15-294 Rapid Prototyping Technologies

Instructor:
Dave Touretzky

TAs:
Meg Richards
Adam Moran
Chase Klingensmith

5.0 Units / 7 Weeks (Mini)

15-294: Rapid Prototyping Technologies

- Computer Aided Design (Solidworks)
- Laser Cutting & 3D Printing
- Algorithms and file formats
- Open source movement and maker culture
- Industry trends
- Societal impacts

Half-semester mini: 5 units

Sections A1 and A2

Mon/Wed 6:30-7:50 PM

Prereq: 15-104 or 15-112

Prof: Dave Touretzky

Three Goals for The Course

- 1. Learn how to make stuff.
 - CAD tools (mainly SolidWorks)
 - Laser cutting
 - 3D printing (FDM, stereolithography)
- 2. Learn how the underlying technology works.
 - File formats (DXF, STL), G-Code, slicing algorithms
- 3. Learn about how new additive manufacturing (3D printing) industries are developing and impacting our economy.

Communication

- The syllabus and all assignments are posted on the course web page.
- We will use Piazza for announcements, question answering, and discussions.
- If you have questions about an assignment, SolidWorks, etc., use Piazza instead of email.
 - Other students may have the same question.
 - Fellow students may be able to answer your question more quickly than the instructor or TA.

Grading

 Attendance 		10% (if miss > 3 cl	asses
 Assigned Projects 		60%	
- #1 Spirograph	5%		
- #2 Trees	10%		
- #3 Pascaline	20%		
#4 Molecule	10%		
#5 Duck rendering	15%		
 Final Project 		30%	
 No exams. 		100%	

Hand-Ins

 Each assignment specifies what to hand in and when it is due.

- We will use AutoLab to:
 - Accept hand-ins
 - Provide feedback on assignments
 - Record grades

Office Hours (in DFab Lab)

 Adam will hold office hours from 5:30-6:30 on Mondays.

- Meg will hold office hours from 5:30-6:30 on Wednesdays.
- Dave is in his office (GHC 9013) most evenings. Drop by any time, or call (x8-7561) or email (dst@cs.cmu.edu) for an appointment if you prefer.

Computer Access and Software

- We'll be using SolidWorks and DraftSight.
- Macbooks have been reserved for class and can be checked out from IDeATe.
- You will need SolidWorks for the next class.
- SolidWorks is also available on Andrew clusters, or via Virtual Andrew.
- To run the software on your personal laptop, see the Software Setup page linked from the course home page and syllabus page.

Fees

- IDeATe charges an access fee for use of the facilities.
 - For this course, your access fee will be covered by the Computer Science Department.
- There may be a \$25 materials fee; we're hoping to avoid it.
- You will need to purchase your own filament for use in the 3D printers.
 - IDeATe will sell you filament cartridges.
 - IDeATe will buy them back on a pro-rated basis if you don't want to keep them.

Collaboration

- The Pascaline project will be done in teams of two.
- All other course work should be done by yourself.
- You can ask anyone for help with SolidWorks or general advice about how to approach an assignment, but the work you hand in should be yours alone.
- If you build on someone else's work for a project (e.g., modify something from Thingiverse), acknowledge your sources!

What We'll Do Today

- Overview of rapid prototyping, laser cutting, and 3D printing.
- Tour of the IDeATe@Hunt facility.

Do this after class (takes one minute):

- Fill out the IDeATe User Info form.
- Complete the IDeATe User Agreement.
 - Ignore what it says about the resource fee.
- Both forms are linked from the syllabus.

What Is Rapid Prototyping?

