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Leonardo Fibonacci

In 1202, Fibonacci proposed a problem 
about the growth of rabbit populations.



Inductive Definition or  
Recurrence Relation for the

Fibonacci Numbers

Stage 0, Initial Condition, or Base Case:
Fib(0) = 0; Fib (1) = 1

Inductive Rule
For n>1, Fib(n) = Fib(n-1) + Fib(n-2)

n 0 1 2 3 4 5 6 7

Fib(n) 0 1 1 2 3 5 8 13



Sneezwort (Achilleaptarmica)

Each time the plant starts a new shoot 
it takes two months before it is strong 

enough to support branching.



Counting Petals

5 petals: buttercup, wild rose, larkspur,
columbine (aquilegia) 

8 petals: delphiniums 
13 petals: ragwort, corn marigold, cineraria,

some daisies 
21 petals: aster, black-eyed susan, chicory 
34 petals: plantain, pyrethrum 
55, 89 petals: michaelmas daisies, the

asteraceae family. 



Pineapple whorls
Church and Turing were both 
interested in the number of 
whorls in each ring of the 
spiral. 

The ratio of consecutive ring 
lengths approaches the Golden 
Ratio.





Bernoulli Spiral 
When the growth of the organism is 

proportional to its size



Bernoulli Spiral 
When the growth of the organism is 

proportional to its size







Is there 
life after 
π and e?

Golden Ratio: the divine proportion

φ = 1.6180339887498948482045…

“Phi” is named after the Greek sculptor Phidias
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Definition of φ (Euclid)

Ratio obtained when you divide a line segment into two unequal 
parts such that the ratio of the whole to the larger part is the
same as the ratio of the larger to the smaller.
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Expanding Recursively
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Continued Fraction Representation
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Continued Fraction Representation
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Remember?

We already saw the convergents of this CF
[1,1,1,1,1,1,1,1,1,1,1,…]

are of the form
Fib(n+1)/Fib(n)

n
1

1 5l m
2

i →∞
−

+
= φ =n

n

F
F

Hence:



Continued Fraction Representation
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1,1,2,3,5,8,13,21,34,55,….

2/1 = 2
3/2 = 1.5
5/3 = 1.666…
8/5 = 1.6
13/8 = 1.625
21/13 = 1.6153846…
34/21 = 1.61904…

φ = 1.6180339887498948482045



Continued fraction representation of a 
standard fraction

67 12 129 3 14
2

= +
+

+



e.g., 67/29 = 2 with remainder 9/29
= 2 + 1/ (29/9)

67 1 1 12 2 229 2 129 3 3 19 9 4
2

= + = + +
+ +

+



A Representational Correspondence

67 1 1 12 2 229 2 129 3 3 19 9 4
2

= + = + +
+ +

+

Euclid(67,29) 67 div 29 = 2
Euclid(29,9) 29 div 9   = 3
Euclid(9,2) 9 div 2     = 4
Euclid(2,1) 2 div 1      = 2
Euclid(1,0)



Euclid’s GCD = Continued Fractions

Euclid(A,B) = Euclid(B, A mod B)
Stop when B=0

1

mod

A A
BB B

A B

⎢ ⎥= +⎢ ⎥⎣ ⎦

Theorem: All fractions have finite 
continuous fraction expansions



Let us take a slight 
detour and look at 

a different 
representation.



Sequences That Sum To n

Let fn+1 be the number of different 
sequences of 1’s and 2’s that sum to n.

Example: f5 = 5



Sequences That Sum To n

Let fn+1 be the number of different 
sequences of 1’s and 2’s that sum to n.

Example: f5 = 5

4 = 2 + 2
2 + 1 + 1
1 + 2 + 1
1 + 1 + 2
1 + 1 + 1 + 1



Sequences That Sum To n

f1

f2

f3

Let fn+1 be the number of different 
sequences of 1’s and 2’s that sum to n.



Sequences That Sum To n

f1 = 1

0 = the empty sum

f2 = 1
1 = 1

f3 = 2

2 = 1 + 1

2

Let fn+1 be the number of different 
sequences of 1’s and 2’s that sum to n.



Sequences That Sum To n

fn+1 = fn + fn-1

Let fn+1 be the number of different 
sequences of 1’s and 2’s that sum to n.



Sequences That Sum To n

fn+1 = fn + fn-1

Let fn+1 be the number of different 
sequences of 1’s and 2’s that sum to n.

# of 
sequences 
beginning 
with a 2

# of 
sequences 
beginning 
with a 1



Fibonacci Numbers Again

ffn+1n+1 = f= fnn + f+ fnn--11

ff11 = 1      f= 1      f22 = 1= 1

Let fn+1 be the number of different 
sequences of 1’s and 2’s that sum to n.



