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Course Updates

⬛ Office hours 
▪ Reference the post and video on piazza

⬛ Future recitations
▪ Join the same way you joined this one!

⬛ More responsive on piazza
⬛ Lecture plans

▪ Tuesday, 1:30 PM: Discussion of courses changes with Saugata
▪ Flipped lectures starting Thursday

⬛ We will give you more details via piazza when we have 
updates!
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Administrivia

⬛ Malloc traces due tomorrow Tuesday, March 17!
⬛ Malloc checkpoint due Tuesday, March 24! yeeT

⬛ Malloc final due Tuesday, March 31! yooT

⬛ Malloc Bootcamp Thursday, March 19 (@ 6pm)!
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Traces Assignment

⬛ Due tomorrow! (March 17)

⬛ Read the writeup! (useful things like trace file format)

⬛ Write 3 test cases that trigger different coalesce cases for 
merging newly freed blocks

⬛ Understand how coalesce works, since you’ll have to 
implement it when you write your own malloc :)
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Checkpoint Submission

⬛ Style Grading
▪ We will grade your checkheap with your checkpoint submission!

⬛ Things to Remember:
▪ Document checkheap
▪ See writeup for what to include in checkheap
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Git Reminders

⬛ Style grades for CacheLab have been released! Points 
were also deducted for style on Git usage
▪ Please use detailed commit messages – things like “DONE” or 

“did a thing” aren’t enough

▪ You should be committing often as you work on your code

▪ Especially for malloc: git diff can show what you 
changed since your last working commit

▪ Also allows you to restore your hard work in case your file gets 
deleted accidentally…

⬛ Commit early, commit often 😤
⬛ Remember to git push your commits, or else we can’t 

grade them :(
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Outline

⬛ Concept

⬛ How to choose blocks

⬛ Metadata

⬛ Debugging / GDB Exercises
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What is malloc?

⬛ A function to allocate memory during runtime 
(dynamic memory allocation).
▪ More useful when the size or number of allocations is 

unknown until runtime (e.g., data structures)

⬛ The heap is a segment of memory addresses 
reserved almost exclusively for malloc to use.
▪ Your code directly manipulates the bytes of memory in 

this section.
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Concept

⬛ Overall, malloc does three things:

1. Organizes all blocks and stores information about them 
in a structured way.

2. Uses the structure made to choose an appropriate 
location to allocate new memory.

3. Updates the structure when the user frees a block of 
memory.

This process occurs even for a complicated algorithm like 
segregated lists.
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Concept (Implicit list)

1. Connects and organizes all blocks and stores information 
about them in a structured way, typically implemented 
as a singly linked list
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Concept (Implicit list)

2. Uses the structure made to choose an appropriate 
location to allocate new memory.
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Concept (Implicit list)

3. Updates the structure when the user frees a block of 
memory.
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Concept (Implicit list)

3. Updates the structure when the user frees a block of 
memory.
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Coalesce: Case 1

Result: 

Free

A

B

C

A

B

C
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Coalesce: Case 2

Free

Allocated

Allocated

Block to be 
freed

Free

Allocated

Result:

Combined A+B

C

A

B

C
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Coalesce: Case 3Coalesce: Case 

Free

Allocated

Allocated

Block to be 
freed

Free

Allocated
Result:

Combined B+C

A

A

B

C
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Coalesce: Case 4

Free

AllocatedBlock to be 
freed

Free

Result:

Combined A+B+C

A

B

C

Free
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Goals

⬛ Run as fast as possible

⬛ Waste as little memory as possible

⬛ Seemingly conflicting goals, but with the library malloc 
call cleverness you can do very well in both areas!

⬛ The simplest implementation is the implicit list.
mm.c uses this method.
▪ Unfortunately…
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This is pretty 
slow… most 
explicit list 
implementations 
get above 2000 
Kops/sec



Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocation methods in a nutshell

⬛ Implicit list: a list is implicitly formed by jumping between 
blocks, using knowledge about their sizes.

⬛ Explicit list: Free blocks explicitly point to other blocks, 
like in a linked list.
▪ Understanding explicit lists requires understanding implicit lists

⬛ Segregated list: Multiple linked lists, each containing 
blocks in a certain range of sizes.
▪ Understanding segregated lists requires understanding explicit lists

Allocated Free Allocated Free Allocated

Free Free

Free Free
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Choices

⬛ What kind of implementation to use?

▪ Implicit list, explicit list, segregated lists, binary tree methods, etc.

▪ You can use specialized strategies depending on the size of allocations

▪ Adaptive algorithms are fine, though not necessary to get 100%.

▪ Don’t hard-code for individual trace files - you’ll get no credit/code 
deductions!

