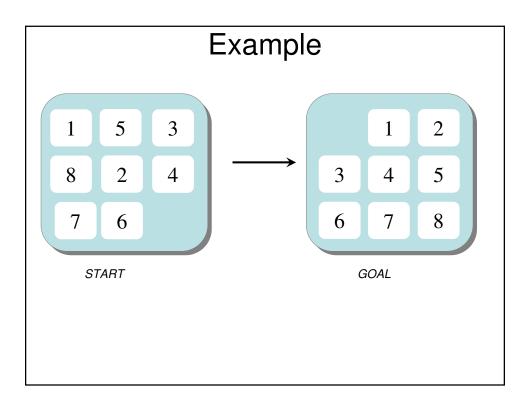
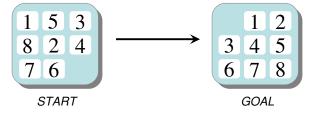
Search: Uninformed Search

Russel & Norvig Chap. 3

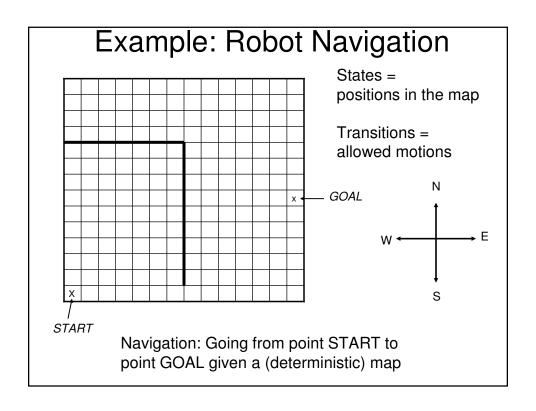
Material in part from http://www.cs.cmu.edu/~awm/tutorials

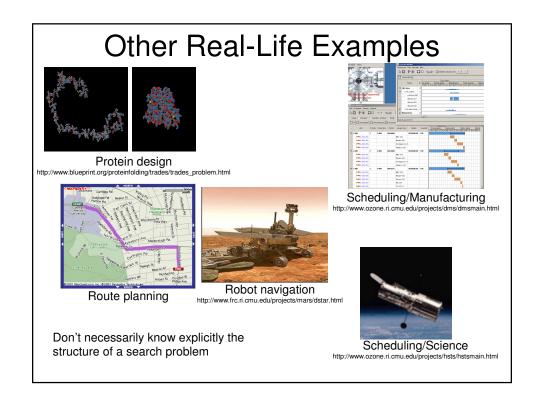
- Find a path from START to GOAL
- · Find the minimum number of transitions

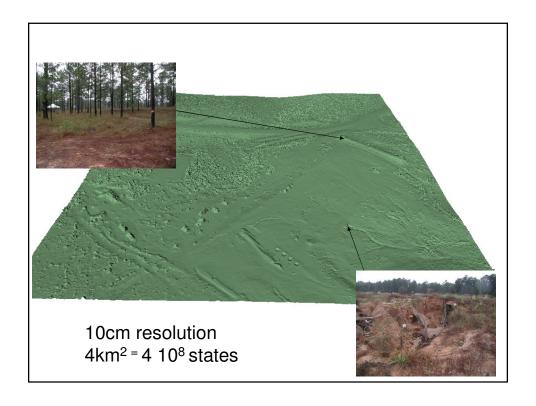




- State: Configuration of puzzle
- Transitions: Up to 4 possible moves (up, down, left, right)
- Solvable in 22 steps (average)
- But: 1.8 10⁵ states (1.3 10¹² states for the 15-puzzle)
 - → Cannot represent set of states explicitly





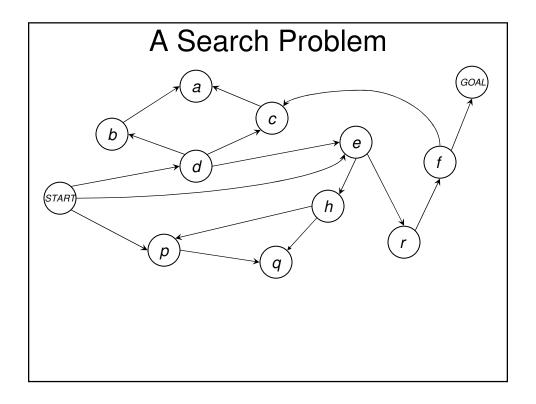


What we are *not* addressing (yet)