- Use CAD tools to quickly design an object, render it, check for interferences, simulate its motion, and more!
- Use computer-controlled machinery to fabricate your object quickly and largely automatically.
- Many technologies available:
 - 2D planar parts: laser cutting, water jet
 - Complex shapes: 3D printing, CNC router

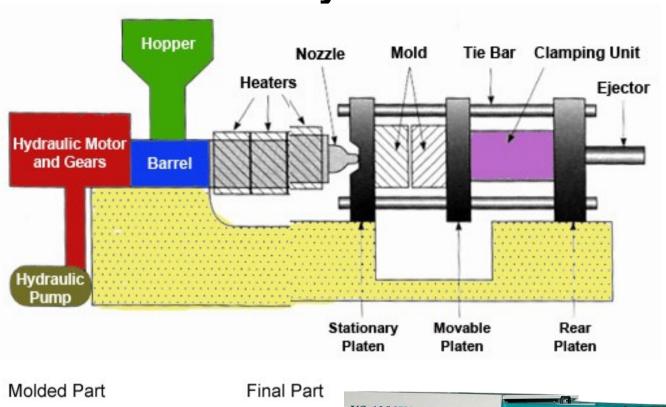
Non-Rapid Fabrication Technologies

- Require skill to operate
- Potential for injury
- Potential for tool damage
- May entail lengthy preparation or high setup costs.
- Offer a wider range of materials.
- Can be optimized for mass production.

