Carnegie Mellon

15-213 Recitation 6: C Review

Your TAs
Monday, February 17th, 2020
Wednesday, February 19th, 2020

Agenda

m Logistics

m Attack Lab Conclusion

m C Review

m Activity 1: Getopt

m Activity 2: Pythagorean Solver
m Looking Ahead: Cache Lab

Logistics

m Attack Lab is due tomorrow!

m Come to office hours for help

m Phase 5 is only worth 5 points
m 0.2% of your grade = 0% of your grade

m Cache Lab will be released shortly after!

Problem Sets

m Optional

m Good practice for exams

m On the website:
http://www.cs.cmu.edu/~213/psets.html

m New psets released on Thursdays

Attack Lab Conclusion

m Don’t use functions vulnerable to buffer overflow (like gets)

m Use functions that allow you to specify buffer lengths:
m fgets instead of gets
m strncpy instead of strcpy
m strncat instead of strcat
m snprintf instead of sprint

m Use sscanf and fscanf with input lengths (%213s)

m Stack protection makes buffer overflow very hard...
m But very hard # impossible!

Carnegie Mellon

C Review

C bootcamp is your go-to!

C Bootcamp!

- C bootcamp was on Sunday 2/16

e Covers useful conventions and tools for C
* Helpful for the coming labs

* Look at slides posted on website

C Review: Pointers

» Pointer: stores address of some value in memory
» Dereferencing a NULL pointer causes segfault

« Dereferencing a pointer: *p
» Access address of pointer: p = &v

Carnegie Mellon

C Review: Pointers

m What is wrong with this code?

1 int main(int argc, char** argv) {

2 int *a = (int*) malloc(213 * sizeof(int));
3 for (int i=0; i<213; i++) {

4 if (a[i] == 0) a[i]=1i;

5 else a[i]=-1;

6 }

7
8

return 0;

}

Carnegie Mellon

C Review: Pointers

m malloc can faill

1 int main(int argc, char** argv) {
2 int *a = (int*) malloc(213 * sizeof(int));
if (a == NULL) return 0;

3 for (int i=0; i<213; i++) {
4 if (a[i] == 0) a[i]=1i;
5 else a[i]=-1;

6 }

7 return 0;

8

Carnegie Mellon

C Review: Pointers

m Allocated memory is not initialized!

1 int main(int argc, char** argv) {
2 int *a = (int*) calloc(213, sizeof(int));
if (a == NULL) return 0;

3 for (int i=0; i<213; i++) {
4 if (a[i] == @) a[i]=1i;
5 else a[i]=-1;

6 }

7 return 0;

8

Carnegie Mellon

C Review: Pointers

m All allocated memory must be freed!

1 int main(int argc, char** argv) {
2 int *a = (int*) calloc(213, sizeof(int));
if (a == NULL) return 0;

3 for (int i=0; i<213; i++) {
4 if (a[i] == 0) a[i]=1i;
5 else a[i]=-1;
6 }

free(a);
7 return 0;

C Review: Arrays

 Initializing your array

* int *a = calloc(4, sizeof(int));
e Allocated on Heap

e int a[4];
e Allocated on stack

* Where does the following point to?

« a[e]
* *(? +3) char *1istOfName[4] = {"Alice", "Bob", "Cherry"};
e (listofName + 1) int a[4] = {1,2,3,4};

e *(listOfName + 1)

Carnegie Mellon

C Review: Structs + Unions

Struct:
» Groups list of variables under struct temp {
one block in memor int i; .
y char c; i (4 bytes) | c (1)
¥
Union:
» Store different data types in union temp {
same region of memory int 1; "
« Many ways to refer to same Y char c;

memory location

C Review: Valgrind

 What is Valgrind?
» Tool used for debugging memory use
« Valgrind may...
« Find corrupted memory
» Find potential memory leaks and double frees
« Detects invalid memory reads and writes

* To learn more... man valgrind

Carnegie Mellon

Valgrind Demo

m Even if program seems to run successfully, Valgrind can uncover
memory leaks and invalid writes

C Review Conclusion

m Did you know each concept? If not...
m Refer to the C Bootcamp slides

m Were the concepts so easy you were bored? If not...
m Refer to the C Bootcamp slides

m When in doubt...
m Refer to the C Bootcamp slides

m This will be very important for the rest of this class, so make sure you are
comfortable with the material covered or come to the C Bootcamp!

C Programming Style

m Write comments and then implement functionality
m Communicate meaning through naming choices
m Code should be testable. Modularity supports this
m Use consistent formatting

m Common bugs: memory and file descriptor leaks, check errors and failure
conditions

m Warning: Dr. Evil has returned to grade style on Cache Lab! ©
m Refer to full 213 Style Guide: http://cs.cmu.edu/~213/codeStyle.html

http://cs.cmu.edu/~213/codeStyle.html

Carnegie Mellon

Introduction to Git

Version control is your friend

What is Git?

