Name: Andrew Id (Block Capitals):

16-731/15-780 Final, Spring 2003
*SOLUTIONS**

Thursday May 8, 2003

¢ You have 3 hours.
e In each question, unless we explicitly ask for an explamatfou do not need to give one.

e If you get stuck on one question, move on to others and comletoate difficult question
later.

e Good luck!
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Problem 1: Short Answer Questions (20 pts)

(a8 Trueor False: Inan HMM, O, is conditionally independent @, ; givenO;.
FALSE

(b) Trueor False: A key advantage of using iterative deepening search isshegas significantly
less memory than depth first search.
FALSE - They use about the same amount of memory

(c) Trueor False: The primary reason that matrix inversion is not (in genaradd to solve neural
networks is that it is too computationally expensive foganetworks.
FALSE - The primary reason is that NN often use nonlinear
functions that cannot be solved by matrix inversion

(d) Trueor False: Itis not possible to use a game tree search (Min-Max) to smlvendetermin-
istic game.
FALSE

(e) True or False: For reinforcement learning, we need to know the transitiababilities be-
tween states before we start.
FALSE

(f) True or False: Graphplan outperforms all the other planners we discussethss on every
reasonable domain.
FALSE

(g) Trueor False: If, using iterated dominance, we can eliminate all straediut one for every
player, then the remaining strategies are a Nash equitibriu
TRUE

(h) True or False: The planning algorithms we discussed in class can straigisirdly be ex-
tended to multagent domains with uncertainty.
FALSE

(i) True or False: If all the players in a game behave selfishly (e.g. play a Naghlibrium),

the outcome from a social welfare perspective is alwaysgasiood as if they had worked
together.

FALSE

(1) Trueor False: Using hill-climbing search requires that you have a fornfatahe gradient of
the function you are trying to optimize.
FALSE

(k) Trueor False: Consider a POMDP in which each state has only one availabitEnadhis is
equivalent to a simple Markov Chain.
FALSE - There are stil hidden states, so it is an HMM



() Given the following Bayes Net, compute(B|FE). If this takes you more than a couple of
minutes you are probably not doing it the easiest availalalg w

P(A) = 1/3 P(B) = 1/3

P(CA) = 1/2 /
P(C A)—O P(DA &B) =1

P(D| ~A & B) =0
\ P(E|C) = 2/5
P(E[~O =1

DA & B =1/2
P(D| ~A & B) =1/4
B and E are D-seperated by the empty set, so P(B|E) = P(B) = 1/3

(m) The probabilityP(A|B A C) is equal to which of the following formulas? Circle the catre
answer.

. Z P(D=d; | A)
) Semrm

iy P(C|B)P(B)
() SErsA0)

(|||) ZjP(A/\B/\C/\D:dj) P(ANBAC) P(A|B/\C)

P(C| B)P(B) - P(CAB)

.\ P(AANBAC)
V) weTmPo)

(iii)
(n) Draw in the labels that the Waltz algorithm would give thisufig;

There should be arrows (pointing clockwise) on the outer
edges and a + on the middel edge

(o) Among the following three drawings, circle any that the Wallgorithm would find ambigu-
ous.
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All three. The middle lines could be anything

(p) Learning linear regression models. Suppose you have twdsap andz,, one outputy and
three weightsug, w; andw,. Your training set has 20 datapoints. You want to learn thesl
model

Yy = wy + w1 + wexT + 2

that minimizes the sum of squared residuals. You want to deettactly with matrix algebra.
Which of the following statement best describes the contpmurtal task:

(i) Solve a linear matrix equation with 2 equations in 2 unkne
(i) Solve a linear matrix equation with 3 equations in 3 uokms
(iii) Solve a linear matrix equation with 20 equations in 2tkknowns

(i)
(q) Circle all of the differences between genetic algorithma)@nd simulated annealing (SA):
(i) GA maintains multiple candidate solutions
(i) SA is used for minimization problems where as GA is usadnaximization problems.

(iif) SA has no parameters to set whereas GA requires youtteeseral parameters such as
the crossover rate.

(iv) GA will always converge to an optimal solution fasteathSA on any given problem.

