite set of states

• S Q: Non-empty set of start states

• G Q: Non-empty set of goal states
• succs: function Q � P(Q)

succs(s) = Set of states that can be reached from s in one step

• cost: function QxQ � Positive Numbers
cost(s,s’) = Cost of taking a one-step transition from state s to state s’

• Problem: Find a sequence {s1,…,sK} such that:

1. s1 S

2. sK G

3. si+1 succs(si)

4. Σ cost(si, si+1) is the smallest among all possible
sequences (desirable but optional)

⊆
⊆

∈

∈
∈

Example

• Q = {START, GOAL, a, b, c, d, e, f, h, p, q, r}

• S = {START} G = {GOAL}

• succs(d) = {b,c}

• succs(START) = {p,e,d}

• succs(a) = NULL

• cost(s,s’) = 1 for all transitions

b

a

d

p

q

h

e

c

f

r

START

GOAL

7

Desirable Properties

• Completeness: An algorithm is complete if it is
guaranteed to find a path if one exists

• Optimality: The total cost of the path is the lowest
among all possible paths from start to goal

• Time Complexity

• Space Complexity

b

a

d

p

q

h

e

c

f

r

START

GOAL

b

a

d

p

q

h

e

c

f

r

START

GOAL

Breadth-First Search

• Label all states that are 0 steps from S �

Call that set Vo

b

a

d

p
q

h

e

c

f

r

START

GOAL

8

Breadth-First Search

• Label the successors of the states in Vo

that are not yet labelled �Set V1 of states

that are 1 step away from the start

b

a

d

p
q

h

e

c

f

r

START

GOAL
0 steps

1 step

Breadth-First Search

• Label the successors of the states in V1

that are not yet labelled �Set V2 of states

that are 1 step away from the start

b

a

d

p
q

h

e

c

f

r

START

GOAL
0 steps

1 step
2 steps

9

Breadth-First Search

• Label the successors of the states in V2

that are not yet labelled �Set V3 of states

that are 1 step away from the start

b

a

d

p
q

h

e

c

f

r

START

GOAL
0 steps
1 step
2 steps
3 steps

Breadth-First Search

• Stop when goal is reached in the current

expansion set � goal can be reached in 4

steps

b

a

d

p
q

h

e

c

f

r

START

GOAL

0 steps
1 step
2 steps
3 steps
4 steps

10

Recovering the Path

• Record the predecessor state when labeling a new state

• When I labeled GOAL, I was expanding the neighbors of
f � f is the predecessor of GOAL

• When I labeled f, I was expanding the neighbors of r � r
is the predecessor of f

• Final solution: {START, e, r, f, GOAL}

b

a

d

p

q

h

e

c

f

r

START

GOAL

Using Backpointers

• A backpointer previous(s) point to the node that
stored the state that was expanded to label s

• The path is recovered by following the
backpointers starting at the goal state

b

a

d

p
q

h

e

c

f

r

START

GOAL

11

Example: Robot Navigation

X

x

START

GOAL

States =

positions in the map

Transitions =

allowed motions

N

E

S

W

Navigation: Going from point START to

point GOAL given a (deterministic) map

Breadth First Search
V0  S (the set of start states)

previous(START) := NULL

k  0

while (no goal state is in Vk and Vk is not empty) do
Vk+1  empty set

For each state s in Vk

For each state s’ in succs(s)

If s’ has not already been labeled

Set previous(s’)  s

Add s’ into Vk+1

k  k+1

if Vk is empty signal FAILURE

else build the solution path thus:
Define Sk = GOAL, and forall i <= k, define Si-1 = previous(Si)

Return path = {S1,.., Sk}

12

Properties

• BFS can handle multiple start and goal

states

• Can work either by searching forward from
the start or backward for the goal

(forward/backward chaining)

• (Which way is better?)

• Guaranteed to find the lowest-cost path in

terms of number of transitions??

See maze example

Complexity
• N = Total number of states

• B = Average number of successors (branching factor)

• L = Length from start to goal with smallest number of steps

Breadth First

Search

BFS

SpaceTimeOptimalCompleteAlgorithm

13

V3

V’3

Bidirectional Search

• BFS search simultaneously forward from

START and backward from GOAL

• When do the two search meet?

• What stopping criterion should be used?

• Under what condition is it optimal?