- Uncertainty/Chance → State and transitions are known and deterministic
- Game against adversary
- Multiple agents/Cooperation
- ullet Continuous state space eta For now, the set of states is discrete

Overview

- · Definition and formulation
- · Optimality, Completeness, and Complexity
- Uninformed Search
 - Breadth First Search
 - Search Trees
 - Depth First Search
 - Iterative Deepening
- Informed Search
 - Best First Greedy Search
 - Heuristic Search, A*

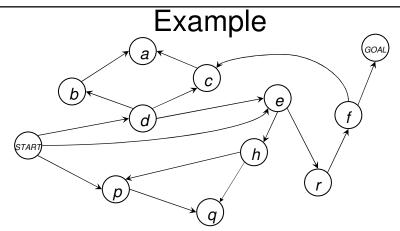


Formulation

- Q: Finite set of states
- $S \subseteq Q$: Non-empty set of start states
- G⊆ Q: Non-empty set of goal states
- succs: function $Q \to \mathcal{P}(Q)$

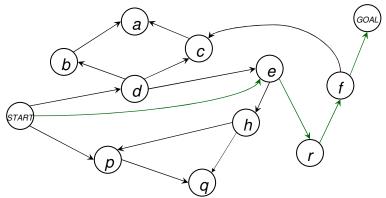
succs(s) = Set of states that can be reached from s in one step

- cost: function QxQ → Positive Numbers
 cost(s,s') = Cost of taking a one-step transition from state s to state s'
- Problem: Find a sequence $\{s_1,...,s_K\}$ such that:
- 1. $s_1 \in S$
- 2. $s_{\mathsf{K}} \in G$
- 3. $s_{i+1} \in \mathbf{succs}(s_i)$
- 4. $\sum \mathbf{cost}(s_i, s_{i+1})$ is the smallest among all possible sequences (desirable but optional)



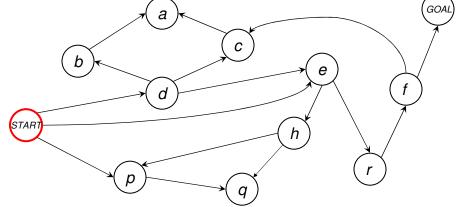
- $Q = \{START, GOAL, a, b, c, d, e, f, h, p, q, r\}$
- $S = \{START\}$ $G = \{GOAL\}$
- $succs(d) = \{b,c\}$
- $succs(START) = \{p, e, d\}$
- succs(a) = NULL
- cost(s,s') = 1 for all transitions

Desirable Properties

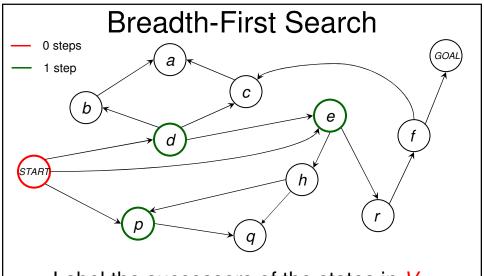


- **Completeness:** An algorithm is complete if it is guaranteed to find a path if one exists
- *Optimality*: The total cost of the path is the lowest among all possible paths from start to goal
- · Time Complexity
- Space Complexity

