Name: Andrew Id (Block Capitals):

ANSWERS TO 16-731/15-780 Midterm, Spring 2002

Tuesday Mar 12, 2002

1. Place your name and yoandrew email address on the front page.

2. You may use any and all notes, as well as the class textbéedp in mind, however, that this midterm was
designed in full awareness of such.

3. The maximum possible score on this exam is 100. You haveig8Gtes.

4. Good luck!



1 Search Algorithm Comparison (15 points)

Let's define thd NFGRI D problem. In this problem, we have a robot in an infinitely B&pP grid world, and we
wish to plan a path from the start locatign,, y5) to the goal locatioriz,, y,) that is a finite distance away. Possible
moves are one step moves in any of the cardinal direc§®ha-th, South, East, West}, except that certain of the
grid cells are obstacle cells that the robot cannot move into

Assumptions:

¢ For each algorithm, assume that the successors functi@yalgenerates successor states by applying moves in
the same ordefNorth, South, East, West}. We are not using backwards search, and there is no randdmize
component in any of the algorithms.

¢ Best-first search and* search both use the Manhattan distance heuristic. Thestiewalue of a cell at position
(z,y) is

h(z,y) = |z — 4| + [y — yy

Questions:

(a) Is the heuristid admissible? Just answer yes or no.
ANSWER: Yes (it is a lower bound on the actual number of moveslis from the goal).
(b) Fill in the table below with properties of some of our fat® search algorithms, when they are applied to
| NFGRI D.
Instructions:
e The Complete?andOptimal? columns are yes or no questions. Mark th¥émr N based on whether the
algorithm has that property or not, when applied dFGRI D. Note: We say an incomplete algorithm is

optimal iff it returns an optimal solution whenever it ratarany solution (this is not necessarily a standard
definition, but use it to fill out th©ptimal?column for this question).

e For theMemory usageolumn, mark an algorithhowif it uses memonO(d), whered is the maximum
depth of the search tree, aRidgh if its memory usage is greater théh{d). Of coursel.ow may still be
infinite if d is not bounded, but don’t worry about that.

ANSWER: Answers are in the table below.

Algorithm Complete?| Optimal? | Memory usage
Breadth-first search Y Y High
Depth-first search N N Low
Depth-first iterative deepening Y Y Low
Best-first search Y N High
A* Y Y High




2 A* Search (15 points)

The following is a graph that we are searching with. Nodes are labeled with letters. Edges are the thick shaded
lines. The number above each node is its heuristic value, (@d) = 2). The number above each edge is the
transition cost (e.gqost(C, D) = 3). You will see that the optimal path is marked for you withcavs.
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Questions: ANSWER: Answers are drawn in the graphs.

(a) Oops! Alice has implemented*, but her version has a mistake. It is identical to the corrEGtexcept that
when it visits a node that has already been expanded, it immediately skipstead of checking if it needs to
reinsertn into the priority queue. Mark the path found by Alice’s versiof A* in the graph below. Use arrows
like the ones that show the optimal path above.
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(b) Bob has also made a mistake. His versiorlbtfis identical to the correc*, except that it declares completion
when it first visits the goal nod@' instead of waiting untit7 is popped off the priority queue. Mark the path
found by Bob’s version ofi* in the graph below:
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(c) Carmen hasimplemented the same algorithm as Alice dittynmistake. In addition to changing the algorithm,
she changed the heurisficso that it generates the values that you see in the graph b@ldtv Carmen’s new

heuristic, Alice’s algorithm is optimal, because the newriistic has a special property we have discussed in
class. What is the property?

ANSWER: The new heuristic is monotone (see assignment 1)milod* only needs a heuristic to be admis-
sible to find an optimal solution. Alice’s modified versionegls monotonicity, which is a stronger property
(it implies admissibility). Both heuristics (the originahe which caused the problem and the new one) are
admissible.
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3 Robot Motion Planning (10 points)

In the following configuration space, let

e dy = distance from robot to closest point on the obstacle iniceters.

¢ d, = distance from robot to the goal in centimeters.

Suppose the robot uses the potential field method of patmipignwith the field value defined a5 + 1/d,.

(a) Draw (roughly) the path the the robot would take starfiogn point A on the diagram.

(b) Draw (roughly) the path the the robot would take starfiogn point B on the diagram.

(c) Draw (roughly) the path the the robot would take starfiogn point C on the diagram.
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Goal
Note that B would begin by move towards goal, but the clodesttcle point would repel B slightly. Because that

point is clearly to the left of the line between B and the gtied,repelling effect would shift the point to the right and

thus push towards the local optimum. A similar argument i@sgb point C.