START GOALV1
V’1

V2

V’2

Complexity
• N = Total number of states

• B = Average number of successors (branching factor)

• L = Length for start to goal with smallest number of steps

Bi-directional

Breadth First

Search

BIBFS

Breadth First

Search
BFS

SpaceTimeOptimalCompleteAlgorithm

B = 10, L = 6 � 22,200 states generated vs. ~107

Major savings when bidirectional search is possible because

2BL/2 << BL

14

Counting Transition Costs Instead of Transitions

b

a

d

p
q

h

e

c

f

r

START

GOAL

2

1

3

1

9

15

8

2

2

4

9

5

5

5

4

1

3

Counting Transition Costs Instead of Transitions

• BFS finds the shortest path in number of steps but
does not take into account transition costs

• Simple modification finds the least cost path

• New field: At iteration k, g(s) = least cost path to s in k
or fewer steps

b

a

d

p
q

h

e

c

f

r

START

GOAL

2

1

3

1

9

15

8

2

2

4

9

5

5

5

4

1

3

15

Uniform Cost Search

• Strategy to select state to expand next

• Use the state with the smallest value of g()

so far

• Use priority queue for efficient access to

minimum g at every iteration

Priority Queue
• Priority queue = data structure in which data of

the form (item, value) can be inserted and the
item of minimum value can be retrieved
efficiently

• Operations:
– Init (PQ): Initialize empty queue

– Insert (PQ, item, value): Insert a pair in the queue

– Pop (PQ): Returns the pair with the minimum value

• In our case:
– item = state value = current cost g()

Complexity: O(log(number of pairs in PQ)) for
insertion and pop operations � very efficient

http://www.leekillough.com/heaps/ Knuth&Sedwick ….

16

Uniform Cost Search

• PQ = Current set of evaluated states

• Value (priority) of state = g(s) = current cost

of path to s

• Basic iteration:

1. Pop the state s with the lowest path cost from PQ

2. Evaluate the path cost to all the successors of s

3. Add the successors of s to PQ

We add the successors of s that have

not yet been visited and we update the

cost of those currently in the queue

b

a

d

p
q

h

e

c

f

r

START

GOAL

2

1

3

1

9

15

8

2

2

4

9

5

5

5

4

1

3

1. Pop the state s with the

lowest path cost from PQ

2. Evaluate the path cost to

all the successors of s

3. Add the successors of s to

PQ

PQ = {(START,0)}

17

b

a

d

p
q

h

e

c

f

r

START

GOAL

2

1

3

1

9

15

8

2

2

4

9

5

5

5

4

1

3

1. Pop the state s with the

lowest path cost from PQ

2. Evaluate the path cost to

all the successors of s

3. Add the successors of s to

PQ

PQ = {(p,1) (d,3) (e,9)}

b

a

d

p
q

h

e

c

f

r

START

GOAL

2

1

3

1

9

15

8

2

2

4

9

5

5

5

4

1

3

1. Pop the state s with the

lowest path cost from PQ

2. Evaluate the path cost to

all the successors of s

3. Add the successors of s to

PQ

PQ = {(d,3) (e,9) (q,16)}

18

b

a

d

p
q

h

e

c

f

r

START

GOAL

2

1

3

1

9

15

8

2

2

4

9

5

5

5

4

1

3

1. Pop the state s with the

lowest path cost from PQ

2. Evaluate the path cost to

all the successors of s

3. Add the successors of s to

PQ

PQ = {(b,4) (e,5) (c,11) (q,16)}

b

a

d

p
q

h

e

c

f

r

START

GOAL

2

1

3

1

9

15

8

2

2

4

9

5

5

5

4

1

3

1. Pop the state s with the

lowest path cost from PQ

2. Evaluate the path cost to

all the successors of s

3. Add the successors of s to

PQ

PQ = {(b,4) (e,5) (c,11) (q,16)}

Important: We realized that

going to e through d is

cheaper than going to e

directly � the value of e is

updated from 9 to 5 and it
moves up in PQ

19

b

a

d

p
q

h

e

c

f

r

START

GOAL

2

1

3

1

9

15

8

2

2

4

9

5

5

5

4

1

3

1. Pop the state s with the

lowest path cost from PQ

2. Evaluate the path cost to

all the successors of s

3. Add the successors of s to

PQ

PQ = {(e,5) (a,6) (c,11) (q,16)}

b

a

d

p
q

h

e

c

f

r

START

GOAL

2

1

3

1

9

15

8

2

2

4

9

5

5

5

4

1

3

1. Pop the state s with the

lowest path cost from PQ

2. Evaluate the path cost to

all the successors of s

3. Add the successors of s to

PQ

PQ = {(a,6) (h,6) (c,11) (r,14) (q,16)}

20

b

a

d

p
q

h

e

c

f

r

START

GOAL

2

1

3

1

9

15

8

2

2

4

9

5

5

5

4

1

3

1. Pop the state s with the

lowest path cost from PQ

2. Evaluate the path cost to

all the successors of s

3. Add the successors of s to

PQ

PQ = {(h,6) (c,11) (r,14) (q,16)}

b

a

d

p
q

h

e

c

f

r

START

GOAL

2

1

3

1

9

15

8

2

2

4

9

5

5

5

4

1

3

1. Pop the state s with the

lowest path cost from PQ

2. Evaluate the path cost to

all the successors of s

3. Add the successors of s to

PQ

PQ = {(q,10) (c,11) (r,14)}

21

b

a

d

p
q

h

e

c

f

r

START

GOAL

2

1

3

1

9

15

8

2

2

4

9

5

5

5

4

1

3

1. Pop the state s with the

lowest path cost from PQ

2. Evaluate the path cost to

all the successors of s

3. Add the successors of s to

PQ

PQ = {(q,10) (c,11) (r,14)}
Important: We realized that

going to q through h is

cheaper than going through

p � the value of q is updated

from 16 to 10 and it moves
up in PQ

b

a

d

p
q

h

e

c

f

r

START

GOAL

2

1

3

1

9

15

8

2

2

4

9

5

5

5

4

1

3

PQ = {(c,11) (r,13)} 1. Pop the state s with the

lowest path cost from PQ

2. Evaluate the path cost to

all the successors of s

3. Add the successors of s to

PQ

22

b

a

d

p
q

h

e

c

f

r

START

GOAL

2

1

3

1

9

15

8

2

2

4

9

5

5

5

4

1

3

PQ = {(r,13)} 1. Pop the state s with the

lowest path cost from PQ

2. Evaluate the path cost to

all the successors of s

3. Add the successors of s to

PQ

PQ = {(f,18)}

b

a

d

p
q

h

e

c

f

r

START

GOAL

2

1

3

1

9

15

8

2

2

4

9

5

5

5

4

1

3

1. Pop the state s with the

lowest path cost from PQ

2. Evaluate the path cost to

all the successors of s

3. Add the successors of s to

PQ

PQ = {(GOAL,23)}

23

b

a

d

p
q

h

e

c

f

r

START

GOAL

2

1

3

1

9

15

8

2

2

4

9

5

5

5

4

1

3

Final path: {START, d, e, h, q, r, f, GOAL}

• This path is optimal in total cost even though it has more

transitions than the one found by BFS
• What should be the stopping condition?

• Under what conditions is UCS complete/optimal?

Example: Robot Navigation

X

x

START

GOAL

States =

positions in the map

Transitions =

allowed motions

N

E

S

W

Navigation: Going from point START to

point GOAL given a (deterministic) map

Cost = sqrt(2)

Cost = 1

24

Complexity
• N = Total number of states

• B = Average number of successors (branching factor)

• L = Length for start to goal with smallest number of steps

• Q = Average size of the priority queue

Bi-directional
Breadth First
Search

BIBFS

Uniform Cost
Search

UCS

Breadth First

Search

BFS

SpaceTimeOptimalCompleteAlgorithm

Limitations of BFS

• Memory usage is O(BL) in general

• Limitation in many problems in which the

states cannot be enumerated or stored
explicitly, e.g., large branching factor

• Alternative: Find a search strategy that

requires little storage for use in large

problems

25

Depth First Search

• General idea:

– Expand the most recently expanded node if it has

successors

– Otherwise backup to the previous node on the current path

START

START d

START d b

START d b a

START d c

START d c a

START d e

START d e r

START d e r f

START d e r f c

START d e r f c a

START d e r f GOAL

b

a

d

p
q

h

e

c

f

r

GOAL

START

DFS Implementation

DFS (s)
if s = GOAL

return SUCCESS

else
For all s’ in succs(s)

DFS (s’)

return FAILURE

In a recursive

implementation, the program

stack keeps track of the

states in the current path

s is current state being expanded,

starting with START

26

Depth First Search

START

START d
START d b

START d b a

START d c

START d c a

START d e
START d e r

START d e r f

START d e r f c

START d e r f c a

START d e r f GOAL
Memory usage never

exceeds maximum length of

a path through the graph

b

a

d

p
q

h

e

c

f

r

START

GOAL

4

May explore the

same state over

again. Potential

problem?