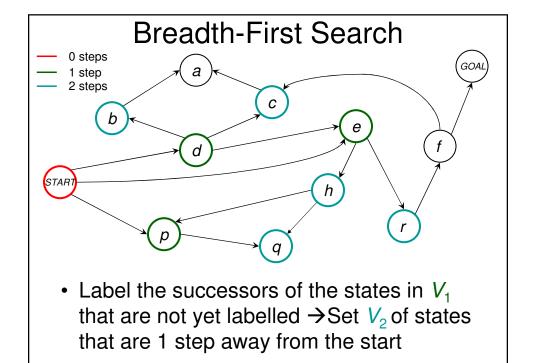
Breadth-First Search

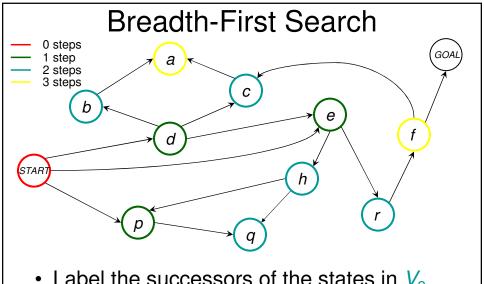


Label all states that are 0 steps from S →
Call that set V₀

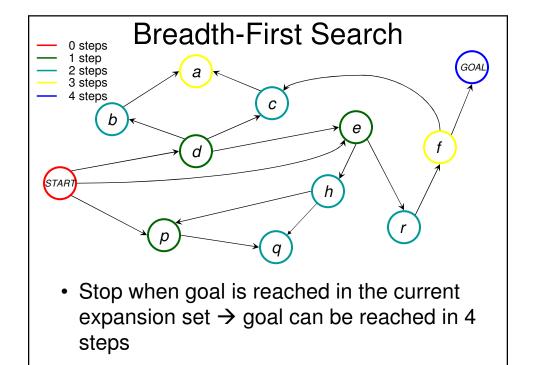


Label the successors of the states in V_o
 that are not yet labelled →Set V₁ of states
 that are 1 step away from the start

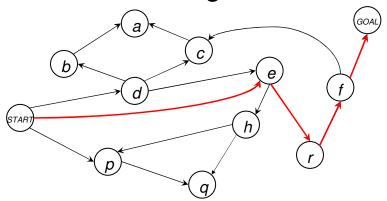




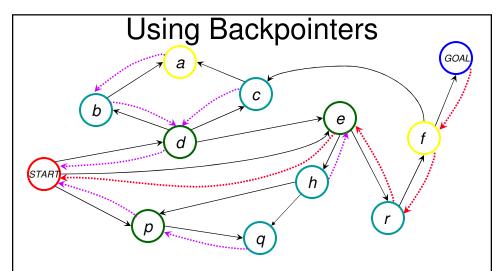
Label the successors of the states in V₂
that are not yet labelled →Set V₃ of states
that are 1 step away from the start



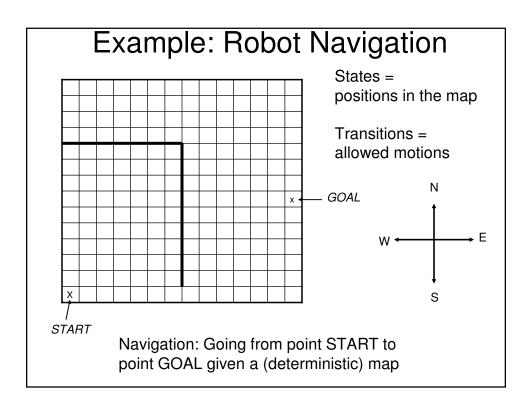
Recovering the Path



- Record the predecessor state when labeling a new state
- When I labeled GOAL, I was expanding the neighbors of f → f is the predecessor of GOAL
- When I labeled f, I was expanding the neighbors of r → r is the predecessor of f
- Final solution: {START, e, r, f, GOAL}



- A backpointer **previous**(s) point to the node that stored the state that was expanded to label s
- The path is recovered by following the backpointers starting at the goal state



Breadth First Search

```
V_o \leftarrow S (the set of start states)
previous(START) := NULL
k \leftarrow 0
while (no goal state is in V_k and V_k is not empty) do
     V_{k+1} \leftarrow empty set
     For each state s in V_k
         For each state s'in succs(s)
              If s'has not already been labeled
                  Set previous(s') \leftarrow s
                  Add s'into V_{k+1}
    k \leftarrow k+1
if V_k is empty signal FAILURE
else build the solution path thus:
     Define S_k = GOAL, and for all i \le k, define S_{i+1} = \mathbf{previous}(S_i)
     Return path = \{S_1, ..., S_k\}
```

Properties

- BFS can handle multiple start and goal states
- Can work either by searching forward from the start or backward for the goal (forward/backward chaining)
- (Which way is better?)
- Guaranteed to find the lowest-cost path in terms of number of transitions??

