
15-381 Spring 2007

Assignment 2: Constraint Satisfaction Problems

For questions contact Arthur (atu@andrew.cmu.edu)
and Gil (egjones+@cs.cmu.edu)

Spring 2007
Out: Feb. 6

Due: Feb. 20, 1:30pm Tuesday

The written portion of this assignment must be turned in at the beginning of class at 1:30pm on February
20th. Type or write neatly; illegible submissions will not receive credit. Write your name and andrew id
clearly at the top of your assignment. If you do not write your andrew id on your assignment, you will lose
5 points.

The code portion of this assignment must be submitted electronically by 1:30pm on February 20th. To
submit your code, please copy all of the necessary files to the following directory:

/afs/andrew.cmu.edu/course/15/381/hw2 submit directory/yourandrewid

replacing yourandrewid with your Andrew ID. The TAs grading this assignment would prefer that you use
C/C++, Java, or Matlab. If you would like to use a different programming language, please give instructions
on how to execute your code and comment it very thoroughly or you risk decreased partial credit. Feel free
to use standard data structures and algorithms in your chosen language (like the C++ STL). If you use
non-standard data structures or algorithms (like someone’s internet C queue code) make sure you turn that
in as well and indicate in the comments if you did not write a particular piece of code. All code will be
tested on a Linux system, we will not accept Windows binaries. No matter what language you use, you must
ensure that the code compiles and runs in the afs submission directory. Clearly document your program.

Late Policy. Both your written work and code are due at 1:30pm on 2/20. Submitting your work late will
affect its score as follows:

• If you submit it after 1:30pm on 2/20 but before 1:30pm on 2/21, it will receive 90% of its score.

• If you submit it after 1:30pm on 2/21 but before 1:30pm on 2/22, it will receive 50% of its score.

• If you submit it after 1:30pm on 2/22, it will receive no score.

Collaboration Policy.

You are to complete this assignment individually. However, you are encouraged to discuss the general
algorithms and ideas in the class in order to help each other answer homework questions. You are also
welcome to give each other examples that are not on the assignment in order to demonstrate how to solve
problems. But we require you to:

• not explicitly tell each other the answers
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• not to copy answers

• not to allow your answers to be copied

In those cases where you work with one or more other people on the general discussion of the assignment
and surrounding topics, we ask that you specifically record on the assigment the names of the people you
were in discussion with (or “none” if you did not talk with anyone else). This is worth five points: for each
problem, you solution should either contained the names of people you talked to about it, or “none.” If you
do not give references for each problem, you will lose five points. This will help resolve the situtaion where a
mistake in general discussion led to a replicated weird error among multiple solutions. This policy has been
established in order to be fair to everyone in the class. We have a grading policy of watching for cheating
and we will follow up if it is detected.
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Problem 1 (20 total points)

Alby-Bach University (ABU) wants to start a new degree program: B.S in Judgment Day Prevention (JDP).

Suppose the degree program is associated with the following courses:

15-211 Fundamental Data Structures and Algorithms
15-212 Principles of Programming
15-381 Artificial Intelligence: Representation and Problem-Solving
15-681 Machine Learning
80-310 Logic and Computation
21-484 Graph Theory
70-122 Accounting
70-311 Organizational Behavior
19-601 Information Warfare

In order to graduate from the degree program, one must complete the following four requirements:

Algorithms Requirement: (15-211 AND 15-212) OR (15-211 AND 15-381) OR (15-681 AND 21-
484)

Machine Learning Requirement: 15-381 OR 15-681 OR 80-310

Communications Requirement: 21-484 OR 70-311 OR 70-122

Information Warfare Requirement: 15-381 OR 19-601

In addition, the department imposes the following restrictions:

Information Aggressiveness Restriction: So that they can’t make their programs TOO smart, students
can take only one class from the set 15-381, 15-681, and 19-601.

Basic Arithmetic Restriction: Students can’t take both 15-211 and 70-122.

Organization Restriction: Students can’t take both 21-484 and 70-311.

Finally, courses cannot be used to count towards multiple graduation requirements - so if you use 15-381 to
fulfill part of the Algorithms requirement it can’t count towards either the Machine Learning Requirement
or the Information Warfare Requirement.

Question 1.1 (5 points)

John Conner just started his junior year at ABU, and needs to graduate as soon as possible. Suppose all he
has left to take are JDP required classes. Model the problem of his trying to find a set of classes to satisfy
all requirements as a CSP (Hint: the requirements should be your variables). What are the initial domains
for each of your variables?

Question 1.2 (8 points)

Show a DFS with backtracking tree for finding a set of classes that fulfill all requirements using a variable
order of the requirements in the order they are listed above, and using a value order that selects the lowest
department/course number remaining in a variable’s domain. Indicate which constraints were violated
whenever the DFS needs to backtrack. (Note: to get full credit you must show the full DFS tree and not
just the classes that are used to fulfill each requirement).
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Question 1.3 (7 points)

Suppose John has already taken 19-601 towards his Information Warfare Requirement and 15-211 towards
his Algorithms Requirement. Use constraint propagation to determine other classes he must take to graduate
- indicate which requirements the classes fulfill. Can you create a schedule that satisfies all constraints without
using search?

Problem 2 (20 total points)

Arthur is looking for a group of friends for his start-up, which develops and provides some web-based p2p
downloading solutions to college students (this is before the lawsuits). Arthur has determined that he needs
2 C# Programmers, 2 Flash Designers, 1 Photoshop Guru, 1 Database Admin, and 1 Systems Engineer.

