Carnegie Mellon

Recitation 10: Malloc Lab

Your TAs

Monday, March 16th, 2020

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Course Updates

« Office hours
= Reference the post and video on piazza

» Future recitations
= Join the same way you joined this one!

= More responsive on piazza

= Lecture plans
= Tuesday, 1:30 PM: Discussion of courses changes with Saugata
= Flipped lectures starting Thursday

= We will give you more details via piazza when we have
updates!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Administrivia

Malloc traces due tomorrow Tuesday, March 17!
Malloc checkpoint due Tuesday, March 24! ,...

m Malloc final due Tuesday, March 31! ,..r
m Malloc Bootcamp Thursday, March 19 (@ 6pm)!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Traces Assighment

= Due tomorrow! (March 17)

» Read the writeup! (useful things like trace file format)
Write 3 test cases that trigger different coalesce cases for
merging newly freed blocks

Allocated Allocated Free Free

block to
be freed
Allocated Free Allocated Free

= Understand how coalesce works, since you’ll have to
implement it when you write your own malloc :)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Checkpoint Submission

B Style Grading

= We will grade your checkheap with your checkpoint submission!

« Things to Remember:
= Document checkheap
= See writeup for what to include in checkheap

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Git Reminders

= Style grades for CachelLab have been released! Points
were also deducted for style on Git usage

= Please use detailed commit messages — things like “DONE” or
“did a thing” aren’t enough

= You should be committing often as you work on your code

Especially for malloc: git diff canshow what you
changed since your last working commit

= Also allows you to restore your hard work in case your file gets

deleted accidentally... p

« Commit early, commit often /=

= Remember to git push your commits, or else we can’t
qrade them :(

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Outline

m Concept

m How to choose blocks

m Metadata

m Debugging / GDB Exercises

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

What is malloc?

m A function to allocate memory during runtime
(dynamic memory allocation).

= More useful when the size or number of allocations is
unknown until runtime (e.g., data structures)

m The heap is a segment of memory addresses :
reserved almost exclusively for malloctouse.]

. . . h
= Your code directly manipulates the bytes of memory in -
this section.
uninitialized data
bss
initialized data

data

text

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Concept

m Overall, malloc does three things:

1. Organizes all blocks and stores information about them
in a structured way.

2. Uses the structure made to choose an appropriate
location to allocate new memory.

3. Updates the structure when the user frees a block of
memory.

This process occurs even for a complicated algorithm like
segregated lists.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concept (Implicit list)

1. Connects and organizes all blocks and stores information
about them in a structured way, typically implemented
as a singly linked list

Unused el S

7/4 & 4 2

i

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Concept (Implicit list)

2. Uses the structure made to choose an appropriate
location to allocate new memory.

p1 = malloc(3)

p2 = malloc(7)

p3 = malloc(5)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Concept (Implicit list)

3. Updates the structure when the user frees a block of
memory.

p1 = malloc(3)

p2 = malloc(7)

p3 = malloc(5)

free(p2)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Concept (Implicit list)

3. Updates the structure when the user frees a block of

memory.
p1 = malloc(3)
p2 = malloc(7)
p3 = malloc(5)
free(p2)
Allocated Allocated Free Free
block to
be freed
Allocated Free Allocated Free

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Coalesce: Case 1

Allocated A
block to .
be freed

Allocated c

Result:

Allocated A

Free B

Allocated C

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Coalesce: Case 2

e -
Block to be Allocated B

freed

Y

Allocated C

Result:

Combined A+B

Allocated C

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Coalesce: Case 3

Allocated A

Block to be
freed

Y

Allocated B

R

Result:

Allocated A

Combined B+C

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Coalesce: Case 4

A

Block to be . Allocated B
freed

C

Result:

Combined A+B+C

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Goals

m Run as fast as possible
m Waste as little memory as possible

m Seemingly conflicting goals, but with thelibrary-maloe

call cleverness you can do very well in both areas!

m The simplest implementation is the implicit list.
mm.c uses this method.