See maze example

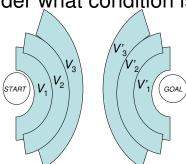
Complexity

- *N* = Total number of states
- B = Average number of successors (branching factor)
- L = Length from start to goal with smallest number of steps

	Algorithm	Complete	Optimal	Time	Space
BFS	Breadth First Search				

Bidirectional Search

- BFS search simultaneously forward from START and backward from GOAL
- When do the two search meet?
- What stopping criterion should be used?
- Under what condition is it optimal?



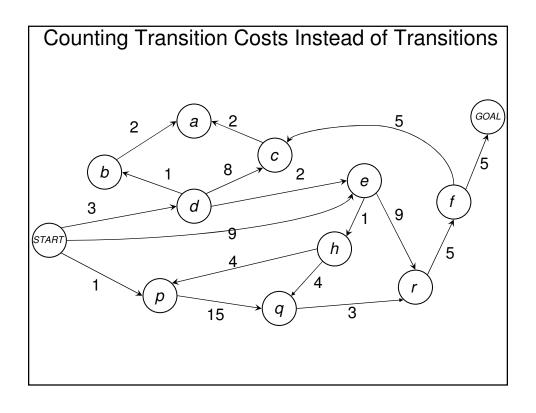
Complexity

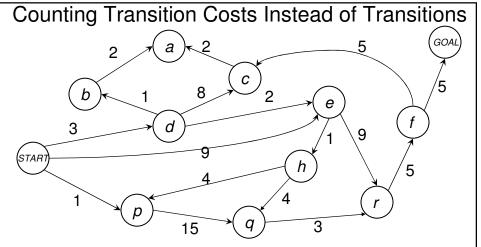
- *N* = Total number of states
- B = Average number of successors (branching factor)
- L = Length for start to goal with smallest number of steps

	Algorithm	Complete	Optimal	Time	Space
BFS	Breadth First Search				
BIBFS	Bi-directional Breadth First Search				

Major savings when bidirectional search is possible because $2B^{L/2} \ll B^L$

B = 10, L = 6 \rightarrow 22,200 states generated vs. ~10⁷





- BFS finds the shortest path in number of steps but does not take into account transition costs
- Simple modification finds the least cost path
- New field: At iteration k, g(s) = least cost path to s in k
 or fewer steps

Uniform Cost Search

- Strategy to select state to expand next
- Use the state with the smallest value of g() so far
- Use priority queue for efficient access to minimum g at every iteration

Priority Queue

- Priority queue = data structure in which data of the form (*item*, *value*) can be inserted and the item of minimum value can be retrieved efficiently
- · Operations:
 - Init (PQ): Initialize empty queue
 - Insert (PQ, item, value): Insert a pair in the queue
 - **Pop** (*PQ*): Returns the pair with the minimum *value*
- In our case:
 - item = state value = current cost g()

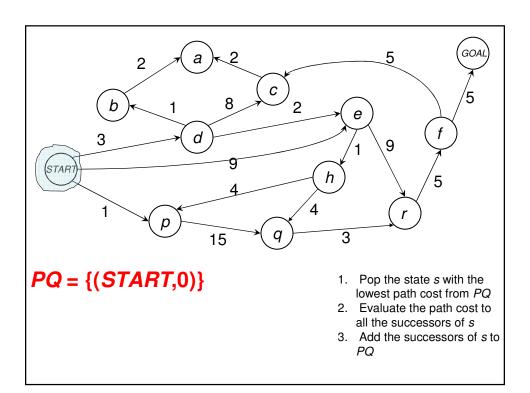
Complexity: O(log(number of pairs in PQ)) for insertion and pop operations → very efficient

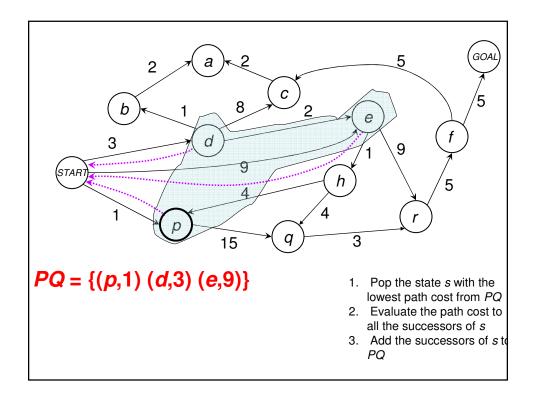
http://www.leekillough.com/heaps/ Knuth&Sedwick

