Search: Uninformed Search

Russel & Norvig Chap. 3
Material in part from http://www.cs.cmu.edu/~awm/tutorials

A Search Problem

• Find a path from START to GOAL
• Find the minimum number of transitions
Example

- State: Configuration of puzzle
- Transitions: Up to 4 possible moves (up, down, left, right)
- Solvable in 22 steps (average)
- But: 1.8×10^5 states (1.3×10^{12} states for the 15-puzzle)
 - Cannot represent set of states explicitly
Example: Robot Navigation

States = positions in the map
Transitions = allowed motions

Navigation: Going from point START to point GOAL given a (deterministic) map

Other Real-Life Examples

- Protein design
- Scheduling/Manufacturing
 http://www.ozone.ri.cmu.edu/projects/dms/dmsmain.html
- Scheduling/Science
 http://www.ozone.ri.cmu.edu/projects/hsts/hstsmain.html
- Route planning
 http://www.frc.ri.cmu.edu/projects/mars/dstar.html
- Robot navigation
 http://www.frc.ri.cmu.edu/projects/mars/dstar.html

Don’t necessarily know explicitly the structure of a search problem
10cm resolution
4km2 = 4×10^8 states

What we are *not* addressing (yet)

- Uncertainty/Chance → State and transitions are known and deterministic
- Game against adversary
- Multiple agents/Cooperation
- Continuous state space → For now, the set of states is discrete
Overview

• Definition and formulation
• Optimality, Completeness, and Complexity
• Uninformed Search
 – Breadth First Search
 – Search Trees
 – Depth First Search
 – Iterative Deepening
• Informed Search
 – Best First Greedy Search
 – Heuristic Search, A*

A Search Problem
Formulation

- Q: Finite set of states
- $S \subseteq Q$: Non-empty set of start states
- $G \subseteq Q$: Non-empty set of goal states
- succs: function $Q \rightarrow \mathcal{P}(Q)$
 $\text{succs}(s) =$ Set of states that can be reached from s in one step
- cost: function $Q \times Q \rightarrow \text{Positive Numbers}$
 $\text{cost}(s,s') =$ Cost of taking a one-step transition from state s to state s'

- Problem: Find a sequence $\{s_1, \ldots, s_k\}$ such that:
 1. $s_1 \in S$
 2. $s_k \in G$
 3. $s_{i+1} \in \text{succs}(s_i)$
 4. $\sum \text{cost}(s_i, s_{i+1})$ is the smallest among all possible sequences (desirable but optional)

Example

- $Q = \{\text{START, GOAL, a, b, c, d, e, f, h, p, q, r}\}$
- $S = \{\text{START}\}$ $G = \{\text{GOAL}\}$
- $\text{succs}(d) = \{b, c\}$
- $\text{succs}(\text{START}) = \{p, e, d\}$
- $\text{succs}(a) = \text{NULL}$
- $\text{cost}(s,s') = 1$ for all transitions
Desirable Properties

- **Completeness**: An algorithm is complete if it is guaranteed to find a path if one exists
- **Optimality**: The total cost of the path is the lowest among all possible paths from start to goal
- **Time Complexity**
- **Space Complexity**

Breadth-First Search

- Label all states that are 0 steps from S → Call that set V_o
Breadth-First Search

- Label the successors of the states in V_0 that are not yet labelled \rightarrow Set V_1 of states that are 1 step away from the start

Breadth-First Search

- Label the successors of the states in V_1 that are not yet labelled \rightarrow Set V_2 of states that are 1 step away from the start
Breadth-First Search

• Label the successors of the states in V_2 that are not yet labelled \rightarrow Set V_3 of states that are 1 step away from the start

Breadth-First Search

• Stop when goal is reached in the current expansion set \rightarrow goal can be reached in 4 steps
Recovering the Path

- Record the predecessor state when labeling a new state
- When I labeled GOAL, I was expanding the neighbors of f → f is the predecessor of GOAL
- When I labeled f, I was expanding the neighbors of r → r is the predecessor of f
- Final solution: {START, e, r, f, GOAL}

Using Backpointers

- A backpointer previous(s) point to the node that stored the state that was expanded to label s
- The path is recovered by following the backpointers starting at the goal state
Example: Robot Navigation

States = positions in the map

Transitions = allowed motions

Navigation: Going from point START to point GOAL given a (deterministic) map

Breadth First Search

\[V_0 \leftarrow S \text{ (the set of start states)} \]

previous(START) := NULL

\[k \leftarrow 0 \]

while (no goal state is in \(V_k \) and \(V_k \) is not empty) **do**

\[V_{k+1} \leftarrow \text{empty set} \]

For each state \(s \) in \(V_k \)

For each state \(s' \) in \(\text{succs}(s) \)

If \(s' \) has not already been labeled

Set previous(s) \(\leftarrow s \)

Add \(s' \) into \(V_{k+1} \)

\[k \leftarrow k + 1 \]

if \(V_k \) is empty signal FAILURE

else build the solution path thus:

Define \(S_k = \text{GOAL} \), and for all \(i \leq k \), define \(S_{i-1} = \text{previous}(S_i) \)

Return path = \(\{S_1, \ldots, S_k\} \)
Properties

- BFS can handle multiple start and goal states
- Can work either by searching forward from the start or backward for the goal (forward/backward chaining)
- (Which way is better?)
- Guaranteed to find the lowest-cost path in terms of number of transitions??

