
15-213 Recitation 6: C Review

Your TAs
Monday, February 17th, 2020 (15-213, 18-213)
Wednesday, February 19th, 2020 (18-613)

Agenda
■ Logistics

■ Attack Lab Conclusion

■ C Review

■ Activity 1: Getopt

■ Activity 2: Pythagorean Solver

■ Looking Ahead: Cache Lab

Logistics

■ Attack Lab is due tomorrow!
■ Come to office hours for help
■ Phase 5 is only worth 5 points

■ 0.2% of your grade ≈ 0% of your grade

■ Cache Lab will be released shortly after!

Problem Sets
■ Optional

■ Good practice for exams

■ On the website:

http://www.cs.cmu.edu/~213/psets.html

■ New psets released on Thursdays

Attack Lab Conclusion

■ Don’t use functions vulnerable to buffer overflow (like gets)
■ Use functions that allow you to specify buffer lengths:

■ fgets instead of gets
■ strncpy instead of strcpy
■ strncat instead of strcat
■ snprintf instead of sprint

■ Use sscanf and fscanf with input lengths (%213s)

■ Stack protection makes buffer overflow very hard…
■ But very hard ≠ impossible!

C Review
C bootcamp is your go-to!

C Bootcamp!

• C bootcamp was on Sunday 2/16
• Covers useful conventions and tools for C

• Helpful for the coming labs

• Look at slides posted on website

C Review: Pointers

• Pointer: stores address of some value in memory
• Dereferencing a NULL pointer causes segfault

• Dereferencing a pointer: *p
• Access address of pointer: p = &v

C Review: Pointers
■ What is wrong with this code?

1 int main(int argc, char** argv) {

2 int *a = (int*) malloc(213 * sizeof(int));

3 for (int i=0; i<213; i++) {

4 if (a[i] == 0) a[i]=i;

5 else a[i]=-i;

6 }

7 return 0;

8 }

C Review: Pointers
■ malloc can fail!

1 int main(int argc, char** argv) {

2 int *a = (int*) malloc(213 * sizeof(int));

if (a == NULL) return 0;

3 for (int i=0; i<213; i++) {

4 if (a[i] == 0) a[i]=i;

5 else a[i]=-i;

6 }

7 return 0;

8 }

C Review: Pointers
■ Allocated memory is not initialized!

1 int main(int argc, char** argv) {

2 int *a = (int*) calloc(213, sizeof(int));

if (a == NULL) return 0;

3 for (int i=0; i<213; i++) {

4 if (a[i] == 0) a[i]=i;

5 else a[i]=-i;

6 }

7 return 0;

8 }

C Review: Pointers
■ All allocated memory must be freed!

1 int main(int argc, char** argv) {

2 int *a = (int*) calloc(213, sizeof(int));

if (a == NULL) return 0;

3 for (int i=0; i<213; i++) {

4 if (a[i] == 0) a[i]=i;

5 else a[i]=-i;

6 }

free(a);

7 return 0;

8 }

C Review: Arrays

• Initializing your array
• int *a = calloc(4, sizeof(int));

• Allocated on Heap

• int a[4];

• Allocated on stack

• Where does the following point to?
• a[0]

• *(a + 3)

• (listofName + 1)

• *(listOfName + 1)

char *listOfName[4] = {"Alice", "Bob", "Cherry"};
int a[4] = {1,2,3,4};

C Review: Structs + Unions

Struct:
• Groups list of variables under

one block in memory

Union:
• Store different data types in

same region of memory
• Many ways to refer to same

memory location

 i / c

struct temp {
int i;
char c;

};

union temp {
int i;
char c;

};

 i (4 bytes) c (1)

C Review: Valgrind

• What is Valgrind?

• Tool used for debugging memory use

• Valgrind may…

• Find corrupted memory

• Find potential memory leaks and double frees

• Detects invalid memory reads and writes

• To learn more… man valgrind

Valgrind Demo

■ Even if program seems to run successfully, Valgrind can uncover
memory leaks and invalid writes

C Review Conclusion

■ Did you know each concept? If not…
■ Refer to the C Bootcamp slides

■ Were the concepts so easy you were bored? If not…
■ Refer to the C Bootcamp slides

■ When in doubt…
■ Refer to the C Bootcamp slides

■ This will be very important for the rest of this class, so make sure you are
comfortable with the material covered or come to the C Bootcamp!

C Programming Style

■ Write comments and then implement functionality

■ Communicate meaning through naming choices

■ Code should be testable. Modularity supports this

■ Use consistent formatting

■ Common bugs: memory and file descriptor leaks, check errors and failure
conditions

■ Warning: Dr. Evil has returned to grade style on Cache Lab! ☺
■ Refer to full 213 Style Guide: http://cs.cmu.edu/~213/codeStyle.html

http://cs.cmu.edu/~213/codeStyle.html

Introduction to Git
Version control is your friend

What is Git?