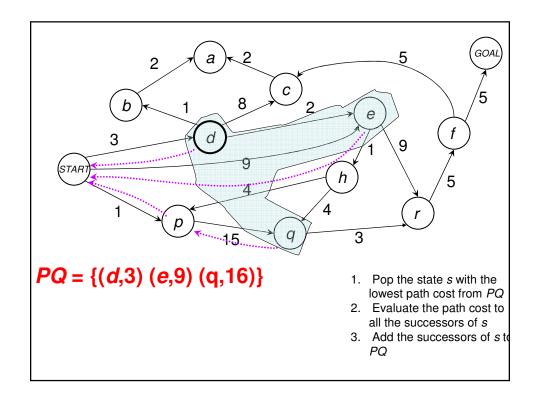
Uniform Cost Search

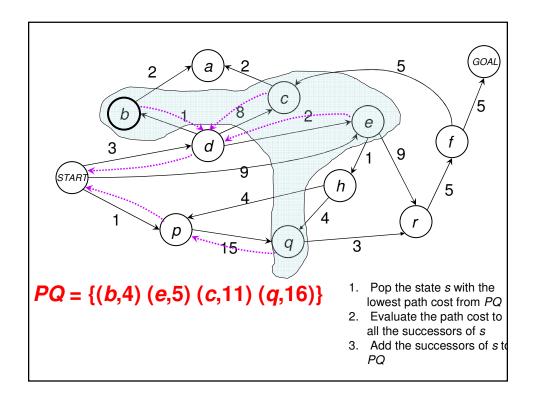
- PQ = Current set of evaluated states
- Value (priority) of state = g(s) = current cost of path to s
- · Basic iteration:
 - 1. Pop the state *s* with the lowest path cost from *PQ*
 - 2. Evaluate the path cost to all the successors of s
 - 3. Add the successors of s to PQ

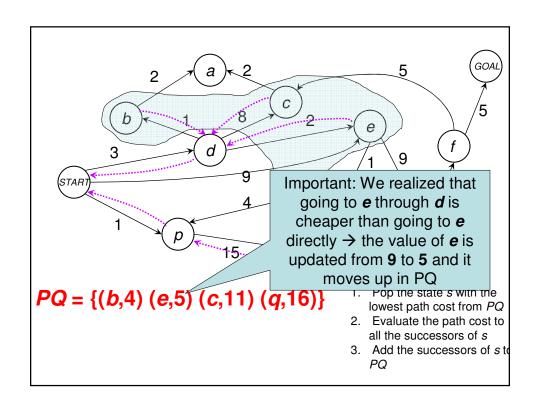
We add the successors of *s* that have not yet been visited and we update the cost of those currently in the queue