See maze example

Complexity

- $N =$ Total number of states
- $B =$ Average number of successors (branching factor)
- $L =$ Length from start to goal with smallest number of steps

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>Breadth First Search</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bidirectional Search

- BFS search simultaneously forward from \textit{START} and backward from \textit{GOAL}
- When do the two search meet?
- What stopping criterion should be used?
- Under what condition is it optimal?

Complexity

- \(N \) = Total number of states
- \(B \) = Average number of successors (branching factor)
- \(L \) = Length for start to goal with smallest number of steps

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>Breadth First Search</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIBFS</td>
<td>Bi-directional Breadth First Search</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Major savings when bidirectional search is possible because \(2B^{L/2} << B^L \)

\(B = 10, L = 6 \rightarrow 22,200 \text{ states generated vs. } \sim 10^7 \)
Counting Transition Costs Instead of Transitions

BFS finds the shortest path in number of steps but does not take into account transition costs.

Simple modification finds the least cost path.

New field: At iteration k, $g(s)$ = least cost path to s in k or fewer steps.
Uniform Cost Search

• Strategy to select state to expand next
• Use the state with the smallest value of $g()$ so far
• Use priority queue for efficient access to minimum g at every iteration

Priority Queue

• Priority queue = data structure in which data of the form $(item, value)$ can be inserted and the item of minimum value can be retrieved efficiently
• Operations:
 – Init (PQ): Initialize empty queue
 – Insert ($PQ, item, value$): Insert a pair in the queue
 – Pop (PQ): Returns the pair with the minimum value
• In our case:
 – item = state value = current cost $g()$

Complexity: $O(\log(\text{number of pairs in } PQ))$ for insertion and pop operations \(\rightarrow\) very efficient

http://www.leekillough.com/heaps/ Knuth&Sedwick
Uniform Cost Search

- \(PQ = \) Current set of evaluated states
- Value (priority) of state = \(g(s) \) = current cost of path to \(s \)
- Basic iteration:
 1. Pop the state \(s \) with the lowest path cost from \(PQ \)
 2. Evaluate the path cost to all the successors of \(s \)
 3. Add the successors of \(s \) to \(PQ \)

We add the successors of \(s \) that have not yet been visited and we update the cost of those currently in the queue.

\[PQ = \{(\text{START},0)\} \]

1. Pop the state \(s \) with the lowest path cost from \(PQ \)
2. Evaluate the path cost to all the successors of \(s \)
3. Add the successors of \(s \) to \(PQ \)
1. Pop the state s with the lowest path cost from PQ
2. Evaluate the path cost to all the successors of s
3. Add the successors of s to PQ

$PQ = \{(p,1) \ (d,3) \ (e,9)\}$
1. Pop the state s with the lowest path cost from PQ
2. Evaluate the path cost to all the successors of s
3. Add the successors of s to PQ

$PQ = \{(b,4) (e,5) (c,11) (q,16)\}$

Important: We realized that going to e through d is cheaper than going to e directly \rightarrow the value of e is updated from 9 to 5 and it moves up in PQ

$PQ = \{(b,4) (e,5) (c,11) (q,16)\}$
1. Pop the state s with the lowest path cost from PQ
2. Evaluate the path cost to all the successors of s
3. Add the successors of s to PQ

$PQ = \{ (e, 5) (a, 6) (c, 11) (q, 16) \}$

$PQ = \{ (a, 6) (h, 6) (c, 11) (r, 14) (q, 16) \}$
1. Pop the state s with the lowest path cost from PQ.
2. Evaluate the path cost to all the successors of s.
3. Add the successors of s to PQ.

$PQ = \{(h,6) \ (c,11) \ (r,14) \ (q,16)\}$

$PQ = \{(q,10) \ (c,11) \ (r,14)\}$
1. Pop the state \(s \) with the lowest path cost from \(PQ \)
2. Evaluate the path cost to all the successors of \(s \)
3. Add the successors of \(s \) to \(PQ \)

PQ = \{(q, 10) (c, 11)\}

Important: We realized that going to \(q \) through \(h \) is cheaper than going through \(p \). The value of \(q \) is updated from 16 to 10 and it moves up in \(PQ \).

PQ = \{(c, 11) (r, 13)\}

1. Pop the state \(s \) with the lowest path cost from \(PQ \)
2. Evaluate the path cost to all the successors of \(s \)
3. Add the successors of \(s \) to \(PQ \)
PQ = \{(r,13)\}

PQ = \{(f,18)\}

1. Pop the state \(s\) with the lowest path cost from\(PQ \)
2. Evaluate the path cost to all the successors of \(s\)
3. Add the successors of \(s\) to \(PQ\)

PQ = \{((GOAL,23))\}

1. Pop the state \(s\) with the lowest path cost from \(PQ\)
2. Evaluate the path cost to all the successors of \(s\)
3. Add the successors of \(s\) to \(PQ\)
Final path: \{START, d, e, h, q, r, f, GOAL\}

- This path is optimal in total cost even though it has more transitions than the one found by BFS
- What should be the stopping condition?
- Under what conditions is UCS complete/optimal?