• Most widely used version control system out there
• Version control:

• Help track changes to your source code over time
• Help teams manage changes on shared code

Git Commands

• Clone: git clone <clone-repository-url>

• Add: git add . or git add <file-name>

• Push / Pull: git push / git pull

• Commit: git commit -m “your-commit-message”
• Good commit messages are key!

• Bad:“commit”, “change”, “fixed”

• Good: “Fixed buffer overflow potential in AttackLab”

Activity 1

Part 0: reading man pages!

■ Reading man pages is important!
■ To get started, either:

■ $ man getopt on Terminal
■ Google “man getopt”

■ Overall, what does getopt do?
■ What arguments does it take?
■ How can you use it in a program?
■ https://linux.die.net/man/3/getopt

https://linux.die.net/man/3/getopt

Part 1: Activity Setup

■ Split up into groups of 2-3 people
■ One person needs a laptop
■ Log in to a Shark machine, and type:

$ wget https://www.cs.cmu.edu/~213/activities/rec6.tar
$ tar -xvf rec6.tar
$ cd rec6

https://www.cs.cmu.edu/~213/activities/rec6.tar

Part 1: getopt_example.c

$ make getopt_example
$./getopt_example (ARGUMENTS)

■ What does getopt_example.c do?
■ How does the program process its arguments?

■ i.e. formatting specifics?
■ What does the -v argument do? The -n argument?

■ Hint: try $./getopt_example -v -n 5

Part 1: getopt_example.c

■ What does getopt_example.c do?
■ Takes in a number as input + “counts” to that number.
■ Verbose (-v) : prints all numbers counting up to that number)

■ Formatting specifics
■ Use -(ARG) to get getopt to process the argument

■ -v: Enables verbose mode

■ -n:NUM with NUM as user input

 while ((opt = getopt(argc, argv, "vn:")) != -1) {

 switch (opt) {

 case 'v':

 verbose = 1;

 break;

 case 'n':

 n = atoi(optarg);

 break;

 default:

 fprintf(stderr, "usage: …");

 exit(1);

 }

 }

Returns -1 when
done parsing

Parses value to
store in n b/c colon

Activity 2

Let’s write a Pythagorean Triples Solver!
■ Open pyth_solver.c in a text editor of your choice.

■ Your code should:
■ Take in args with a, b, c flags
■ Determine if the a,b,c is a Pythagorean triple
■ Error check on: number and validity of args (exit on invalid args)
■ Invalid: too few or negative args
■ Verbose mode: output a^2, b^2, c^2

C Hints and Math Reminders

■ Can your Pythagorean Triple

parse these input?
• 3, 4, 5
• 5, 12, 13
• 7, 24, 25

How to compile and run your solver

 $ make clean
$ make pyth_solver
$./pyth_solver (ARGS)

More details on handout!

Good luck!

Looking Ahead

Cache Lab Overview
■ Programs exhibiting locality run a lot faster!

■ Temporal Locality – same item referenced again
■ Spatial Locality – nearby items referenced again

■ Cache Lab’s Goal:
■ Understand how L1, L2, … etc. caches work
■ Optimize memory dependent code to minimize

cache misses and evictions
■ Noticeable increase in speed

■ The use of git is required
■ Commit regularly with meaningful commit messages

If you get stuck…

■ Reread the writeup
■ Look at CS:APP Chapter 6
■ Review lecture notes (http://cs.cmu.edu/~213)
■ Come to Office Hours (Sunday to Friday, 5:30-9:30pm GHC-5207)
■ Post private question on Piazza
■ man malloc, man valgrind, man gdb

http://cs.cmu.edu/~213

Cache Lab Tips!

■ Review cache and memory lectures
■ Ask if you don’t understand something

■ Start early, this can be a challenging lab!

■ Don’t get discouraged!
■ If you try something that doesn't work, take a well deserved break,

and then try again

■ Good luck!

Appendix

Appendix: Valgrind

■ Finding memory leaks
■ $ valgrind –leak-resolution=high –leak-check=full
–show-reachable=yes –track-fds=yes ./myProgram arg1 arg

■ Remember that Valgrind can be used for other things, like finding
invalid reads and writes!

Appendix: $ man 3 getopt
■ int getopt(int argc, char * const argv[], const char *optstring);

■ int argc → argument count passed to main()
■ Note: includes executable, so ./a.out 1 2 has argc=3

■ char * const argv is argument string array passed to main

■ const char *optstring → string with command line arguments
■ Characters followed by colon require arguments

• Find argument text in char *optarg
■ getopt can’t find argument or finds illegal argument sets optarg to “?”
■ Example: “abc:d:”

• a and b are boolean arguments (not followed by text)
• c and d are followed by text (found in char *optarg)

■ Returns: getopt returns -1 when done parsing

Appendix: Clang / LLVM

■ Clang is a (gcc equivalent) C compiler
■ Support for code analyses and transformation
■ Compiler will check you variable usage and declarations
■ Compiler will create code recording all memory accesses to a file
■ Useful for Cache Lab Part B (Matrix Transpose)