= Unfortunately...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

[dalud@angelshark:~/.../15213/s17/malloclabcheckpoint-handout] $./mdriver -p
Found benchmark throughput 13090 for cpu type Intel(R)Xeon(R)CPUES5520@2.27GHz, benchmark checkpoint

hroughput targets: min=2618, max=11781, benchmark=13090

msecs Kops trace
.002 9632 ./traces/syn-array-short.rep
.001 25777 ./traces/syn-struct-short.rep
.001 24783 ./traces/syn-string-short.rep
.001 19277 ./traces/syn-mix-short.rep
.001 31192 ./traces/ngram-foxl.rep
757 .145 5237 ./traces/syn-mix-realloc.rep
5748 .925 1464 ./traces/bdd-aa4.rep
87830 1682.766 52 ./traces/bdd-aa32.rep
41080 410.385 100 ./traces/bdd-ma4.rep
115380 4636.711 25 ./traces/bdd-nqg7.rep
20547 26.677 770 ./traces/cbit-abs.rep
95276 675.303 141 ./traces/cbit-parity.rep
89623 611.511 147 ./traces/cbit-satadd.rep
50583 185.382 273 ./traces/cbit-xyz.rep
32540 76.919 423 ./traces/ngram-gulliverl.rep . .
127912 1284.959 100 ./traces/ngram-gulliver2.rep ThiS is pretty
67012 338.591 198 ./traces/ngram-mobyl.rep
94828 701.305 135 ./traces/ngram-shakel.rep slow... most
80000 1455.891 55 ./traces/syn-array.rep explicit list
80000 915.167 87 ./traces/syn-mix.rep . .
80000 914.366 87 ./traces/syn-string.rep implementations

.25 80000 812.748 98 ./traces/syn-struct.rep
59.1% 1148359 14732.604 78 get above 2000

k3
-
b 3
x
k3
k3
k3
k3
x
x*
=
x
=
»*
-
*

o)
()]

B Kops/sec
Average utilization = 59.1%. Average throughput = 78 Kops/sec
Checkpoint Perf index = 20.0 (util) # 0.0)(thru) = 20.0/100

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Allocation methods in a nutshell

m Implicit list: a list is implicitly formed by jumping between
blocks, using knowledge about their sizes.

m Explicit list: Free blocks explicitly point to other blocks,
like in a linked list.

= Understanding explicit lists requires understanding implicit lists

Free ‘ Free

m Segregated list: Multiple linked lists, each containing
blocks in a certain range of sizes.

* Understanding segregated lists requires understanding explicit lists

Free Free

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Choices

m What kind of implementation to use?
= Implicit list, explicit list, segregated lists, binary tree methods, etc.
= You can use specialized strategies depending on the size of allocations

= Adaptive algorithms are fine, though not necessary to get 100%.

» Don’t hard-code for individual trace files - you’ll get no credit/code
deductions!

m What fit algorithm to use?

= Best fit: choose the smallest block that is big enough to fit the requested
allocation size

= First fit / next fit: search linearly starting from some location, and pick the
first block that fits.

= Which is faster? Which uses less memory?
= “Good enough” fit: a blend between the two

m This lab has many more ways to get an A+ than, say, Cache Lab Part 2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Finding a Best Block

m Suppose you have implemented the explicit list approach

= You were using best fit with explicit lists

m You experiment with using segregated lists instead.
Still using best fits.

= Will your memory utilization score improve?

Note: you don’t have to implement seglists and run mdriver to
answer this. That’s, uh, hard to do within one recitation session.

= What other advantages does segregated lists provide?

m Losing memory because of the way you choose your free
blocks is called external fragmentation.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Metadata

m All blocks need to store some data about themselves in
order for malloc to keep track of them (e.g. headers)

= This takes memory too...
= Losing memory for this reason is called internal fragmentation.

m What data might a block need?

*= Does it depend on the malloc implementation you use?

= |s it different between free and allocated blocks?

m Can we use the extra space in free blocks?

= Or do we have to leave the space alone?

m How can we overlap two different types of data at the
same location?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

In a perfect world...

Setting up the blocks, metadata, lists... etc (500 LoC)
+ Finding and allocating the right blocks (500 LoC)
+ Updating your heap structure when you free (500 LoC) =

[dalud@angelshark:~/.../15213/s17/malloclabcheckpoint-handout] $./mdriver
Found benchmark throughput 13056 for cpu type Intel(R)Xeon(R)CPUES5520@2.27(

Throughput targets: min=6528, max=11750, benchmark=13056

Results for mm malloc:
valad utal Ops MSecs Kops trace
yes 78.1% 20 .004 5595 ./traces/syn-array-short.rep
yes 3.2% 20 .004 5273 ./traces/syn-struct-short.rep
* yes 96.0% 80000 .176 4658 ./traces/syn-array.reb
* yes 93.2% 80000 .154 12999 ./traces/syn-mix.rep
* yes 86.4% 80000 3.717 21521 ./traces/syn-string.rep
- yes 85.6% 80000 .649 21924 ./traces/syn-struct.rep
16 16 74.2% 1148359 .949 20525

Average utilization = 74.2%. Average throughput = 20525 Kops/sec
Perf index = 60.0 (util) + 40.0 (thru) = 100.6/1600

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

In reality...