Example: Robot Navigation

States = positions in the map

Transitions = allowed motions

Navigation: Going from point START to point GOAL given a (deterministic) map
Complexity

- $N =$ Total number of states
- $B =$ Average number of successors (branching factor)
- $L =$ Length for start to goal with smallest number of steps
- $Q =$ Average size of the priority queue

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>Breadth First Search</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIBFS</td>
<td>Bi-directional Breadth First Search</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCS</td>
<td>Uniform Cost Search</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Limitations of BFS

- Memory usage is $O(B^L)$ in general
- Limitation in many problems in which the states cannot be enumerated or stored explicitly, e.g., large branching factor
- Alternative: Find a search strategy that requires little storage for use in large problems
Depth First Search

- General idea:
 - Expand the most recently expanded node if it has successors.
 - Otherwise backup to the previous node on the current path.

DFS Implementation

\[
\text{DFS} \ (s) \\
\text{if } s = \text{GOAL} \\
\quad \text{return } \text{SUCCESS} \\
\text{else} \\
\quad \text{For all } s' \text{ in } \text{succs}(s) \\
\quad \quad \text{DFS} \ (s') \\
\quad \text{return } \text{FAILURE}
\]

\(s\) is current state being expanded, starting with \text{START}.
Depth First Search

START
START d
START d b
START d b a
START d c
START d c a
START d e
START d e r
START d e r f
START d e r f c
START d e r f c a
START d e r f GOAL

May explore the same state over again. Potential problem?

Memory usage never exceeds maximum length of a path through the graph

Search Tree Interpretation

BFS:

START

DFS:

START

- Root: START state
- Children of node containing state s: All states in \textbf{succs}(s)
- In the worst case the entire tree is explored $\Rightarrow O(B^{L_{\text{max}}})$
- Infinite branches if there are loops in the graph!
Complexity

- $N =$ Total number of states
- $B =$ Average number of successors (branching factor)
- $L =$ Length for start to goal with smallest number of steps
- $C =$ Cost of optimal path
- $Q =$ Average size of the priority queue
- $L_{max} =$ Length of longest path from START to any state

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>Breadth First Search</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIBFS</td>
<td>Bi-directional Breadth First Search</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCS</td>
<td>Uniform Cost Search</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFS</td>
<td>Depth First Search</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DFS Limitation 1

- Need to prevent DFS from looping
- Avoid visiting the same states repeatedly

 - PC-DFS (Path Checking DFS):
 - Don’t use a state that is already in the current path

 - MEMDFS (Memorizing DFS):
 - Keep track of all the states expanded so far. Do not expand any state twice

Because B^d may be much larger than the number of states d steps away from the start
Example: Robot Navigation

States = positions in the map
Transitions = allowed motions

Try to guess MEMDFS for 2 different order of neighbors:
E, N, W, S
W, E, N, S

Complexity

- \(N \) = Total number of states
- \(B \) = Average number of successors (branching factor)
- \(L \) = Length for start to goal with smallest number of steps
- \(C \) = Cost of optimal path
- \(Q \) = Average size of the priority queue
- \(L_{max} \) = Length of longest path from \(START \) to any state

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIBFS</td>
<td>Bi- Direction, BFS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCS</td>
<td>Uniform Cost Search</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCDFS</td>
<td>Path Check DFS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEMDFS</td>
<td>Memorizing DFS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DFS Limitation 2

- Need to make DFS optimal

IDS (Iterative Deepening Search):
 - Run DFS by searching only path of length 1 (DFS stops if length of path is greater than 1)
 - If that doesn’t find a solution, try again by running DFS on paths of length 2 or less
 - If that doesn’t find a solution, try again by running DFS on paths of length 3 or less
 -
 - Continue until a solution is found

Iterative Deepening Search

- Sounds horrible: We need to run DFS many times
- Actually not a problem:

\[O(LB^1 + (L-1)B^2 + \ldots + B^L) = O(B^L) \]

- Compare \(B^L \) and \(B^{L_{\text{max}}} \)
- Optimal if transition costs are equal
Iterative Deepening Search

- Memory usage same as DFS
- Computation cost comparable to BFS even with repeated searches, especially for large B.
- Example:
 - $B=10$, $L=5$
 - BFS: 111,111 expansions
 - IDS: 123,456 expansions

Complexity

- $N =$ Total number of states
- $B =$ Average number of successors (branching factor)
- $L =$ Length for start to goal with smallest number of steps
- $C =$ Cost of optimal path
- $Q =$ Average size of the priority queue
- $L_{max} =$ Length of longest path from START to any state
Summary

• Basic search techniques: BFS, UCS, PCDFS, MEMDFS,
• Property of search algorithms: Completeness, optimality, time and space complexity
• Iterative deepening and bidirectional search ideas
• Trade-offs between the different techniques and when they might be used