(i) only
(r) What is the entropy of these bits (example®)0010110110010111
"0.991

(s) Consider a domain where instances to be classified hawe2 attributes. Each attribute is
binary (true or false). Consider making an "AND” decisioedithat classifies instances with
all the attributes true as true, and instances with at lessatribute false as false. How many
leaf nodes does such a tree (minimally) have? (Give the exanber.)

n+1

(t) Now suppose we classify instances as false when they hawastt TWO attributes false.
Again, give an exact formula for the number of leaves (as grmohial).

n - (n+1)/2



Problem 2: Matrix Form of Games (8 pts)

Consider the slightly modified game of rocks/paper/scs#uat corrects the common misper-
ception that paper would actually beat rock. Formally edd¢hetwo players (A and B) can select
1 of 3 actions (Rock, Paper or Scissors). Both players rdfe@l actions simultaneously and the
winner is determined. Rock beats both scissors AND PAPERsaisdors beats paper. That is if
player A chooses scissors and player B choose paper, playen® If both players choose the
same object they tie and both get a reward of 0. Otherwise imearngets a reward of 1 and the
loser gets a penalty 6f1. The matrix form of the game is:

Opponent
Rock Paper Scissors
Rock |0,0 1,-1 1,-1
You Paper | -1,1 0,0 -1,1
Scissors -1, 1 1,-1 0,0

(a) Are any strategies strictly dominated? If so show the redumatrix.

The solution is the matrix for ROCK, ROCK.

(b) Is there a pure Nash equilibrium? If so indicate it.

YES. Both players play ROCK.



Now consider the case afandard Rock/Paper/Scissors (where all the rules areioddnod
those above except paper beats rock). Your opponent is mae&ribck/Paper/Scissors veteran,
and occasionally his hand forms rock when he means to chaosetking else (that is he forgets
to open his hand). Specifically if he chooses paper with ﬂ]ﬂil;ai his hand forms rock instead
and if he chooses scissors with probabigtjnis hand forms rock instead. You on the other hand
always get the action you chose. Thus for your opponent:

P(Plays Rock Chooses Rock) = 1 P(Plays Papé&hooses Rock) =0
P(Plays ScissorsChooses Rock) = 0 P(Plays Rockhooses Paper) ¢
P(Plays PaperChooses Paper) P(Plays Rock Chooses Scissors)-;=
P(Plays ScissorsChooses Scissors)%z P(Plays PaperChooses Scissors) = 0

P(Plays ScissorsChooses Paper) =0

(c) Fill in the missing entries in the matrix form of this game. tBléhat your opponent’s action
indicates the action your opponent chooses not necestailyne he gets.

Opponent
Rock Paper Scissors
Rock | 0,0 -33 2, -4

You Paper | 1,-1

[S [V
ol

KT
=

Scissors -1, 1

|
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(d) Are any strategies strictly dominated? If so show the reduatrix.

No strategies are strictly dominated.

(e) If your opponent is playing a mixed strategy (%f,g,%) do you want to play the same mixed
strategy? If not, indicate the action you would choose thgnig of the time (more than
1rd).

3

No. You would want to play paper more often.



Problem 3: Game Trees (10 pts)
Consider the game tree picture below wheré' represent some real values. Assume the nodes
are explored from left to right and standard alpha beta piuis used.

MaXQ

o N
=R
foNoNoNe

Al [Blle

(a) Give a value of4 such thatB is pruned.
Anything > 5

(b) Give a value of4 such thatB is NOT pruned.
Anything < 5

(c) Trueor False: There are SOME values of and B such that the subtree containiGgand D
is pruned?

FALSE

(d) Assuming thatB = 5 and A = 5, give a value of” and D such that the subtree containifg
andF is pruned.

Anything such that max(C,B) < 5

(e) If you are allowed to assigA-F' arbitrarily, what is the MAXIMUM number of leaves that can
be pruned?

3 (B, E and F)



Problem 4: HMMs (10 pts) Consider the HMM with three states (-1,0,1) and two outpufis
given below:

pi1 =10 poz
ba(Y) =1 (V) =
b(N) =3 bo(N) =

1 b( ) 3
Eon(v)-1

IOIOIO}
05 —05 0.5

t a1 a0 afl)

1 0 1/2 0

2 3/16 0 1/16

Note: For some questions it may be easier to express all msrabefv for someX andY'.

(a) Fillinthe « table (for steps 1 and 2) above if the output (Y,N) was seen.