Search Tree Interpretation

• Root: START state

• Children of node containing state s: All states in succs(s)

• In the worst case the entire tree is explored � O(BLmax)

• Infinite branches if there are loops in the graph!

START

d e p

r hb c e q

a a r h

f

c GOAL

a

p q

q

f

GOALe

a

p q

q

BFS:
START

d e p

r hb c e q

a a r h

f

c GOAL

a

p q

q

f

GOALe

a

p q

q

DFS:

27

Complexity
• N = Total number of states

• B = Average number of successors (branching factor)

• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path

• Q = Average size of the priority queue

• Lmax = Length of longest path from START to any state

Bi-directional
Breadth First
Search

BIBFS

Depth First
Search

DFS

Uniform Cost
Search

UCS

Breadth First

Search

BFS

SpaceTimeOptimalCompleteAlgorithm

DFS Limitation 1
• Need to prevent DFS from looping
• Avoid visiting the same states repeatedly

• PC-DFS (Path Checking DFS):

– Don’t use a state that is already in the
current path

• MEMDFS (Memorizing DFS):

– Keep track of all the states expanded so
far. Do not expand any state twice

• Comparison PC-DFS vs. MEMDFS?

Because Bd may be much larger

than the number of states d steps

away from the start

28

Example: Robot Navigation

X

x

START

GOAL

States =

positions in the map

Transitions =

allowed motions

N

E

S

W

Try to guess MEMDFS for 2 different order of neighbors:

E, N, W, S

W, E, N, S

Complexity

Bi- Direction.

BFS

BIBFS

Memorizing
DFS

MEMD
FS

Path Check
DFS

PCDFS

Uniform Cost
Search

UCS

Breadth First

Search

BFS

SpaceTimeOptimalCompleteAlgorithm

• N = Total number of states

• B = Average number of successors (branching factor)

• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path

• Q = Average size of the priority queue

• Lmax = Length of longest path from START to any state

29

DFS Limitation 2

• Need to make DFS optimal

• IDS (Iterative Deepening Search):

– Run DFS by searching only path of length 1
(DFS stops if length of path is greater than 1)

– If that doesn’t find a solution, try again by
running DFS on paths of length 2 or less

– If that doesn’t find a solution, try again by
running DFS on paths of length 3 or less

– ………..

– Continue until a solution is found

“Depth-Limited

Search”

Iterative Deepening Search

• Sounds horrible: We need to run DFS

many times

• Actually not a problem:

• Compare BL and BLmax

• Optimal if transition costs are equal

O(LB1+(L-1)B2+…+BL) = O(BL)

Nodes generated

at depth 1

Nodes generated

at depth 2
Nodes generated at

depth L

30

Iterative Deepening Search

• Memory usage same as DFS

• Computation cost comparable to BFS

even with repeated searches, especially
for large B.

• Example:

– B=10, L=5

– BFS: 111,111 expansions

– IDS: 123,456 expansions

Complexity

Bi- Direction.

BFS

BIBFS

Iterative
Deepening

IDS

Memorizing
DFS

MEMD
FS

Path Check
DFS

PCDFS

Uniform Cost
Search

UCS

Breadth First

Search

BFS

SpaceTimeOptimalCompleteAlgorithm

• N = Total number of states

• B = Average number of successors (branching factor)

• L = Length for start to goal with smallest number of steps
• C = Cost of optimal path

• Q = Average size of the priority queue

• Lmax = Length of longest path from START to any state

31

Summary

• Basic search techniques: BFS, UCS,
PCDFS, MEMDFS, ….

• Property of search algorithms:
Completeness, optimality, time and space
complexity

• Iterative deepening and bidirectional
search ideas

• Trade-offs between the different
techniques and when they might be used