Setting up the blocks, metadata, lists... etc (500 LoC)
+ Finding and allocating the right blocks (500 LoC)
+ Updating your heap structure when you free (500 LoC)
+ One bug, somewhere lost in those 1500 LoC =

[dalud@angelshark:~/.../15213/s17/malloclabcheckpoint-handout] $./mdriver
Found benchmark throughput 13056 for cpu type Intel(R)Xeon(R)CPUE5520@2.27

hroughput targets m1n-6528 max=11750, benchmark=13056

[dalud@angelsha;k ~/ /1521J/s17/malloc1abcheckp01nt handout] s B

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

LARGE AMOUNT OF CODE
COMPILES;THEFIRST TIME.

NOT SURE IEGENIUS OR HUGE
EXPLOSION COMING.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Common errors you might see

m Garbled bytes

= Problem: overwriting data in an allocated block

= Solution: remembering-datatabandthegoodol—days finding

where you’re overwriting by stepping through with gdb
m Overlapping payloads

* Problem: having unique blocks whose payloads overlap in memory

= Solution: #teralyprintdebussinseverywhere finding where you're
overlapping by stepping through with gdb

m Segmentation fault
= Problem: accessing invalid memory

= Solution: eryirgattde finding where you’re accessing invalid
memory by stepping through with gdb

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

m Tryrunning $ make

= |f you look closely, our code compiles your malloc
implementation with the -03 flag.

= This is an optimization flag. —O3 makes your code run as efficiently
as the compiler can manage, but also makes it horrible for
debugging (almost everything is “optimized out”).

[dalud@angelshark:~/.../15213/s17/recll] $ make

gcc -Wall -Wextra -Werror(-03)-g -DDRIVER -Wno-unused-function -Wno-u
./macro-check.pl -f mm.c

clang -Wall -Wextra -Werror(-03)-g -DDRIVER -Wno-unused-function -Wno
gcc -Wall -Wextra -Werror -03 -g -DDRIVER -Wno-unused-function -Wno-u

db) print block
= <optimized out>
db) print asize
= <optimized out=>

3
g
$4

= For malloclab, we’ve provide you a driver, mdriver-dbg, that
not only enables debugging macros, but compiles your code with
—00. This allows more useful information to be displayed in GDB

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Debugging Strategies

= Write a heap checker!

= Checks the invariants of your heap to make sure everything is
well-formed

= |f you write detailed error messages, you can see exactly why
your heap is incorrectly formed

» Use assertions in your functions!
= 122 style contracts can also help you catch where things go amiss
= Gives more information than a segfault
= |mport

= Use a debugger!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Debugging Guidelines

If you have this problem... You might want to...

Ran into segfault » Locate a segfault
- run

- <>
- Dbacktrace
- list

Trace results don’t match yours > Reproduce. results of a trace
- Run with gdb

Don’t know what trace output / - gdb args

should be

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

What's better than printf? Using GDB

e Use GDB to determine where segfaults happen!
e gdb mdriver will open the malloc driver in gdb
o Type run and your program will run until it hits the segfault!
e step/next - (abbrev. s/n) step to the next line of code
o next steps over function calls
e finish - continue execution until end of current function, then break
e print <expr> - (abbrev. p) Prints any C-like expression (including
results of function calls!)
o Consider writing a heap printing function to use in GDB!
e X <expr> - Evaluate <expr> to obtain address, then examine
memory at that address
o X /a <expr> - formats as address
o See help p and help x for information about more formats

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Debugging mdriver

m (gdb) x /gx block
= Shows the memory contents within the block
= |n particular, look for the header.
m (gdb) print *block
= Alternative: (gdb) print * (block t *) <address>

= Shows struct contents

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Using GDB - Fun with frames

m backtrace - (abbrev. bt) print call stack up until current function
m backtrace full - (abbrev. bt full) print local variables in each frame

(gdb) backtrace

#0 find_fit (...)

#1 mm_malloc (...)

#2 0x0000000000403352 in eval_ mm_ valid
(...) #3 run_tests (...)