4 Constraint Satisfaction (10 points)

Here is a boolean satisfiability problem using the exclusiveperator ). Note that in order for a set of variables to
evaluate to 1 when they are exclusive-or'd together it ieeary and sufficient that an odd number of the variables
have value 1 and the rest have value zero.

A®B®C
B D®FE
CD&F
B®D®F

Suppose we run depth-first search in which the variablesrdex@d alphabetically (we try instatiating A first, then
B etc). Suppose we try the value O first, then 1. Suppose thiheatart we run constraint propagation, and suppose
we also run full CP every time DFS instantiates a variable.

Which one of the following statements is true:

(i) The problem is solved (by CP) before we even need to st&f8 D
(i) CP proves that the problem has no solution before we e to start DFS
(iii) We do have to do DFS, but it solves the problem withowtreveeding to backtrack.
(iv) We do have to do DFS, but it proves the problem is ins@uwhithout ever needing to backtrack.
(v) The first time we backtrack is when we try instantiatingo®0t and CP discovers an inconsistency

(vi) During the search we reach a point at which DFS triesaimgating B to 0, and then, when CP discovers an
inconsistency, is the first time at which we backtrack.

(vii) During the search we reach a point at which DFS triesangating C to 0, and then, when CP discovers an
inconsistency, is the first time at which we backtrack.

(viii) During the search we reach a point at which DFS triestamntiating D to 0, and then, when CP discovers an
inconsistency, is the first time at which we backtrack.

(ix) During the search we reach a point at which DFS triesainsating E to 0, and then, when CP discovers an
inconsistency, is the first time at which we backtrack.

(x) During the search we reach a point at which DFS tries imittng F to 0, and then, when CP discovers an
inconsistency, is the first time at which we backtrack.

ANSWER: The correct answer is (viii). Instantiating A wittvill not cause CP to do anything. Setting B=0 will
cause CP to force C=1. Then when we try to make D=0, Constrainiber 2 will force E=0, Constraint 3 will force
F=0 and then constraint 4 will try to force F=1, causing a \vétion.



5 Simulated Annealing and Hill-climbing (10 Points)

Here is the pseudo-code for simulated annealing beginmir@pinfigurationX and with initial temperaturd” and
temperature decay rate

. Let X :=initial object
. Let E:=Eval(X)

. Let X' :=randomly chosen configuration chosen from the moveset of X

1
2
3
4. Let E':=Eval(X")
5. Letz:=a number drawn randomly uniformly between 0 and 1
6

. IfE'"> Eorexp(—(E - E')/T) > zthen

o X :=X
e E:=F
7. T:=r xT

8. If a convergence test is satisfied then halt. Else go to&tep

(&) Normallyr, the temperature decay rate, is chosen in the rnge < 1. How would the behavior of simulated
annealing change if > 1?

The change will always be accepted and we'll do a random walk.

(b) Alternatively, how would it change if = 0?
Negative changes will never be accepted and we’ll do randedill-climbing.

(c) If we simplified the conditional test in Step 6 to
If exp(—(E — E")/T) > z then

how would the behavior of simulated annealing change?

The algorithm would be unaffected, sinceiif > E the expression will certainly be greater than 1 and thus
certainly greater tharz.

Question Continues on next page



Suppose we are searching the space of integers between D@d.dSuppose that the moveset is defined thus:

MOVESET(X) = {1} if X=0
MOVESET(X) = {999} if X = 1000
MovVeESET(X)= {X -1,X+1} otherwise

And suppose thaEval(X) = | X — 800| so that the global optimum is & = 0, whenEval(X') = 800. Note
that there’s a local optimum & = 1000 whenEval(X) = 200. The function is graphed below:
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(d) If we start hill-climbing search aX = 900 will it find the global optimum? (just answer yes or no)
No. It will hit the local optimum at X = 1000.

(e) If we start simulated annealing &t = 900 with initial temperaturd” = 1 and decay rate = 0.8 is there better
than a fifty fifty chance of reaching the global optimum withimillion steps? (just answer yes or no)

No chance. After about 20 steps there will be essentialty @eance of moving left and so on each attempt we’'ll
move right or almost certainly won’'t move. Thus we’ll hit Ke1000 local optimum and will remain there.



6 Genetic Algorithms (10 points)

Suppose you are running GAs on bitstrings of length 16, irchviaie want to maximize symmetry: the extent to which
the bitstring is a mirror image of itself (also known as be@ngalindrome). More formally:

Score= Number of bits that agree with their mirror image position.