Visual Representation: Tiling

Let fn+1 be the number of different 
ways to tile a 1 × n strip with squares 
and dominoes.



Visual Representation: Tiling

Let fn+1 be the number of different 
ways to tile a 1 × n strip with squares 
and dominoes.



Visual Representation: Tiling

1 way to tile a strip of length 0

1 way to tile a strip of length 1:

2 ways  to tile a strip of length 2:



fn+1 = fn + fn-1

fn+1 is number of ways to tile length n.

fn tilings that start with a square.

fn-1 tilings that start with a domino.



Let’s use this visual 
representation to 
prove a couple of 

Fibonacci identities.



Fibonacci Identities

Some examples:

F2n = F1 + F3 + F5 + … + F2n-1

Fm+n+1 = Fm+1 Fn+1 + Fm Fn

(Fn)2 =  Fn-1 Fn+1 + (-1)n



Fm+n+1 =  Fm+1 Fn+1 +     Fm Fn

mm nn

mm--11 nn--11



(Fn)2 =  Fn-1 Fn+1 +     (-1)n



(Fn)2 =  Fn-1 Fn+1 +     (-1)n

nn--11

Fn tilings of a strip of length n-1 



(Fn)2 =  Fn-1 Fn+1 +     (-1)n

nn--11

nn--11



(Fn)2 =  Fn-1 Fn+1 +     (-1)n

nn

(Fn)2 tilings of two strips of size n-1



(Fn)2 =  Fn-1 Fn+1 +     (-1)n

nn

Draw a vertical Draw a vertical ““fault fault 
lineline”” at the at the rightmost rightmost 
position position (<n)(<n) possible  possible  
without cutting any without cutting any 

dominoes dominoes 



(Fn)2 =  Fn-1 Fn+1 +     (-1)n

nn

Swap the tailsSwap the tails at the at the 
fault linefault line to map to a to map to a 
tiling of 2 ntiling of 2 n--1 1 ‘‘s to a s to a 
tiling of an ntiling of an n--2 and an n.2 and an n.



(Fn)2 =  Fn-1 Fn+1 +     (-1)n

nn

Swap the tailsSwap the tails at the at the 
fault linefault line to map to a to map to a 
tiling of 2 ntiling of 2 n--1 1 ‘‘s to a s to a 
tiling of an ntiling of an n--2 and an n.2 and an n.



(Fn)2 =  Fn-1 Fn+1 +     (-1)n-1

n evenn even

n oddn odd



More random facts

The product of any four consecutive Fibonacci 
numbers is the area of a Pythagorean triangle. 

The sequence of final digits in Fibonacci numbers 
repeats in cycles of 60. The last two digits repeat in 
300, the last three in 1500, the last four in 15,000, 
etc. 

Useful to convert miles to kilometers.



The Fibonacci Quarterly



Let’s take a break 
from the Fibonacci 

Numbers in order to 
talk about polynomial 

division.



How to divide polynomials?

1     1     
1 – X

?
1 – X 1

1

-(1 – X)

X
-(X – X2)

+ X

X2

-(X2 – X3)

+ X2

X3 …

= 1 + X + X2  + X3 + X4 + X5 + X6 + X7 + …



1 + X1 + X11 + X+ X22 + X+ X33 + + …… + X+ Xnn--11 + + XXnn ==
XXn+1 n+1 -- 11

XX -- 11

The Geometric Series



1 + X1 + X11 + X+ X22 + X+ X33 + + …… + X+ Xnn--11 + + XXnn ==
XXn+1 n+1 -- 11

XX -- 11

The limit as n goes to infinity of

XXn+1 n+1 -- 11

XX -- 11
= -- 11

XX -- 11

= 11

1 1 -- XX



1 + X1 + X11 + X+ X22 + X+ X33 + + …… + + XXnn + + ……..  =..  =
11

1 1 -- XX

The Infinite Geometric Series



(X-1) ( 1 + X1 + X2 + X 3 + … + Xn + … )
= X1 + X2 + X 3 + … + Xn + Xn+1 + ….

