
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recitation 10: Malloc Lab

Your TAs

Monday, March 16th, 2020

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Course Updates

⬛ Office hours
▪ Reference the post and video on piazza

⬛ Future recitations
▪ Join the same way you joined this one!

⬛ More responsive on piazza
⬛ Lecture plans

▪ Tuesday, 1:30 PM: Discussion of courses changes with Saugata
▪ Flipped lectures starting Thursday

⬛ We will give you more details via piazza when we have
updates!

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Administrivia

⬛ Malloc traces due tomorrow Tuesday, March 17!
⬛ Malloc checkpoint due Tuesday, March 24! yeeT

⬛ Malloc final due Tuesday, March 31! yooT

⬛ Malloc Bootcamp Thursday, March 19 (@ 6pm)!

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Traces Assignment

⬛ Due tomorrow! (March 17)

⬛ Read the writeup! (useful things like trace file format)

⬛ Write 3 test cases that trigger different coalesce cases for
merging newly freed blocks

⬛ Understand how coalesce works, since you’ll have to
implement it when you write your own malloc :)

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Checkpoint Submission

⬛ Style Grading
▪ We will grade your checkheap with your checkpoint submission!

⬛ Things to Remember:
▪ Document checkheap
▪ See writeup for what to include in checkheap

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Git Reminders

⬛ Style grades for CacheLab have been released! Points
were also deducted for style on Git usage
▪ Please use detailed commit messages – things like “DONE” or

“did a thing” aren’t enough

▪ You should be committing often as you work on your code

▪ Especially for malloc: git diff can show what you
changed since your last working commit

▪ Also allows you to restore your hard work in case your file gets
deleted accidentally…

⬛ Commit early, commit often 😤
⬛ Remember to git push your commits, or else we can’t

grade them :(

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

⬛ Concept

⬛ How to choose blocks

⬛ Metadata

⬛ Debugging / GDB Exercises

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What is malloc?

⬛ A function to allocate memory during runtime
(dynamic memory allocation).
▪ More useful when the size or number of allocations is

unknown until runtime (e.g., data structures)

⬛ The heap is a segment of memory addresses
reserved almost exclusively for malloc to use.
▪ Your code directly manipulates the bytes of memory in

this section.

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concept

⬛ Overall, malloc does three things:

1. Organizes all blocks and stores information about them
in a structured way.

2. Uses the structure made to choose an appropriate
location to allocate new memory.

3. Updates the structure when the user frees a block of
memory.

This process occurs even for a complicated algorithm like
segregated lists.

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concept (Implicit list)

1. Connects and organizes all blocks and stores information
about them in a structured way, typically implemented
as a singly linked list

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concept (Implicit list)

2. Uses the structure made to choose an appropriate
location to allocate new memory.

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concept (Implicit list)

3. Updates the structure when the user frees a block of
memory.

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concept (Implicit list)

3. Updates the structure when the user frees a block of
memory.

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Coalesce: Case 1

Result:

Free

A

B

C

A

B

C

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Coalesce: Case 2

Free

Allocated

Allocated

Block to be
freed

Free

Allocated

Result:

Combined A+B

C

A

B

C

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Coalesce: Case 3Coalesce: Case

Free

Allocated

Allocated

Block to be
freed

Free

Allocated
Result:

Combined B+C

A

A

B

C

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Coalesce: Case 4

Free

AllocatedBlock to be
freed

Free

Result:

Combined A+B+C

A

B

C

Free

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Goals

⬛ Run as fast as possible

⬛ Waste as little memory as possible

⬛ Seemingly conflicting goals, but with the library malloc
call cleverness you can do very well in both areas!

⬛ The simplest implementation is the implicit list.
mm.c uses this method.
▪ Unfortunately…

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

This is pretty
slow… most
explicit list
implementations
get above 2000
Kops/sec

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocation methods in a nutshell

⬛ Implicit list: a list is implicitly formed by jumping between
blocks, using knowledge about their sizes.

⬛ Explicit list: Free blocks explicitly point to other blocks,
like in a linked list.
▪ Understanding explicit lists requires understanding implicit lists

⬛ Segregated list: Multiple linked lists, each containing
blocks in a certain range of sizes.
▪ Understanding segregated lists requires understanding explicit lists

Allocated Free Allocated Free Allocated

Free Free

Free Free

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Choices

⬛ What kind of implementation to use?

▪ Implicit list, explicit list, segregated lists, binary tree methods, etc.

▪ You can use specialized strategies depending on the size of allocations

▪ Adaptive algorithms are fine, though not necessary to get 100%.

▪ Don’t hard-code for individual trace files - you’ll get no credit/code
deductions!