(b) What is the probability, = 1 (the state on timestep 2 is 1) given this output?

1/4

(c) Trueor False: There is NO sequence af output symbols:{ > 1) that would allow you to

perfectly determine your state (i.e. the probability ofrfgein some state on time step nis 1)
on the above HMM.

TRUE



(d) Create a new 2 state HMM (transition probabilities, stanbyabilities and output probabilities
= 8 numbers total) such that the probability of the obseoveti(Y,N,Y) is 1.

T =1 m =0
bo(Y)=1 bo(N)=0
() =0 b(N) =1
5(0,1) =1 6(0,0) =0
§(1,0)=1 6(1,1)=0

(e) Create a new HMM from the one in part (d) loply changing TWO numbers such that the
probability of the observations (Y,N,Y) i%. Indicate the numbers changed and the new
values.

There a several solutions such as:
Ty = 1/4 and7r1 = 3/4 OR
bo(Y) =1/2andby(N) =1/2

(f) Trueor False: Given a sequence of observations (...,Oy) and any real numbek € [0, 1]
it is ALWAYS possible to create an HMM such th@{O,, ..., Ox) = R.

TRUE - You can always create a chain of N states
such that state i goes to i+1 with probability 1
and state i see Oi with probability 1.



Problem 5: Markov Decision Processes (15 pts)

(&) Suppose we have a system very similar to a Markov DecisiooeRr) except that instead
of trying to maximize our expected discounted delayed rdgjawe wish to minimize the
expected time to reach a specific state called the goal &ath transition takes exactly one
time step. Write

pl; = Prob(next = jlthis =i A action = a)
and let the goal state bg,,. Define

J*(i) = Expected time to goal state starting frarifiwe follow the optimal policy
7* (i) = the optimal policy (i.e. the optimal action to take at state

We now write down the update equations for a value iteratiduation to this problemJ* ()
denotes the value for stait®n thek’th iteration of value iteration. There are two bugs in the

equations.
JOi) =0 Vi
0 1=
J’ﬁ” N . . / .goal
(9) { ming 35 plJ*(j) i # igoa

(i) = max,J* (i)
(whereJ*(i) are the values once value iteration has converged).

Your job: explain the two bugs in the boxes provided belowd gren in the remaining boxes
rewrite the update equations, altering them where negetsae correct.

Bug number 1: min, ¥, p;J* (j) will always just be 0.

Bug number 2:| 7*(i) = max,.J* (i) should be anin,

JO(i) = OVi

JFHE) =1+ ming X; pf; J* () i 1 # igea (AN O fOri = dg01)

(i) = ming J* (1)
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(b) In a different formulation, we want to hit the goal on an evenmbered timestep. There is a
single distinguished state callég,,. It is a terminal state. We get a reward of 100 dollars
if we first arrive ati,,,; on an even numbered timestep. We get a reward of -100 dollars
if we first arrive at igoal on an odd-numbered timestep. Wetwarcompute a policy that
maximizes our expected reward.

Describe how you would solve this. It is not essential that give explicit equations. Your
explanation could involve one or more of:

e Write out the equations of a new value function (or set of gdilinctions)

e You may explain how to alter the state space definition of tioblem
ANSWERIf the original MDP had n states called 1, 2, ..., n create a & with 2n states
called 1e, 2e, ..., ne, 10, 20, ..., nO.
In the new MDP
P(next = zelthis = ye,a)
P(next = wo|this = yo,a) =0 Vx,y
P(next = zelthis = yo,a) = Pyy(next = z|this = y,a)
P(next = zo|this = ye,a) = Pyy(next = z|this = y,a)

Put in an immediate reward of O for all states exagpie (reward of 100) and,,,o (reward
of -100). Makeiy,q, e andi,.q 0 terminal states.

Use a discount factoy = 1.

11



(c) Consider this MDP with delayed rewards and a discount facter;

Assume we have a policy, which is to always go north. Defing™ (i) = expected sum
of discounted rewards if we start at statend follow policyr,. Write down the numerical

values of:
JﬂO(S]) =20 JﬂO(SQ) =0
J™(s3) =20/3 J™(s4) =5

(d) Continuing from part (d), suppose we run policy iteratiothwi, as the initial policy. Define
w1 = Updated policy after one iteration of policy iteratiore(iafter one policy-improvement
step). Write down the values of:

VS (S]) =N VS (SQ) =E

VS (53) =N VS (54) =N

(e) Continuing on from part (e), Define* = Final policy after Policy iteration converges. Write
down the values of:

7T*(S]) E

m*(s3) =N m*(s4) =N

N 7T*(82)

12



Problem 6: Reinforcement Learning (14 pts)

(a) Consider this (rather trivial) MDP.