Examples:

e Score(l100110110110011) = 16 (this is an example of an optimal bitstring)
e Scorep000000011111111)=0

e Score0100000011111111)=2

Suppose you run GA with the following parameter settings:

Single-point crossover

Mutation rate = 0.01

Population size 1000 (with an initial population of randgménerated strings)

Stochastic Universal Sampling for selection (i.e. Roalstheel style)

Let N = the number of crossovers performed before an optimatinitsis discovered.

Question: What is the most likely value aV? (note: we will accept any answer provided it is not less tahthe
correct value ofV and provided it is not greater than twice the correct valu& pf

N = 0. One in 256 bitstrings will be optimal and so it is verydik that in the first 1000 strings generated at least
one (and probably three or four) optimal strings will be geated. This is before any crossover has occured.



7 Alpha-beta Search (10 points)

The following diagram depicts a conventional game tree irctvplayer A (the maximizer) makes the decision at the
top level and player B (the minimizer) makes the decisiomatsecond level.

We will run alpha-beta on the tree. It will always try expamgichildren left-to-right.

Your job is to fill in values for the nine leaves, chosen sudt gipha-beta will not be able to do any pruning at all.

lel |X2| |X3| %4 l )|(5 |)|(6 l)§7 |X|8 IXQ l

Any solution in whictnin(z4, x5) > min(z1, x2, z3) and wherenin(z7, zg) > max(min(x1, x2, z3), min(z4, x5, T6)).

A simple example is 1,1,1,2,2,2,3,3,3.



8 Optimal Auction Design (20 points)
Here is a nice general approach for running a one-item austdhat the auctioneer will make lots of money:

1. Ask each bidderto secretly report its valuatiosy. This is how much the item is worth to the bidder.

2. Award the item to the biddérwith the highest priority level. That is, set the winner to be

k = argmaxy;(v;)

where~; is thepriority functionfor bidderi. The auctioneer picks the priority functions so as to mazaniis
profit and announces them before the auction begins. All tlegity functions must be monotone increasing
(so that a higher bid gives a higher priority).

3. The price that the winner pays the auctioneefi§*, the minimum amount that would have needed to bid in
order to win the auction. We can calculafg’™ as follows. In order fok to win the auction, we must have, for
alli # k, v (vx) > 7i(vi). Equivalentlyp, > v, * (vi(v;)). This implies that

min  __ =1/ (.
v = maxy (3i(vi) 1)
Another way of looking at this is that from the perspectivéinfderk, k wins the auction if it bidsy, > v"",
and if it wins it will pay v}*". Notice that;"™" does not depend dfis bid (it only depends on the other bids).
Also, if all the; functions are the same, we get

e (i(wi)) = v
1),2”1” = maxuv;
i£k

in which case this auction is exactly equivalent to a seqamck auction.
4. Small addendum: the auctioneer can also set a resenreer-frafore the auction begins. If none of the bidders

i has~;(v;) > r, then the auctioneer keeps the item. We also need to takenthiaccount when setting the
price: the actual value af*™" is

ot = maX(Vlzl(T)fr?7?13(71;1(7i(7)i)))

Thereis a well-developed theory as to how the auctioneerddlvhoose the; functions and: in order to maximize
its expected profit. But in this question you will derive thesavers from first principles.

Questions:

(a) In general, in this auction scheme, it is a dominantegato bid truthfully. Why should this be the case? You
do not need to write a proof: just name a feature of this anchat intuitively suggests that bidders will want
to be truthful.

ANSWER: There are at least two acceptable answers:

e This auction is a generalization of a second-price seai@artion, which we already know has the right
property.
¢ Because the prick pays is independent of its big,.

(b) Is it a Nash equilibrium for all agents to bid truthfullriefly explain why or why not.
ANSWER: Yes. A dominant strategy equilibrium is always aNeguilibrium.
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(c) Suppose Alice is a storekeeper selling an old rug at aggasale, and she has just one potential buyer, Bob. To

(d)

(e

~

the best of Alice’s knowledge, Bob is willing to spend betw&4 and $4 on the rug (she thinks that Bob draws
his valuationv; from a uniform distribution over [1,4]). The rug has no indetvalue to Alice; she will just
throw it away if Bob doesn'’t buy it.

Alice can try to apply our optimal auction design approachpse that Bob’s priority functiom, is just the
identity (i.e.,71 (v1) = v1). Then the auction boils down to the following: if Bob bids > r, he gets the rug
and pays (so that Alice’s profit ig-). Otherwise he loses and pays nothing (so Alice’s profit is 0)

Definen(r) to be Alice’'s expected profit when she chooses a particulaewaf ». Write a simplified formula
for 7(r). The formula only needs to be valid wheér< r < 4. Clearly indicate your answer. We will not check
your work. [Hint: Expected profit is the product of (a) the pability that the sale takes place and (b) the profit
given that the sale takes place.]