⬛ What fit algorithm to use?

▪ Best fit: choose the smallest block that is big enough to fit the requested
allocation size

▪ First fit / next fit: search linearly starting from some location, and pick the
first block that fits.

▪ Which is faster? Which uses less memory?

▪ “Good enough” fit: a blend between the two

⬛ This lab has many more ways to get an A+ than, say, Cache Lab Part 2

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Finding a Best Block

⬛ Suppose you have implemented the explicit list approach
▪ You were using best fit with explicit lists

⬛ You experiment with using segregated lists instead.
Still using best fits.
▪ Will your memory utilization score improve?

Note: you don’t have to implement seglists and run mdriver to
answer this. That’s, uh, hard to do within one recitation session.

▪ What other advantages does segregated lists provide?

⬛ Losing memory because of the way you choose your free
blocks is called external fragmentation.

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Metadata

⬛ All blocks need to store some data about themselves in
order for malloc to keep track of them (e.g. headers)
▪ This takes memory too…
▪ Losing memory for this reason is called internal fragmentation.

⬛ What data might a block need?
▪ Does it depend on the malloc implementation you use?

▪ Is it different between free and allocated blocks?

⬛ Can we use the extra space in free blocks?
▪ Or do we have to leave the space alone?

⬛ How can we overlap two different types of data at the
same location?

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

In a perfect world…
 Setting up the blocks, metadata, lists… etc (500 LoC)

+ Finding and allocating the right blocks (500 LoC)

+ Updating your heap structure when you free (500 LoC) =

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

In reality…
 Setting up the blocks, metadata, lists… etc (500 LoC)

+ Finding and allocating the right blocks (500 LoC)

+ Updating your heap structure when you free (500 LoC)

+ One bug, somewhere lost in those 1500 LoC =

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Common errors you might see

⬛ Garbled bytes
▪ Problem: overwriting data in an allocated block

▪ Solution: remembering data lab and the good ol’ days finding
where you’re overwriting by stepping through with gdb

⬛ Overlapping payloads
▪ Problem: having unique blocks whose payloads overlap in memory

▪ Solution: literally print debugging everywhere finding where you’re
overlapping by stepping through with gdb

⬛ Segmentation fault
▪ Problem: accessing invalid memory

▪ Solution: crying a little finding where you’re accessing invalid
memory by stepping through with gdb

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

⬛ Try running $ make
▪ If you look closely, our code compiles your malloc

implementation with the -O3 flag.

▪ This is an optimization flag. -O3 makes your code run as efficiently
as the compiler can manage, but also makes it horrible for
debugging (almost everything is “optimized out”).

▪ For malloclab, we’ve provide you a driver, mdriver-dbg, that
not only enables debugging macros, but compiles your code with
-O0. This allows more useful information to be displayed in GDB

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging Strategies

⬛ Write a heap checker!
▪ Checks the invariants of your heap to make sure everything is

well-formed

▪ If you write detailed error messages, you can see exactly why
your heap is incorrectly formed

⬛ Use assertions in your functions!
▪ 122 style contracts can also help you catch where things go amiss

▪ Gives more information than a segfault

▪ Import

⬛ Use a debugger!

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging Guidelines

Locate a segfault
- run
- <>
- backtrace
- list

Reproduce results of a trace
- Run with gdb

- gdb args

You might want to...If you have this problem...

Ran into segfault

Trace results don’t match yours

Don’t know what trace output
should be

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

31

What’s better than printf? Using GDB
● Use GDB to determine where segfaults happen!
● gdb mdriver will open the malloc driver in gdb

○ Type run and your program will run until it hits the segfault!
● step/next - (abbrev. s/n) step to the next line of code

○ next steps over function calls
● finish - continue execution until end of current function, then break
● print <expr> - (abbrev. p) Prints any C-like expression (including

results of function calls!)
○ Consider writing a heap printing function to use in GDB!

● x <expr> - Evaluate <expr> to obtain address, then examine
memory at that address
○ x /a <expr> - formats as address
○ See help p and help x for information about more formats

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging mdriver

⬛ (gdb) x /gx block
▪ Shows the memory contents within the block

▪ In particular, look for the header.

⬛ (gdb) print *block
▪ Alternative: (gdb) print *(block_t *) <address>

▪ Shows struct contents

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

33

Using GDB - Fun with frames
■ backtrace - (abbrev. bt) print call stack up until current function

■ backtrace full - (abbrev. bt full) print local variables in each frame

(gdb) backtrace
#0 find_fit (...)
#1 mm_malloc (...)
#2 0x0000000000403352 in eval_mm_valid
(...) #3 run_tests (...)
#4 0x0000000000403c39 in main (...)