Planar Operations

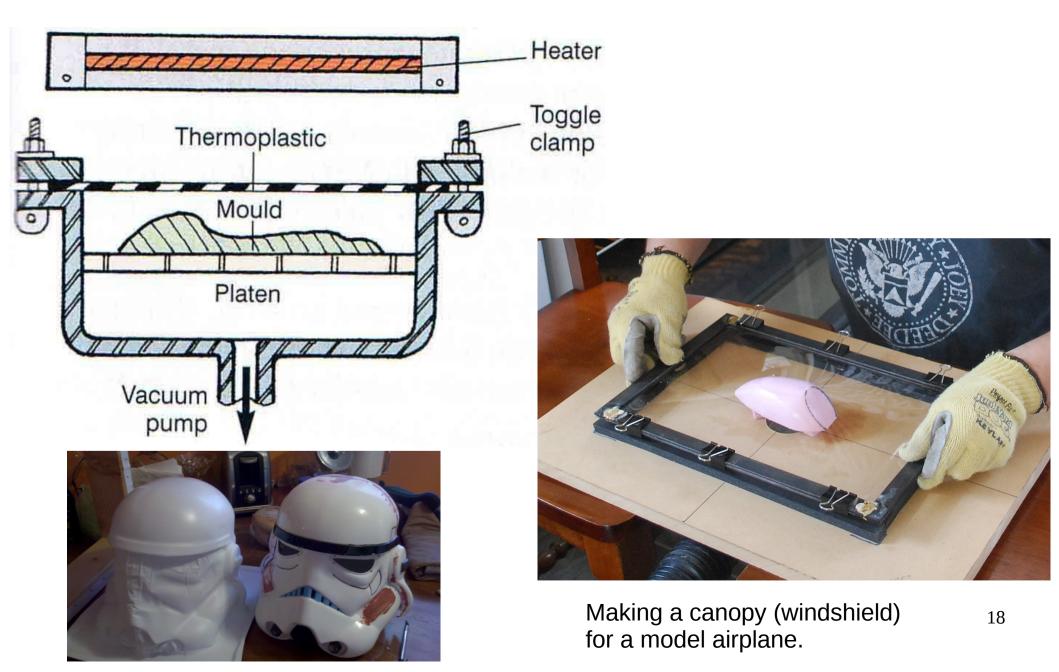
Drill Press

Manual Machining


Milling Machine

Lathe

CNC Machining

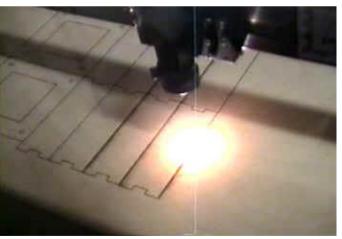


Injection Molding

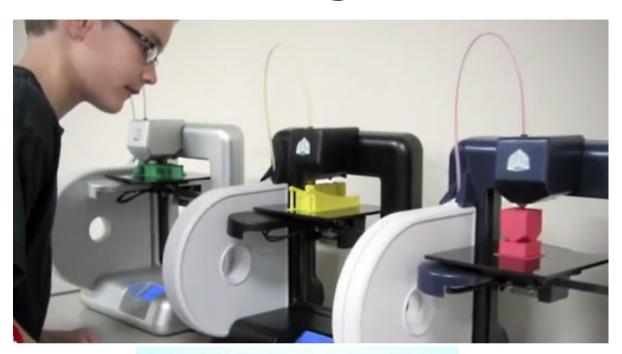
Vacuum Forming

Rapid Prototyping Fabrication Technologies

- Computer-controlled
- Requires little skill to operate the machinery
- Generally safe to use
- May have limitations as to materials or production capacity.
- But may also offer new capabilities not previously available.


Laser cutter / Water jet

- ✓ Fast
- ✓ Precise
- √ Cheap
- ✓ Wide choice of materials
- X Parts are only 2D (but assemblies can be 3D)—



Cheap 3D Printing

- X Slow
- X Less precise
- X More expensive
- X Limited materials
- X Support material may be required
- ✓ Complex 3D structures!

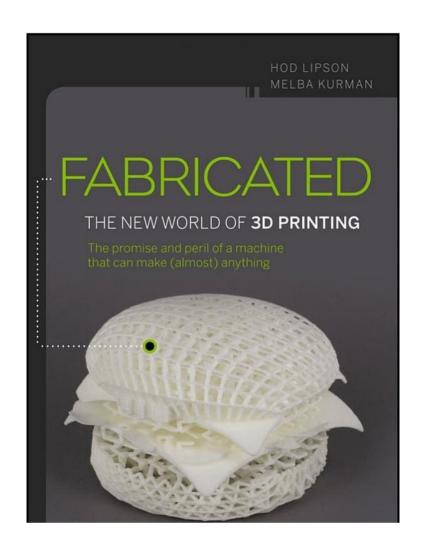
High End 3D Printing

- Precise
- Multicolor
- Complex materials
- X Slow
- X Expensive

What Is Maker Culture?

- "Do it yourself" meets high technology and open source movements.
- The high tech part:
 - CAD software
 - Laser cutters, 3D printing, Arduinos, etc.
- Why is this good?
 - Rapid prototyping: hold your ideas in your hand!
 - Extreme customization / personalization
 - New modes of artistic expression

Maker Culture Around Us


- Make Magazine
 - Makezine.com
- Hacker spaces; TechShop
- LaserSaur: open source laser cutter
- Reprap and open source
 3D printers
- Thingiverse & similar sites: marketplaces for 3D models (many are free)

Additive Manufacturing

- Another term for 3D printing.
- Add material layer by layer, instead of cutting material away (as in machining).
- Many different technologies:
 - Fused deposition modeling (squirt molten plastic)
 - Binder jet printing (liquid binder solidifies powder)
 - Selective laser sintering (laser solidifies powder)
 - Stereolithography (laser solidifies liquid)
 - ... and more!

Lipson and Kurman (2013): Fabricated

- Excellent overview of both the current state of the art and the future of 3D printing.
- In chapter 2 they define 10 Principles of 3D Printing.

10 Principles of 3D Printing

Lipson and Kurman (2013)

- 1. Manufacturing complexity is free.
 - No extra cost for ornate shapes, extra holes, etc.
- 2. Variety is free.
 - No cost to make many versions of an item, since no need for new molds or tooling.
- 3. No assembly required (in some cases).
 - Can print interlocked parts or multiple materials at the same time, e.g., a door plus its hinges.

10 Principles of 3D Printing

Lipson and Kurman (2013)

- 4. Zero lead time.
 - Can print on demand; no waiting for parts.
- 5. Unlimited design space.
 - Not subject to the geometric constraints that limit lathes, milling machines, or molding.
- 6. Zero skill manufacturing.
 - Production under computer control eliminates the need for expert machine operators.