- 1 - X1 - X2 - X 3 - … - Xn-1 – Xn - Xn+1 - …

= 1

1 + X1 + X11 + X+ X22 + X+ X33 + + …… + + XXnn + + ……..  =..  =
11

1 1 -- XX



1 + X1 + X11 + X+ X22 + X+ X33 + + …… + + XXnn + + ……..  =..  =
11

1 1 -- XX

1 – X 1
1

-(1 – X)

X

+ X

-(X – X2)

X2

+ X2 + …

-(X2 – X3)

X3 …



X     X     

1 – X – X2

Something a bit more complicated

1 – X – X2 X

X2 + X3

-(X – X2 – X3)

X

2X3 + X4

-(X2 – X3 – X4)

+ X2

-(2X3 – 2X4 – 2X5)

+ 2X3

3X4 + 2X5

+ 3X4

-(3X4 – 3X5 – 3X6)

5X5 + 3X6

+ 5X5

-(5X5 – 5X6 – 5X7)
8X6 + 5X7

+ 8X6

-(8X6 – 8X7 – 8X8)



Hence

= F0 1 + F1 X1 + F2 X2 +F3 X3 + F4 X4 + 
F5 X5 + F6 X6 + …

X     X     
1 – X – X2

= 0×1 + 1 X1 + 1 X2 + 2X3 + 3X4 + 5X5 + 8X6 + …



Going the Other Way

(1 - X- X2) ×
( F0 1 + F1 X1 + F2 X2 + … + Fn-2 Xn-2 + Fn-1 Xn-1 + Fn Xn + …

F0 = 0, F1 = 1



Going the Other Way

(1 - X- X2) ×
( F0 1 + F1 X1 + F2 X2 + … + Fn-2 Xn-2 + Fn-1 Xn-1 + Fn Xn + …

= ( F0 1 + F1 X1 + F2 X2 + … + Fn-2 Xn-2 + Fn-1 Xn-1 + Fn Xn + …

- F0 X1 - F1 X2 - … - Fn-3 Xn-2 - Fn-2 Xn-1 - Fn-1 Xn - …

- F0 X2 - … - Fn-4 Xn-2 - Fn-3 Xn-1 - Fn-2 Xn - …

= F0 1 + ( F1 – F0 ) X1
F0 = 0, F1 = 1

= X



Thus

F0 1 + F1 X1 + F2 X2 + … + Fn-1 Xn-1 + Fn Xn + …

X     X     
1 – X – X2=



So much for 
trying to take a 

break from 
the Fibonacci 

numbers…



What is the Power Series 
Expansion of x/(1-x-x2) ?

What does this look like 
when we expand it as an 

infinite sum?



Since the bottom is quadratic we 
can factor it.

X / (1-X-X2) =

X/(1- φX)(1 – (-φ)-1X)

where φ =

“The Golden Ratio”



XX

(1 (1 –– φφX)(1X)(1-- ((--φφ))--11X)X)

Linear factors on the bottom

∑n=0..∞= Xn?



(1 + aX1 + a2X2 + … + anXn + …..) (1 + bX1 + b2X2 + … + bnXn + …..) =

11

(1 (1 –– aX)(1aX)(1--bX)bX)

Geometric Series (Quadratic Form)

aan+1 n+1 –– bbn+1n+1

aa -- bb
∑n=0..∞ Xn

=

=



11

(1 (1 –– φφX)(1X)(1-- ((--φφ--11X)X)

Geometric Series (Quadratic Form)

φφn+1 n+1 –– ((--φφ--1)1)n+1n+1

√√5        5        ∑n=0.. ∞= Xn



XX

(1 (1 –– φφX)(1X)(1-- ((--φφ--11X)X)

Power Series Expansion of F

φφn+1 n+1 –– ((--φφ--1)1)n+1n+1

√√55∑n=0.. ∞= Xn+1
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The ith Fibonacci number is:
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Leonhard Euler (1765)
J. P. M. Binet (1843)
A de Moivre (1730)
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What is the coefficient of 
Xk in the expansion of:

( 1 + X + X2 + X3 + X4 + . . . . )n ?

Each path in the choice tree for the 
cross terms has n choices of exponent 
e1, e2, . . . , en ¸ 0. Each exponent can be 
any natural number.

Coefficient of Xk is the number of 
non-negative solutions to: 

e1 + e2 + . . . + en = k



What is the coefficient of 
Xk in the expansion of:

( 1 + X + X2 + X3 + X4 + . . . . )n ?

n
n -1
+ −⎛ ⎞

⎜ ⎟
⎝ ⎠

1k



( 1 + X + X2 + X3 + X4 + . . . . )n =

( )
k

k 0

n
X

n -1

∞

=

+ −⎛ ⎞
= ⎜ ⎟

− ⎝ ⎠
∑

11
1 n

k
X



What is the coefficient of Xk in the 
expansion of:

(a0 + a1X + a2X2 + a3X3 + …) ( 1 + X + X2 + X3 + . . . )

= (a0 + a1X + a2X2 + a3X3 + …) / (1 – X)      ?

a0 + a1 + a2 + .. + ak



(a0 + a1X + a2X2 + a3X3 + …) / (1 – X)

=
k

k 0 i 0

a X
∞ =

= =

⎞⎛
⎟⎜

⎝ ⎠
∑ ∑

i k

i



Some simple power series



Al-Karaji’s Identities
Zero_Ave =  1/(1-X);
First_Ave =  1/(1-X)2;
Second_Ave = 1/(1-X)3;