#4 0x0000000000403c39 in main (...)

m frame 1 - (abbrev. f 1) switch to mm_malloc’s stack frame
m Good for inspecting local variables of calling functions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Using GDB - Setting breakpoints/watchpoints

= break mm_checkheap - (abbrev. b) break on “mm_checkheap()”
m b mm.c:25 - break on line 25 of file “mm.c” - very useful!
m b find_fit if size == 24 - break on function “find_fit()" if the local
variable “size” is equal to 24 - “conditional breakpoint”

= watch heap _listp - (abbrev. w) break if value of “heap_listp” changes -
“watchpoint”
m w block == 0x80000010 - break if “block” is equal to this value
m w *0x15213 - watch for changes at memory location 0x15213
m Can be very slow

m rwatch <thing> - stop on reading a memory location
m awatch <thing> - stop on any memory access

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Heap consistency checker

m mm-2.c activates debug mode, and so mm_checkheap
runs at the beginning and end of many of its functions.

1 Gdefine DEBUG

#1fdef DEBUG

% . .
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Even thOUgh the checker in mm-2.c is short and bUggy 35

Heap Checker

= int mm_checkheap(int verbose);

=« critical for debugging
= write this function early!

= Update it when you change your implementation
= check all heap invariants, make sure you haven't lost track of any part
of your heap
= check should pass if and only if the heap is truly well-formed
= should only generate output if a problem is found, to avoid cluttering up
your program's output
= meant to be correct, not efficient

= call before/after major operations when the heap should be
well-formed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Heap Invariants (Non-Exhaustive)

= Block level

« What are some things which should always be true of every block
in the heap?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Heap Invariants (Non-Exhaustive)

= Block level
= header and footer match

= payload area is aligned, size is valid
= NO contiguous free blocks unless you defer coalescing

= List level

« What are some things which should always be true of every
element of a free list?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Heap Invariants (Non-Exhaustive)

= Block level
= header and footer match

= payload area is aligned, size is valid
= NO contiguous free blocks unless you defer coalescing

= List level
= next/prev pointers in consecutive free blocks are consistent

= No allocated blocks in free list, all free blocks are in the free list

= NO cycles in free list unless you use a circular list

= each segregated list contains only blocks in the appropriate size
class

=« Heap level
« What are some things that should be true of the heap as a whole?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Heap Invariants (Non-Exhaustive)

= Block level
= header and footer match

= payload area is aligned, size is valid
= NO contiguous free blocks unless you defer coalescing

= List level
= next/prev pointers in consecutive free blocks are consistent

= NO allocated blocks in free list, all free blocks are in the free list

= NO cycles in free list unless you use a circular list

= each segregated list contains only blocks in the appropriate size
class

=« Heap level
= all blocks between heap boundaries, correct sentinel blocks (if
used)

29

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Strategy - Suggested Plan for Completing
Malloc

0. Start writing your checkheap!

1. Get an explicit list implementation to work with proper
coalescing and splitting

3. Get to a segregated list implementation to improve utilization
4. Work on optimizations (each has its own challenges!)

- Remove footers

- Decrease minimum block size

- Reduce header sizes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Strategy - Suggested Plan for Completing
Malloc

0. Start writing your checkheap! «keep writing your checkheap!

1. Get an explicit list implementation to work with proper
coalescing and splitting «eep writing your checkheap!
3. Get to a segregated list implementation to improve utilization
Keep writing your checkheap!
4. Work on optimizations (each has its own challenges!)
- Remove footers .
Keep writing your checkheap!

- Decrease minimum block size
- Reduce header sizes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

MallocLab Checkpoint

m Due next uesday!

m Checkpoint should take a bit less than half of the time you
spend overall on the lab. olease write checkheap

or we will scream

m Read the write-up. Slowly. Carefully.

s

m Use GDB - watch, backtrace

m Ask us for debugging help

= Only after you implement mm_checkheap though! You gotta learn
how to understand your own code - help us help you!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Appendix: Advanced GDB Usage

m backtrace: Shows the call stack

s up/down: Lets you go up/down one level in the call stack
m frame: Lets you go to one of the levels in the call stack

m list: Shows source code

m print <expression>:

= Runs any valid C command, even something with side effects like
mm_malloc(10) or mm_checkheap(1337)

m watch <expression>:
= Breaks when the value of the expression changes

m break <function / line> if <expression>:
= Only stops execution when the expression holds true

m Ctrl-X Ctrl-A or cgdb for visualization

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