Suppose we decide to run Q-learning. The Q-table consistsbbne entry
Q(s,a)| a=al
s=sl

Suppose we initialize the Q-table to zero, and then run @ieg. Assume a discount factor
~ and a learning rate.

Let ¢, = Value in the g-table after observing and processitrgnsitions. Note thaj, = 0.
Eventuallyg, will converge to the tru€)*(s1, al) value.

It turns out that

G =Xq+Y
for certain values ok andY that depend on and~.

Your job: DetermineX andY (each will be an expression that may involve one or both of
anda).

ANSWERWe havey, 1 = (1 —a)qg + (1l +v¢) = (1 — a+ ay)q + a.
SoX =1-a+ayandY = qa.

13



(b) Consider Q-learning with the following MDP.

-8B B0-B0-B-3

Note that all actions are deterministic. Notice that if ydwase the “North Action” you

transition to the leftmost state. The leftmost state hasediate reward:, the rightmost has

immediate reward 100 and all others have zero immediaterdeviegsume a discount factor
of v =0.99.

Assume the Q-table is initialized with all zeroes. SinceNti2P is deterministic, we choose
a learning ratex = 1. Consider three exploration strategies:

ES1 = Always randomly choose an available action with 50+abability

ES2 = Always choose action = argmax over &X#, a) (with ties broken randomly)

ES3 =99% of transitions do ES2 antl% of the transitions do ES1

In each of the boxes below, circle the most appropriate rsizié

e FIND-OPTIMAL-QUICK: The policy implied by the Q-table values will probably beeithe optimal policy before 200 state
transitions have happened

o FIND-OPTIMAL-SLOW: The policy implied by the Q-table values will eventually bege the optimal policy but it will probably
take at least 200 state transitions

¢ NEVER-FIND-OPTIMAL: The policy implied by the Q-table values will probably nebecome the optimal policy
Important facts:
~v=0.99
« (learning rate) = 1
Q-values initialized to zero.
“The policy implied by the Q-table” is the policy you'd follif you always chosergmaz,Q(s, a).

Note that if the Q-values were correct, the policy impliedty g-table would be optimal, no
matter what the exploration strategy.

x Using ES1 Using ES2 Using ES3
FIND-OPTIMAL-QUICK | FIND-OPTIMAL-QUICK | FIND-OPTIMAL-QUICK
0 | FIND-OPTIMAL-SLOW | FIND-OPTIMAL-SLOW | FIND-OPTIMAL-SLOW
NEVER-FIND-OPTIMAL | NEVER-FIND-OPTIMAL | NEVER-FIND-OPTIMAL
FIND-OPTIMAL-QUICK | FIND-OPTIMAL-QUICK | FIND-OPTIMAL-QUICK
-1 | FIND-OPTIMAL-SLOW | FIND-OPTIMAL-SLOW | FIND-OPTIMAL-SLOW
NEVER-FIND-OPTIMAL | NEVER-FIND-OPTIMAL | NEVER-FIND-OPTIMAL
FIND-OPTIMAL-QUICK | FIND-OPTIMAL-QUICK | FIND-OPTIMAL-QUICK
+1 | FIND-OPTIMAL-SLOW | FIND-OPTIMAL-SLOW | FIND-OPTIMAL-SLOW
NEVER-FIND-OPTIMAL | NEVER-FIND-OPTIMAL | NEVER-FIND-OPTIMAL

14




Answer: When exploring randomly, starting out from the leftmost @pthe probability of
hitting the rightmost node before ending up at the leftmastenagain is onl2 8, so it will
(in expectation) take a long time (more than 200 transiliemgven find this payoff.