Output = 
1/(1-X)2 + 2X/(1-X)3

= (1= (1--X)/(1X)/(1--X)X)3 3 + 2X/(1+ 2X/(1--X)X)3 3 

= (1+X)/(1= (1+X)/(1--X)X)33



(1+X)/(1(1+X)/(1--X)X)3 3 

outputs <1, 4, 9, ..>outputs <1, 4, 9, ..>

X(1+X)/(1X(1+X)/(1--X)X)3 3 

outputs <0, 1, 4, 9, ..>outputs <0, 1, 4, 9, ..>

The The kkthth entry is kentry is k22



X(1+X)/(1X(1+X)/(1--X)X)3 3 = = ∑∑ kk22XXkk

What does X(1+X)/(1What does X(1+X)/(1--X)X)44 do?do?



X(1+X)/(1X(1+X)/(1--X)X)44 expands to :expands to :

∑∑ SSkk XXkk

where where SSkk is the sum of the is the sum of the 
first k squaresfirst k squares



Aha! Thus, if there is an Aha! Thus, if there is an 
alternative interpretation of alternative interpretation of 

the the kkthth coefficient of   coefficient of   
X(1+X)/(1X(1+X)/(1--X)X)44

we would have a new way to we would have a new way to 
get a formula for the sum of get a formula for the sum of 

the first k squares.the first k squares.



Using pirates and gold we 
found that:
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THUS:



Coefficient of Xk in PV = (X2+X)(1-X)-4 is 
the sum of the first k squares:

( )
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X
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Polynomials give us closed form 
expressions
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Study Bee

Fibonacci Numbers
Arise everywhere
Visual Representations
Fibonacci Identities

Polynomials
The infinite geometric series
Division of polynomials
Representation of Fibonacci numbers

as coefficients of polynomials.

Generating Functions and Power Series
Simple operations (add, multiply)
Quadratic form of the Geometric Series
Deriving the closed form for Fn

Pirates and gold
Sum of squares once again!


	The Golden Ratio, Fibonacci Numbers, And Other Recurrences
	Leonardo Fibonacci
	Inductive Definition or  �Recurrence Relation for the�Fibonacci Numbers
	Sneezwort (Achilleaptarmica)
	Counting Petals
	Pineapple whorls
	Bernoulli Spiral �When the growth of the organism is proportional to its size
	Bernoulli Spiral �When the growth of the organism is proportional to its size
	Golden Ratio: the divine proportion
	Definition of  (Euclid)
	Expanding Recursively
	Continued Fraction Representation
	Continued Fraction Representation
	Remember?
	Continued Fraction Representation
	1,1,2,3,5,8,13,21,34,55,….
	Continued fraction representation of a standard fraction
	e.g., 67/29 	= 2 with remainder 9/29�		= 2 + 1/ (29/9)
	A Representational Correspondence
	Euclid’s GCD = Continued Fractions
	Sequences That Sum To n
	Sequences That Sum To n
	Sequences That Sum To n
	Sequences That Sum To n
	Sequences That Sum To n
	Sequences That Sum To n
	Fibonacci Numbers Again
	Visual Representation: Tiling
	Visual Representation: Tiling
	Visual Representation: Tiling
	fn+1 = fn + fn-1
	Fibonacci Identities
	Fm+n+1      =  Fm+1 Fn+1     +     Fm Fn�
	(Fn)2    =  Fn-1 Fn+1     +     (-1)n
	(Fn)2    =  Fn-1 Fn+1     +     (-1)n
	(Fn)2    =  Fn-1 Fn+1     +     (-1)n
	(Fn)2    =  Fn-1 Fn+1     +     (-1)n
	(Fn)2    =  Fn-1 Fn+1     +     (-1)n
	(Fn)2    =  Fn-1 Fn+1     +     (-1)n
	(Fn)2    =  Fn-1 Fn+1     +     (-1)n
	(Fn)2    =  Fn-1 Fn+1     +     (-1)n-1
	More random facts
	The Fibonacci Quarterly
	How to divide polynomials?
	The Geometric Series
	The Infinite Geometric Series
	Something a bit more complicated
	Hence
	Going the Other Way
	Going the Other Way
	Thus
	Linear factors on the bottom
	Geometric Series (Quadratic Form)
	Geometric Series (Quadratic Form)
	Power Series Expansion of F
	Some simple power series
	Al-Karaji’s Identities
	Coefficient of Xk in PV = (X2+X)(1-X)-4 is the sum of the first k squares:
	Polynomials give us closed form expressions
	REFERENCES
	Study Bee