10 Principles of 3D Printing

Lipson and Kurman (2013)

- 7. Compact, portable manufacturing.
 - Printers are small and build space can be large.
- 8. Less waste by-product (than milling).
- 9. Infinite shades of materials.
 - Can blend materials to produce continuous variations in hardness, color, etc.
- 10. Precise physical replication.
 - High resolution scanning into digital design files will allow exchange of exact 3D printed replicas.

Neri Oxman's Gemini Chair

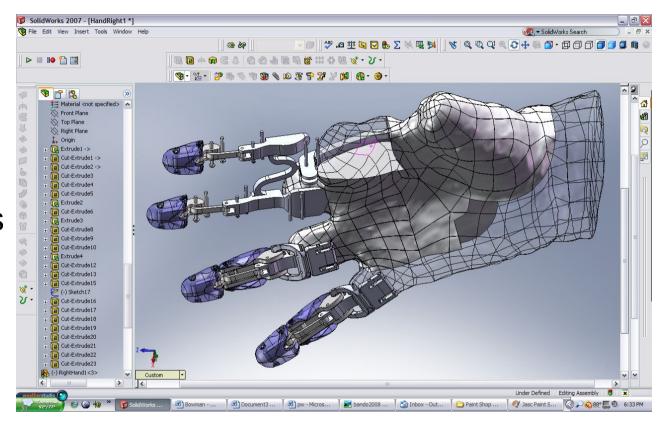
Lining is made of 44 different materials (including color). Skin combines three materials.

Printed on an Objet500 Connex3 from Stratasys.

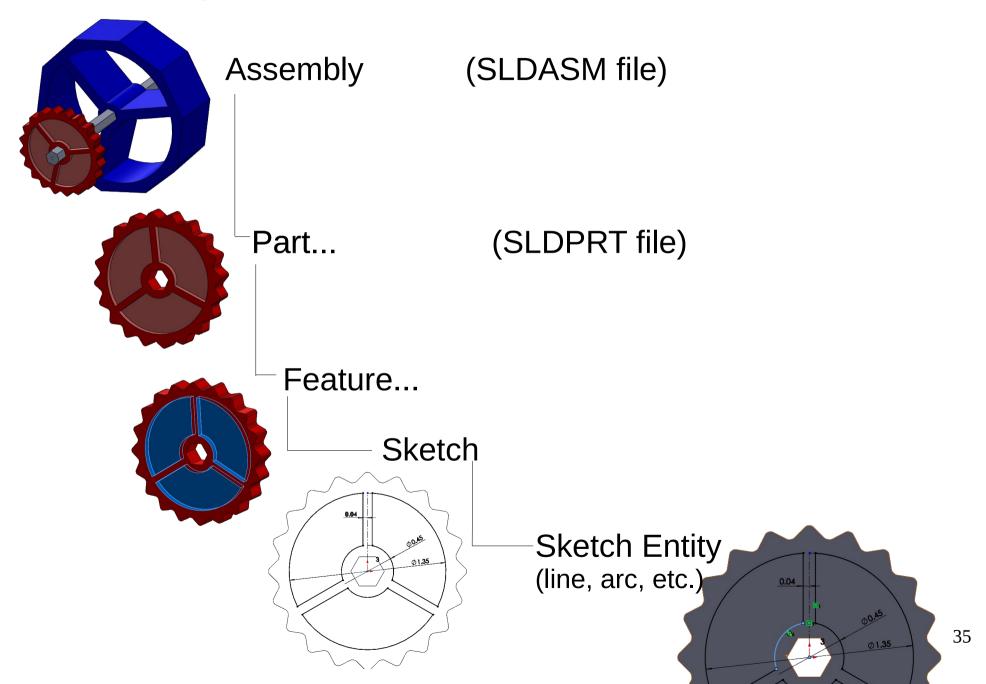
Florida boy, 6, gets prosthetic arm built with 3-D printer

The family of Alex Pring, who was born without a right arm, had been struggling with how they could afford a prosthetic limb - which can cost as high as \$40,000. A group of students at the University of Central Florida took the call as a challenge and built Alex a prosthetic arm that costs just \$350 with a 3-D printer.