ANSWER:

[y

1
w(r) = profit(r|vy >r)Pr(v; >r) + profit(r |vi <7)Pr(vy <r)=r-(4—-7r)+0= 5(47“ —r?)

w

What value ofr should Alice pick in order to maximize her expected profiteatly indicate your answer. We
will not check your work.

ANSWER: Alice is always worse off picking < 1 compared to = 1, and she is indifferent between picking
r > 4 andr = 4. This means that we can restrict our attention to the intétyd]. Within this intervalz(r) is
a parabola that reaches its global maximum at 2, so this is Alice’s best choice.

An auction outcome iPareto optimalif, after all the exchanges are completed, it is impossiblshuffle the
items and money in such a way as to simultaneously make aflecagients strictly happiet. We really like
auction mechanisms that are guaranteed to have a Paretmabptitcome.

What happens when Bob has a $1 valuation for the rug? Is thasetd”optimal outcome? Briefly explain why
or why not.

ANSWER: When Bob truthfully bids $1, he is below Alice’s rege price of $2, so he doesn’t get the rug. But
the rug is actually worth a lot to him, and worth nothing toosli So everyone would be strictly better off if
Bob paid Alice some amount of money (say, $0.50) and got the The auction outcome is, sadly, not Pareto
optimal.

1This definition of Pareto optimality is actually a slight silification of the real definition; but use it for this problem

11



Now suppose Alice has two potential buyers of her rug. Bolvdrais valuatiorv; uniformly from [1, 4], and
Carmen draws her valuatian uniformly from [0, 1].

Again, Alice applies optimal auction design. In order to m#hke problem simpler, we will assume that she doesn’t
set a reserve price (although in reality, she would wantwé will try settingy; and+- to be the following functions:

n(v) = v

Yo(va) = ava+b
Alice will use the same procedure as before to try and catediaw to picka andb so as to maximize her expected
profit. Definer(a,b) to be Alice’s profit for a given choice af andb. Repeating the rules of the auction design

technique, biddek wins if its bid has the highest priority; (v, ), and if it wins it paysvi*i, the minimum valuation
it could have bid and still won. As beforej**™ is defined to be:

min __ —L(n (.
v = maxy, (i (vi))

From Alice’s perspective, her profita, b) is v*" for whichever biddek wins the auction.

(f) What profitr(a, b) = v}*" will Alice receive from Bob if he wins the rug? Give a formutaterms ofv; and
vo. Indicate your answer clearly. We will not check your work.

ANSWER:

min

07" =47 (72 (v2)) = ava + b

(9) What profitr(a, b) = v7*™™ will Alice receive from Carmen if she wins the rug? Give a falmin terms ofu,
andw,. Indicate your answer clearly. We will not check your work.

ANSWER:

’U1—b
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(h) The diagram below shows possible valuesifoandwvs, which are drawn from a uniform distribution over the
shaded rectangle. Fill in the values®fa, b) (as a function ofv; andwv,) in the two regions divided by the
dashed line.

ma,b) = (v4 - b)/a

\i
vi=aw+hb
py ma,b) = aw, + b
1 /
* ’
/7 /
7/
1/ 4 N

We can use 2D integration to find the expected value (af b) and maximize with respect @ andb. But we
won’t make you do this during the exam. The answer is tt{at b) is maximized whern = 1 andb = 3/2 (and
the diagram above is properly drawn to scale). Sadly, thdtheg auction is not guaranteed to have a Pareto optimal
outcome, as we discover below.

(i) Whatis the probability that Carmen will have a highemation for the rug than Bob does? Indicate your answer
clearly. We will not check your work.

ANSWER: Probability 0. Since there is no overlap betweerirtexvals that the two valuations are drawn from,
Bob will always have a higher valuation.

() What is the probability that Carmen will win the rug? Indte your answer clearly. We will not check your
work. [Hint: You should be able to calculate this geomethichy looking at the area of the region in which
Carmen wins in the diagram above.]

ANSWER: Carmen wins when we are in the region to the left ottighed line in the diagram. The dashed line
intersects the rectangle @t, 0) = (3/2,0) and(a + b,1) = (5/2,1). The region can be split into a rectangle
with width 1/2 and height 1 (area 1/2), and a triangle withtitl and height 1 (area 1/2), so overall the area of
the region where Carmen wins is 1. The total area of the rgl#as 3. So the probability she wins is 1/3.
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