So the solution is:

ES1 ES2 ES3
x=0 slow slow slow
(all strategies are exploring randomly until
the rightmost node is found)

x=-1 slow quick quick
(the greedy strategies will try to stay away
from the leftmost node and

find the rightmost node)

x=1 slow never (really) slow
(ES2 will keep going back to the leftmost node

and never discover the reward at the rightmost node.
ES3 will discover the rightmost node at some point,
but for this an event with probability 1/200 has to
take place 8 times in a row.)

15



Problem 7: Continuous Game Theory (8 pts)

Consider a game where you and your neighbor are deciding ganab buy. Cars come in
different sizes: you need to decide on the size of your:car0.5, 2]. A car of sizex will cost you
exactlyz. In this game, the only reason to buy a bigger car is that ifg@iinto a crash with your
neighbor, you will be better off in a bigger car (and your indagr will be worse off). Interestingly,
the expected cost of being in a crash is exactly the ratio otles size to your car’s size. Thus
we have the following utility functions:

U1($1;l’2) = —I1 — i—f
and symmetrically
U2($1;l’2) = —@xg — L.

€2

(a) Write down%lul(a;l, Ty).

1+,

(b) Find the (symmetric) Nash equilibrium of the car buying game

ANSWERThe best response 19 is given by -1 + %3 = 0 = x; = \ﬂxg). (Note that the
derivative is positive to the left of this point and negatiwehe right, so this is in fact a best
response.) Similarly we must have = \ﬂxl) and sogx; = 25 = 1.

(c) If the neighbors collaborated to maximize social welfaneldoth of them, what would be the
optimal car size? (Assume they get the same size car.)

ANSWERz; = z, = 0.5. (If you both get the same car size, the ratio is always theesam
you just want to minimize the direct cost.)

16



Problem 8: Game Theory: Matching Pennies with a Double-heads Fetish (10 pts)

Recall the game of matching pennies, where player 1 seekatithrthe pennies and player 2
seeks to have them different. However, now player 1 derivetsaange additional pleasure from
seeing both heads at the same time. The game thus become= (pia the row player, player 2
is the column player)

H T
H 2-1-11
T -111-1

This game has a unique (mixed strategy) Nash equilibriumd Biayer 2's mixed strategy in
this equilibrium.

ANSWERFor player 1 to be indifferent between playing heads andipdgtails, we must have
that the following are the same (wherg; is the probability of player 2 playing heads)

2por — 1(1 — pam) (player 1's utility of playing heads) and1p,y + 1(1 — poy) (player 2’s
utility of playing tails)

Solving this gives, = .4.

For player 2 to be indifferent, player 1's strategy must leesame as in the equilibrium in the
original matching pennies game (because player 2’s paglaffsot change at all). Thys ; = .5.

17



Problem 9: Technologies and Applications (5 pts)

For each of the below applications/scenarios describeah@hdicate which technology (of:
Markov Chains (MC), Markov Decision Problems (MDPs), RdlyiObservable Markov Decision
Problems (POMDPs), Reinforcement Learning (RL), or HidMarkov Models (HMMS)) isbest
suited.

() You are a spectator at an NBA playoffs game. You have good seat can see absolutely
everything that is going on in the game, but your seatswarelose enough to the court that
you can influence the game by shouting at the players. All youdp is sit and watch how
the game develops.

Markov Chain

(b) You are chief of police in the old mafia-dominated Chicaga wou are trying to bring down
gang-related crime. You have many choices in how you try tthdg e.g. how many police
you station everywhere, trying to pressure witnesses te gbu vital information, etc. Of
course you are not perfectly aware of all the crime that isgoin: all you have is indicators
(how many murders, bombings, etc.).

POMDP

(c) You are trying to model the movements of the entire stock etakil you have is observations
of the price of a single stock.

HMM

(d) You are playing a game of Tic Tac Toe against a random oppoifeatcan see the board and
choose actions, but your opponent choose random actions.

MDP

(e) Playing the Tower of Hanoi game, except that each time yoticastake a move there’s a disk-
dependent probability that the disk will jump to a randomipos on a random stick. You
don’t know these probabilities in advance but you are prechibat while you're practicing,
the probabilities will remain fixed.

Reinforcement learning

(f) You're a bank trying to maximize profit from a customer. Yoready know an accurate statis-
tical model of how customers change over time, and as a refktiie banks actions, but you
only get noisy indications of what the customer’s curreatist is. As a bank you can offer
various promotions and rewards to your customer at variousst

POMDP
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