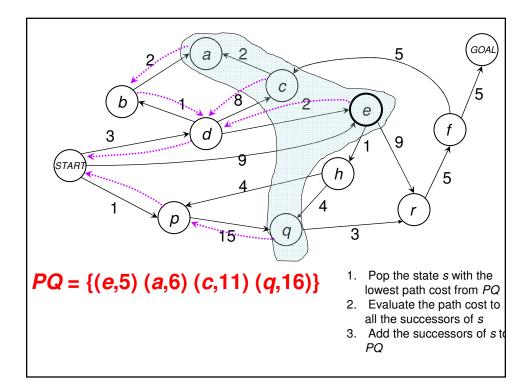


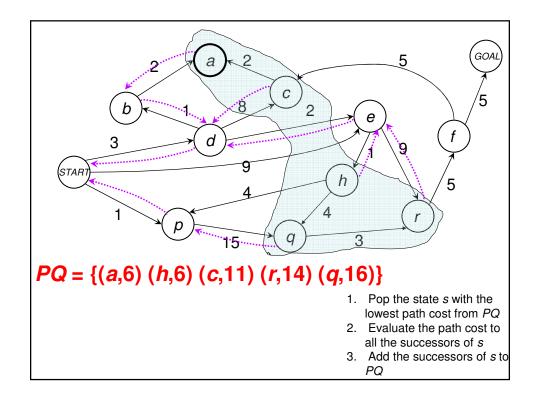


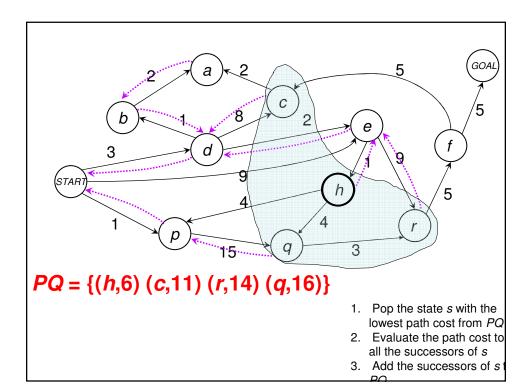


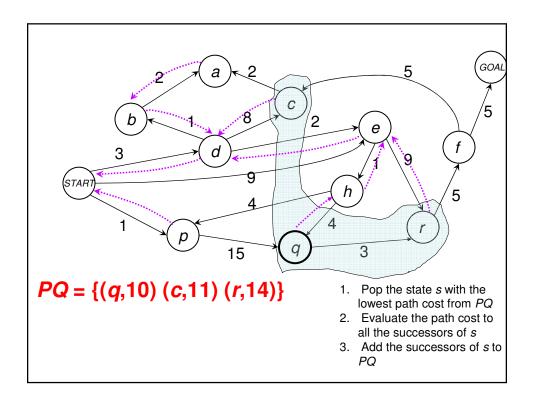


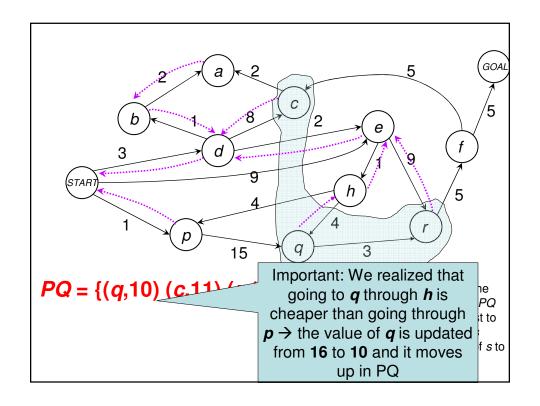


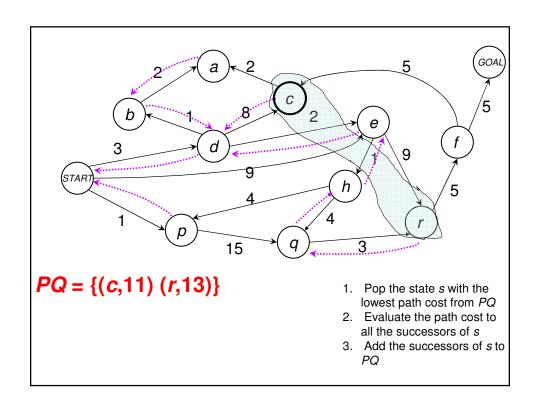


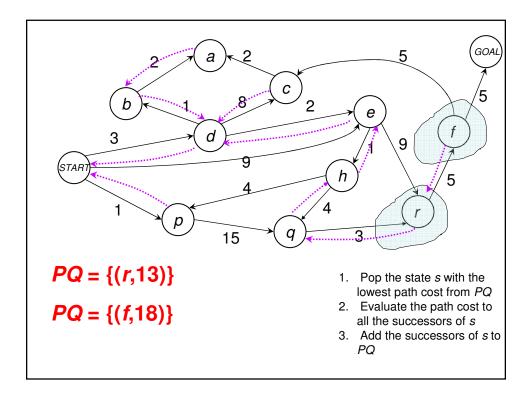


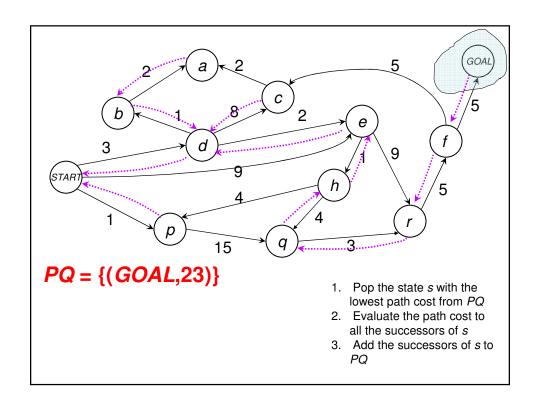


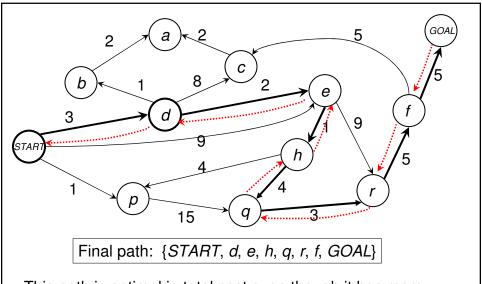




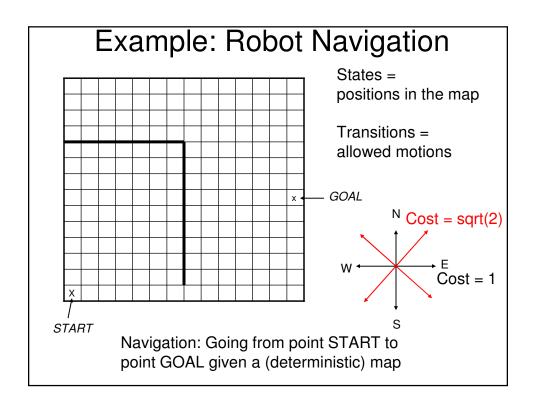








- This path is optimal in total cost even though it has more transitions than the one found by BFS
- What should be the stopping condition?
- Under what conditions is UCS complete/optimal?



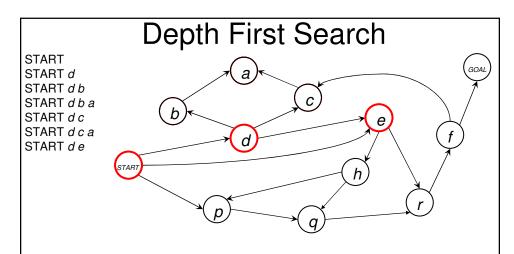
Complexity

- N = Total number of states
- B = Average number of successors (branching factor)
- L = Length for start to goal with smallest number of steps
- Q = Average size of the priority queue

	Algorithm	Complete	Optimal	Time	Space
BFS	Breadth First Search				
BIBFS	Bi-directional Breadth First Search				
UCS	Uniform Cost Search				

Limitations of BFS