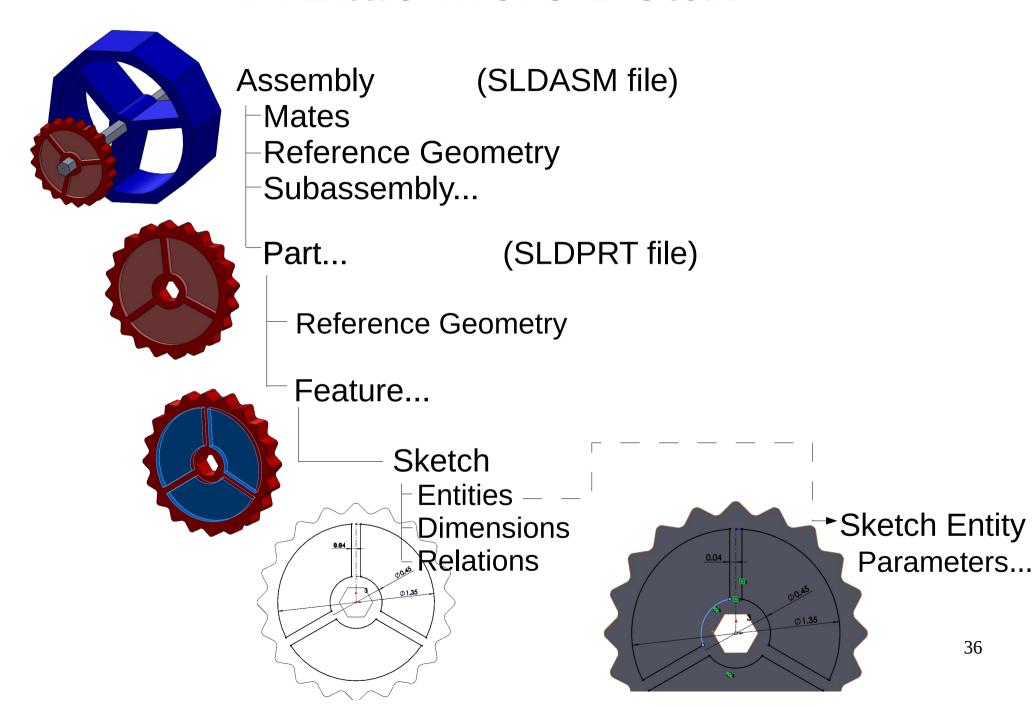
BY JOE KEMP / NEW YORK DAILY NEWS / Monday, July 28, 2014, 10:19 AM


DOCTORS USED A 3D PRINTER TO PRINT AN ULTRASOUND FOR A BLIND **EXPECTANT MOTHER**

Social Impacts We'll Look At


- Cheap 3D printed prosthetics for people missing arms or hands.
- 3D printed surgical implants, e.g., jaw bones.
- 3D printed organs: ears and bladders now, kidneys some day.
- 3D printed food (chocolate, meat, candies).
- 3D printed buildings (concrete).
- 3D printed plastic guns: invisible to X-rays.
- Does replication bring "piracy" of designs?

CAD Tools


- The big two:
 - AutoCad from AutoDesk
 - SolidWorks from Dassault Systemes
- Alibre/Invent
- Sketchup
- Blender
- CorelDraw, Inkscape, Rhino
- Sketch It Make It (developed at CMU)
- Many more...

A Quick Look at SolidWorks

A Little More Detail

How To Learn SolidWorks

- 1. We'll teach you, starting next class. The scripts are linked from the class syllabus.
- 2. SolidWorks has good built-in tutorials; click on the little "house" icon (Resources) on the right side of the screen, and select Tutorials (mortar board icon).
- 3. Lynda.com offers excellent quality video tutorials; see the link from our course home page.
- 4. Thousands of random YouTube videos, including specialized topics such as how to make involute gears.