⬛ What fit algorithm to use?

▪ Best fit: choose the smallest block that is big enough to fit the requested 
allocation size

▪ First fit / next fit: search linearly starting from some location, and pick the 
first block that fits.

▪  Which is faster? Which uses less memory?

▪ “Good enough” fit: a blend between the two

⬛ This lab has many more ways to get an A+ than, say, Cache Lab Part 2
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Finding a Best Block

⬛ Suppose you have implemented the explicit list approach
▪ You were using best fit with explicit lists

⬛ You experiment with using segregated lists instead.
Still using best fits.
▪ Will your memory utilization score improve?

Note: you don’t have to implement seglists and run mdriver to 
answer this. That’s, uh, hard to do within one recitation session.

▪ What other advantages does segregated lists provide?

⬛ Losing memory because of the way you choose your free 
blocks is called external fragmentation.
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Metadata

⬛ All blocks need to store some data about themselves in 
order for malloc to keep track of them (e.g. headers)
▪ This takes memory too…
▪ Losing memory for this reason is called internal fragmentation.

⬛ What data might a block need?
▪ Does it depend on the malloc implementation you use?

▪ Is it different between free and allocated blocks?

⬛ Can we use the extra space in free blocks?
▪ Or do we have to leave the space alone?

⬛ How can we overlap two different types of data at the 
same location?
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In a perfect world…
    Setting up the blocks, metadata, lists… etc (500 LoC)

+  Finding and allocating the right blocks (500 LoC)

+  Updating your heap structure when you free (500 LoC) =
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In reality…
    Setting up the blocks, metadata, lists… etc (500 LoC)

+  Finding and allocating the right blocks (500 LoC)

+  Updating your heap structure when you free (500 LoC)

+ One bug, somewhere lost in those 1500 LoC =
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Common errors you might see

⬛ Garbled bytes
▪ Problem: overwriting data in an allocated block

▪ Solution: remembering data lab and the good ol’ days finding 
where you’re overwriting by stepping through with gdb

⬛ Overlapping payloads
▪ Problem: having unique blocks whose payloads overlap in memory

▪ Solution: literally print debugging everywhere finding where you’re 
overlapping by stepping through with gdb

⬛ Segmentation fault
▪ Problem: accessing invalid memory

▪ Solution: crying a little finding where you’re accessing invalid 
memory by stepping through with gdb
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⬛ Try running $ make 
▪ If you look closely, our code compiles your malloc 

implementation with the -O3 flag.

▪ This is an optimization flag. -O3 makes your code run as efficiently 
as the compiler can manage, but also makes it horrible for 
debugging (almost everything is “optimized out”).

▪ For malloclab, we’ve provide you a driver, mdriver-dbg, that 
not only enables debugging macros, but compiles your code with 
-O0. This allows more useful information to be displayed in GDB
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Debugging Strategies

⬛ Write a heap checker!
▪ Checks the invariants of your heap to make sure everything is 

well-formed

▪ If you write detailed error messages, you can see exactly why 
your heap is incorrectly formed

⬛ Use assertions in your functions!
▪ 122 style contracts can also help you catch where things go amiss

▪ Gives more information than a segfault

▪ Import 

⬛ Use a debugger!
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Debugging Guidelines

Locate a segfault
- run
- <>
- backtrace
- list

Reproduce results of a trace
- Run with gdb

- gdb args

You might want to...If you have this problem...

Ran into segfault

Trace results don’t match yours

Don’t know what trace output 
should be
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What’s better than printf? Using GDB
● Use GDB to determine where segfaults happen!
● gdb mdriver will open the malloc driver in gdb

○ Type run and your program will run until it hits the segfault!
● step/next - (abbrev. s/n) step to the next line of code

○ next steps over function calls
● finish - continue execution until end of current function, then break
● print <expr> - (abbrev. p) Prints any C-like expression (including  

results of function calls!)
○ Consider writing a heap printing function to use in GDB!

● x <expr> - Evaluate <expr> to obtain address, then examine 
memory  at that address
○ x /a <expr> - formats as address
○ See help p and help x for information about more formats
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Debugging mdriver

⬛ (gdb) x /gx block
▪ Shows the memory contents within the block

▪ In particular, look for the header.

⬛ (gdb) print *block
▪ Alternative: (gdb) print *(block_t *) <address> 

▪ Shows struct contents
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Using GDB - Fun with frames
■ backtrace - (abbrev. bt) print call stack up until current function

■ backtrace full - (abbrev. bt full) print local variables in each frame

(gdb) backtrace  
#0 find_fit (...)
#1 mm_malloc (...)
#2 0x0000000000403352 in eval_mm_valid 
(...)  #3 run_tests (...)
#4 0x0000000000403c39 in main (...)