- Memory usage is $O(B^L)$ in general
- Limitation in many problems in which the states cannot be enumerated or stored explicitly, e.g., large branching factor
- Alternative: Find a search strategy that requires little storage for use in large problems



- · General idea:
 - Expand the most recently expanded node if it has successors
 - Otherwise backup to the previous node on the current path

DFS Implementation

```
DFS (s)

if s = GOAL

return SUCCESS

else

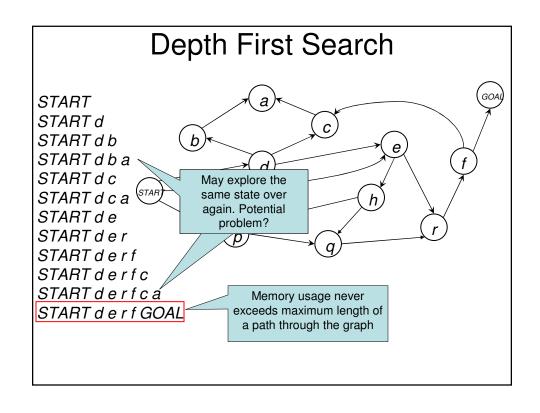
For all s' in succs(s)

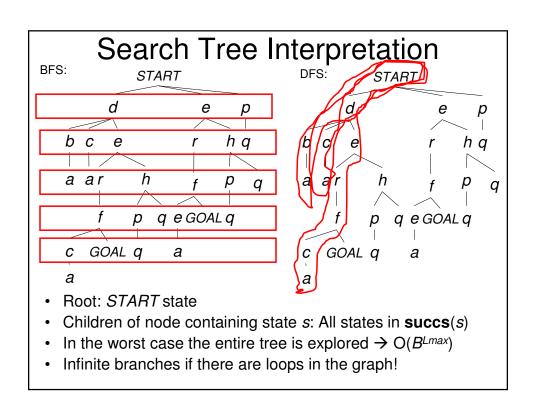
DFS (s')

return FAILURE

In a recursive implementation, the program stack keeps track of the states in the current path
```

s is current state being expanded, starting with *START*





Complexity

- N = Total number of states
- *B* = Average number of successors (branching factor)
- L = Length for start to goal with smallest number of steps
- C = Cost of optimal path
- Q = Average size of the priority queue
- Lmax = Length of longest path from START to any state