■ frame 1 - (abbrev. f 1) switch to mm_malloc’s stack frame
■ Good for inspecting local variables of calling functions

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

34

Using GDB - Setting breakpoints/watchpoints
■ break mm_checkheap - (abbrev. b) break on “mm_checkheap()”

■ b mm.c:25 - break on line 25 of file “mm.c” - very useful!
■ b find_fit if size == 24 - break on function “find_fit()” if the local

variable “size” is equal to 24 - “conditional breakpoint”

■ watch heap_listp - (abbrev. w) break if value of “heap_listp” changes -
“watchpoint”

■ w block == 0x80000010 - break if “block” is equal to this value
■ w *0x15213 - watch for changes at memory location 0x15213

■ Can be very slow

■ rwatch <thing> - stop on reading a memory location
■ awatch <thing> - stop on any memory access

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Heap consistency checker

⬛ mm-2.c activates debug mode, and so mm_checkheap
runs at the beginning and end of many of its functions.

*Even though the checker in mm-2.c is short and buggy

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

36

Heap Checker

■ int mm_checkheap(int verbose);
■ critical for debugging

■ write this function early!
■ update it when you change your implementation
■ check all heap invariants, make sure you haven't lost track of any part

of your heap
■ check should pass if and only if the heap is truly well-formed

■ should only generate output if a problem is found, to avoid cluttering up
your program's output

■ meant to be correct, not efficient
■ call before/after major operations when the heap should be

well-formed

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

37

Heap Invariants (Non-Exhaustive)
■ Block level

■ What are some things which should always be true of every block
in the heap?

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

38

Heap Invariants (Non-Exhaustive)
■ Block level

■ header and footer match
■ payload area is aligned, size is valid
■ no contiguous free blocks unless you defer coalescing

■ List level
■ What are some things which should always be true of every

element of a free list?

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

39

Heap Invariants (Non-Exhaustive)
■ Block level

■ header and footer match
■ payload area is aligned, size is valid
■ no contiguous free blocks unless you defer coalescing

■ List level
■ next/prev pointers in consecutive free blocks are consistent
■ no allocated blocks in free list, all free blocks are in the free list
■ no cycles in free list unless you use a circular list
■ each segregated list contains only blocks in the appropriate size

class
■ Heap level

■ What are some things that should be true of the heap as a whole?

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

29

Heap Invariants (Non-Exhaustive)
■ Block level

■ header and footer match
■ payload area is aligned, size is valid
■ no contiguous free blocks unless you defer coalescing

■ List level
■ next/prev pointers in consecutive free blocks are consistent
■ no allocated blocks in free list, all free blocks are in the free list
■ no cycles in free list unless you use a circular list
■ each segregated list contains only blocks in the appropriate size

class
■ Heap level

■ all blocks between heap boundaries, correct sentinel blocks (if
used)

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Strategy - Suggested Plan for Completing
Malloc

0. Start writing your checkheap!

1. Get an explicit list implementation to work with proper
coalescing and splitting

3. Get to a segregated list implementation to improve utilization

4. Work on optimizations (each has its own challenges!)

- Remove footers

- Decrease minimum block size

- Reduce header sizes

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Strategy - Suggested Plan for Completing
Malloc

0. Start writing your checkheap!

1. Get an explicit list implementation to work with proper
coalescing and splitting

3. Get to a segregated list implementation to improve utilization

4. Work on optimizations (each has its own challenges!)

- Remove footers

- Decrease minimum block size

- Reduce header sizes

Keep writing your checkheap!

Keep writing your checkheap!

Keep writing your checkheap!

Keep writing your checkheap!

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

MallocLab Checkpoint

⬛ Due next Tuesday!

⬛ Checkpoint should take a bit less than half of the time you
spend overall on the lab.

⬛ Read the write-up. Slowly. Carefully.

⬛ Use GDB - watch, backtrace

⬛ Ask us for debugging help
▪ Only after you implement mm_checkheap though! You gotta learn

how to understand your own code - help us help you!

please write checkheap
or we will scream

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Appendix: Advanced GDB Usage

⬛ backtrace: Shows the call stack

⬛ up/down: Lets you go up/down one level in the call stack

⬛ frame: Lets you go to one of the levels in the call stack

⬛ list: Shows source code

⬛ print <expression>:
▪ Runs any valid C command, even something with side effects like

mm_malloc(10) or mm_checkheap(1337)

⬛ watch <expression>:
▪ Breaks when the value of the expression changes

⬛ break <function / line> if <expression>:
▪ Only stops execution when the expression holds true

⬛ Ctrl-X Ctrl-A or cgdb for visualization