■ frame 1 - (abbrev. f 1) switch to mm_malloc’s stack frame
■ Good for inspecting local variables of calling functions
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Using GDB - Setting breakpoints/watchpoints
■ break mm_checkheap - (abbrev. b) break on “mm_checkheap()”

■ b mm.c:25 - break on line 25 of file “mm.c” - very useful!
■ b find_fit if size == 24 - break on function “find_fit()” if the local  

variable “size” is equal to 24 - “conditional breakpoint”

■ watch heap_listp - (abbrev. w) break if value of “heap_listp” changes -  
“watchpoint”

■ w block == 0x80000010 - break if “block” is equal to this value
■ w *0x15213 - watch for changes at memory location 0x15213

■ Can be very slow

■ rwatch <thing> - stop on reading a memory location
■ awatch <thing> - stop on any memory access
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Heap consistency checker

⬛ mm-2.c activates debug mode, and so mm_checkheap 
runs at the beginning and end of many of its functions.

*Even though the checker in mm-2.c is short and buggy
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Heap Checker

■ int mm_checkheap(int verbose);
■ critical for debugging

■ write this function early!
■ update it when you change your implementation
■ check all heap invariants, make sure you haven't lost track of any part  

of your heap
■ check should pass if and only if the heap is truly well-formed

■ should only generate output if a problem is found, to avoid cluttering up  
your program's output

■ meant to be correct, not efficient
■ call before/after major operations when the heap should be  

well-formed
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Heap Invariants (Non-Exhaustive)
■ Block level

■ What are some things which should always be true of every block 
in  the heap?
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Heap Invariants (Non-Exhaustive)
■ Block level

■ header and footer match
■ payload area is aligned, size is valid
■ no contiguous free blocks unless you defer coalescing

■ List level
■ What are some things which should always be true of every  

element of a free list?
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Heap Invariants (Non-Exhaustive)
■ Block level

■ header and footer match
■ payload area is aligned, size is valid
■ no contiguous free blocks unless you defer coalescing

■ List level
■ next/prev pointers in consecutive free blocks are consistent
■ no allocated blocks in free list, all free blocks are in the free list
■ no cycles in free list unless you use a circular list
■ each segregated list contains only blocks in the appropriate size  

class
■ Heap level

■ What are some things that should be true of the heap as a whole?
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Heap Invariants (Non-Exhaustive)
■ Block level

■ header and footer match
■ payload area is aligned, size is valid
■ no contiguous free blocks unless you defer coalescing

■ List level
■ next/prev pointers in consecutive free blocks are consistent
■ no allocated blocks in free list, all free blocks are in the free list
■ no cycles in free list unless you use a circular list
■ each segregated list contains only blocks in the appropriate size  

class
■ Heap level

■ all blocks between heap boundaries, correct sentinel blocks (if
used)
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Strategy - Suggested Plan for Completing 
Malloc

0. Start writing your checkheap!

1. Get an explicit list implementation to work with proper 
coalescing and splitting

3. Get to a segregated list implementation to improve utilization

4. Work on optimizations (each has its own challenges!)

- Remove footers

- Decrease minimum block size

- Reduce header sizes
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Strategy - Suggested Plan for Completing 
Malloc

0. Start writing your checkheap!

1. Get an explicit list implementation to work with proper 
coalescing and splitting

3. Get to a segregated list implementation to improve utilization

4. Work on optimizations (each has its own challenges!)

- Remove footers 

- Decrease minimum block size

- Reduce header sizes

Keep writing your checkheap!

Keep writing your checkheap!

Keep writing your checkheap!

Keep writing your checkheap!
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MallocLab Checkpoint

⬛ Due next Tuesday!

⬛ Checkpoint should take a bit less than half of the time you 
spend overall on the lab.

⬛ Read the write-up. Slowly. Carefully.

⬛ Use GDB - watch, backtrace

⬛ Ask us for debugging help
▪ Only after you implement mm_checkheap though! You gotta learn 

how to understand your own code - help us help you!

please write checkheap 
or we will scream
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Appendix: Advanced GDB Usage

⬛ backtrace: Shows the call stack

⬛ up/down: Lets you go up/down one level in the call stack

⬛ frame: Lets you go to one of the levels in the call stack

⬛ list: Shows source code

⬛ print <expression>:
▪ Runs any valid C command, even something with side effects like 

mm_malloc(10) or mm_checkheap(1337)

⬛ watch <expression>:
▪ Breaks when the value of the expression changes

⬛ break <function / line> if <expression>:
▪ Only stops execution when the expression holds true

⬛ Ctrl-X Ctrl-A or cgdb for visualization