Assume that if a person knows two languages/softwares, he or she can take on two roles in the company.

So Arthurs narrowed down his selections to the following people:

Name Abilities
Peter C# and Flash
John Photoshop and Flash
Jim Flash and Systems
Jane C# and Database
Mary Photoshop and Flash
Bruce Systems and C#
Chuck Photoshop and Flash

Question 2.1 (5 points)

Suppose Arthur knows C#, and only has funds to hire three more people.

Model this scenario as a CSP - (using variables, value domains, and constraints).

Question 2.2 (6 points)

Suppose Arthur decides to make Jim a co-founder. Arthur and Jim discover that all the developers absolutely
refuse to abandon their favorite platforms, and that they can only afford two single-booted workstations.

Name Abilities OS
Arthur C# Windows
Peter C# and Flash Windows
John Photoshop and Flash Windows
Jim Flash and Systems FreeBSD
Jane C# and Database FreeBSD
Mary Photoshop and Flash Linux
Bruce Systems and C# Linux
Chuck Photoshop and Flash Windows

What are the domains for the two remaining positions after constraint propogation?
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Question 2.3 (9 points)

Assume Arthur and Jim hired Bruce and Mary and they have awarded a contract for their first project, a
rush job due Friday at 5 PM. It’s Monday at 9 AM and they have to put in 50 total hours of work on it by
the due date. There are a number of constraints associated with their work schedules:

• They only have access to two machines of the requisite platform, and only have access to those two
machines between 9 AM and 5 PM every day.

• Each person can work a maximum of 20 hours over the course of the week.

• A work session by a single person on a particular machine can last no fewer than two hours.

• Arthur cannot work from 12-4 PM Tu/Th.

• Jim can’t work MWF 9-12.

• Bruce can only work between noon and 2 PM every day.

• Mary can only work Thursday and Friday.

Model this scheduling problem as a CSP. Indicate how the indicated constraints impact the domains for all
variables.

Problem 3 (50 total points)

A robot is tasked with delivering packages to various locations by certain deadlines associated with package
delivery. The robot begins at a given position, and receives a list of package locations and their associated
deadlines. The robot must determine an order to visit the locations to deliver each package before its
associated deadline.

Assume that time begins at 0, that the robot can move in straight lines between delivery locations (thus a
Euclidean distance metric is appropriate), that the robot can deliver packages instantaneously upon arriving
at the delivery location, and that the robot can move 1 distance unit per cycle.

For this problem you’ll be using depth-first search with backtracking to determine robot schedules that
satisfy the package deadline constraints.

There are five scenario files associated with this exercise (scenario1.txt, scenario2.txt, etc..).

The format of each scenario file is

<robot initial x location> <robot initial y location>
<number of delivery locations>
<delivery x location> <delivery y location> <package deadline>
additional entries for each package
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All values are floats except the number of delivery locations, which is an int.

Question 3.1 (30 points)

For this question you will implement uninformed depth first search with backtracking. Your search tree
should be rooted at the initial robot location, and each level of the search tree should correspond to adding
an additional delivery location to the path the robot takes from the start location. You must keep track of
when the robot arrives at each delivery location and compare it to the location’s deadline - your DFS should
backtrack if the path violates a deadline constraint.

The successor function you should use for this question should use the order that the delivery locations are
listed in the scenario file. In other words, if you label the delivery locations in order starting at 1, your
successor function should select the lowest numbered city not already included in the tour. For this exercise
make sure your successor function is aware that it would be counterproductive to visit a location in the path
more than once.

In addition to submitting your code, please submit an executable called ’dfsb’ that takes a single argument
specifying the scenario file, and outputs the full ordered path if one is found, the arrival times at each city
in the path, and the number of evaluations performed in generating the path. Additionally, in your writeup
include the following:

1. The first 10 partial paths generated in your search (i.e. “My search first considered the path S → 1,
then S → 1 → 2, then S → 1 → 2 → 3 violated the deadline of location 3, so it then considered
S → 1 → 2 → 4”. You don’t need the text, just the sequences) for scenario1.txt. Label the delivery
locations starting with 1.

2. For each scenario, report whether or not a satisfying solution was found. For scenario1.txt, give the
ordered path and the arrival time at each location in the path. For the other scenarios if a solution
was found just give the ordered path.

3. For each scenario report the number of evaluations performed in the search. An evaluation is performed
any time the constraints associated with a partial path are checked for satisfaction.

4. If any scenario is taking more than 500,000 evaluations you can stop your program and indicate that
500,000 evaluations were exceeded in lieu of an answer.

Question 3.2 (5 points)

Propose a variable ordering strategy for the successor function for DFS with backtracking. Explain why you
think your ordering strategy is reasonable for this domain.

Question 3.3 (15 points)

Implement your chosen variable ordering method in your DFS with backtracking code from question 3.1.
This should only require changing your successor function. Report the same values requested in section 3.1
(first 10 partial paths evaluated and satisfying solutions with arrival times for scenario1.tex, ordered paths
for scenarios 2-5, number of evaluations for each scenario).

In addition to submitting your code, please submit an executable dfsbvo that takes a single argument
specifying the scenario file, and outputs the full ordered path if one is found, the arrival times at each city
in the path, and the number of evaluations performed in generating the path.

Write a paragraph comparing the performance with and without variable ordering. Will your variable
ordering method always perform better than uninformed search in terms of evaluations?
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