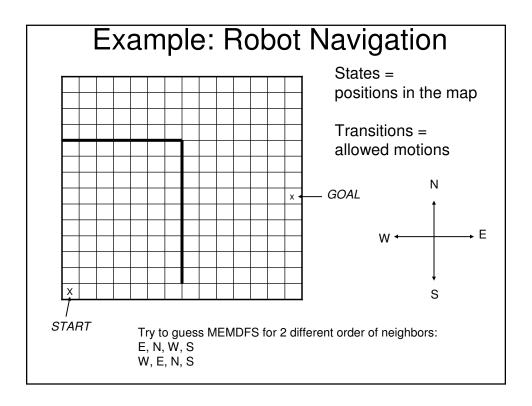
	Algorithm	Complete	Optimal	Time	Space
BFS	Breadth First Search				
BIBFS	Bi-directional Breadth First Search				
UCS	Uniform Cost Search				
DFS	Depth First Search				

DFS Limitation 1

- Need to prevent DFS from looping
- · Avoid visiting the same states repeatedly

Because B^d may be much larger than the number of states d steps away from the start

- PC-DFS (Path Checking DFS):
 - Don't use a state that is already in the current path
- MEMDFS (Memorizing DFS):
 - Keep track of all the states expanded so far. Do not expand any state twice
- Comparison PC-DFS vs. MEMDFS?



Complexity

- *N* = Total number of states
- B = Average number of successors (branching factor)
- L = Length for start to goal with smallest number of steps
- C = Cost of optimal path
- Q = Average size of the priority queue
- Lmax = Length of longest path from START to any state

	Algorithm	Complete	Optimal	Time	Space
BFS	Breadth First Search				
BIBFS	Bi- Direction. BFS				
UCS	Uniform Cost Search				
PCDFS	Path Check DFS				
MEMD FS	Memorizing DFS				

DFS Limitation 2

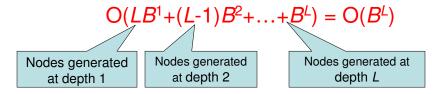
Need to make DFS optimal

"Depth-Limited Search"

- IDS (Iterative Deepening Search):
 - Run DFS by searching only path of length 1
 (DFS stops if length of path is greater than 1)
 - If that doesn't find a solution, try again by running DFS on paths of length 2 or less
 - If that doesn't find a solution, try again by running DFS on paths of length 3 or less
 -
 - Continue until a solution is found

Iterative Deepening Search

- Sounds horrible: We need to run DFS many times
- Actually not a problem:



- Compare B^L and B^{Lmax}
- Optimal if transition costs are equal

Iterative Deepening Search

- Memory usage same as DFS
- Computation cost comparable to BFS even with repeated searches, especially for large B.
- Example:
 - -B=10, L=5
 - BFS: 111,111 expansions
 - IDS: 123,456 expansions

Complexity

- N = Total number of states
- *B* = Average number of successors (branching factor)
- L = Length for start to goal with smallest number of steps
- C = Cost of optimal path
- Q = Average size of the priority queue
- *Lmax* = Length of longest path from *START* to any state

	Algorithm	Complete	Optimal	Time	Space
BFS	Breadth First Search				
BIBFS	Bi- Direction. BFS				
UCS	Uniform Cost Search				
PCDFS	Path Check DFS				
MEMD FS	Memorizing DFS				
IDS	Iterative Deepening				

Summary

- Basic search techniques: BFS, UCS, PCDFS, MEMDFS,
- Property of search algorithms: Completeness, optimality, time and space complexity
- Iterative deepening and bidirectional search ideas
- Trade-offs between the different techniques and when they might be used