- Most widely used version control system out there

« \ersion control:

« Help track changes to your source code over time
« Help teams manage changes on shared code

Local Computer

Checkout Version Database

&

Version 3

Version 2

Version 1

Git Commands

Clone: git clone <clone-repository-url>

Add: git add . or git add <file-name>

Push / Pull: git push / git pull

Commit: git commit -m “your-commit-message”
* Good commit messages are key!
« Bad:*commit”, “change”, “fixed”

« Good: “Fixed buffer overflow potential in AttackLab”

Activity 1

Part O: reading man pages!

m Reading man pages is important!
m o get started, either:
m$ man getopt on Terminal
m Google “man getopt”

m Overall, what does getopt do?

m What arguments does it take?

m How can you use it in a program?
m https://linux.die.net/man/3/getopt

https://linux.die.net/man/3/getopt

Part 1: Activity Setup

m Split up into groups of 2-3 people
m One person needs a laptop
m Log in to a Shark machine, and type:

$ wget https://www.cs.cmu.edu/~213/activities/rec6.tar
$ tar -xvf recé6.tar
$ cd recé6

https://www.cs.cmu.edu/~213/activities/rec6.tar

Carnegie Mellon

Part 1: getopt _example.c

$ make getopt example
$./getopt _example (ARGUMENTS)

m What does getopt_example.c do?

m How does the program process its arguments?
m i.e. formatting specifics?

m What does the -v argument do? The -n argument?
mHint:try $./getopt_example -v -n 5

Carnegie Mellon

Part 1: getopt _example.c

m What does getopt_example.c do?

m Takes in a number as input + “counts” to that number.
m Verbose (-v) : prints all numbers counting up to that number)

m Formatting specifics
m Use - (ARG) to get getopt to process the argument

m -v: Enables verbose mode

m -n:NUM with NUM as user input

Carnegie Mellon

while ((opt = getopt(argc, argv, "vn:")) != -1) {
switch (opt) { \
case 'v':

L Returns -1 when
verbose = 1; done parsing
break;

case 'n':

n = atoi (optargq) ; Parses value to
break; store in n b/c colon
default:
fprintf (stderr, "usage: ..");

exit(1l);

Activity 2

Let’s write a Pythagorean Triples Solver!

m Open pyth _solver.c in a text editor of your choice.

m Your code should:
m Take in args with a, b, c flags
m Determine if the a,b,c is a Pythagorean triple
m Error check on: number and validity of args (exit on invalid args)
m Invalid: too few or negative args
m Verbose mode: output a~2, b”2, c”2

C Hints and Math Reminders

m a’+ b? =c?

B > a=vVc%-Dh?
m > b=+Vc*—-a?
m =2c=+VaZ+b?
m = 32+4%2 =52

m Can your Pythagorean Triple

parse these input?
3 4 5 m String to float in C:

#include <stdlib.h>
*5, 12,13

float atof(const char *str);
7,24, 25

m Square root in C:
#include <math.h>
float sqgrt(float x);

Carnegie Mellon

How to compile and run your solver

$ make clean
$ make pyth_solver
$./pyth_solver (ARGS)

More details on handout!

Good luck!

Carnegie Mellon

Looking Ahead

Carnegie Mellon

Cache Lab Overview

m Programs exhibiting locality run a /ot faster!
m Temporal Locality — same item referenced again
m Spatial Locality — nearby items referenced again

copyij

16000 -

14000 -

m Cache Lab’s Goal:
m Understand how L1, L2, ... etc. caches work

m Optimize memory dependent code to minimize
cache misses and evictions

m Noticeable increase in speed

12000 -
10000 -

8000 -G

Read throughput (MB/s)

6000 -

4000 -

2000 -+

8k

512k
— 2m

8m B
" 3om Size (bytes)
28m

S a2k
] " . s3 Krr"'r)
m The use of git is required s
. . . . ide (x8 bytes, s9
m Commit regularly with meaningful commit messages

s111

If you get stuck...

m Reread the writeup

m Look at CS:APP Chapter 6

m Review lecture notes (http://cs.cmu.edu/~213)

m Come to Office Hours (Sunday to Friday, 5:30-9:30pm GHC-5207)
m Post private question on Piazza

m man malloc, man valgrind, man gdb

http://cs.cmu.edu/~213

Cache Lab Tips!

m Review cache and memory lectures
m Ask if you don’t understand something

m Start early, this can be a challenging lab!

m Don’t get discouraged!

m If you try something that doesn't work, take a well deserved break,
and then try again

m Good luck!

Carnegie Mellon

Appendix

Appendix: Valgrind

m Finding memory leaks
m$ valgrind -leak-resolution=high -leak-check=full
-show-reachable=yes -track-fds=yes ./myProgram argl arg

s Remember that Valgrind can be used for other things, like finding
invalid reads and writes!

Appendix: $ man 3 getopt

m int getopt(int argc, char * const argv[], const char *optstring);

m int argc — argument count passed to main()
m Note: includes executable, so ./a.out 1 2 has argc=3

m char * const argv is argument string array passed to main

m const char *optstring — string with command line arguments
m Characters followed by colon require arguments
* Find argument text in char *optarg
m getopt can’t find argument or finds illegal argument sets optarg to “?”
m Example: “abc:d:”
* a and b are boolean arguments (not followed by text)
* ¢ and d are followed by text (found in char *optarg)

m Returns: getopt returns -1 when done parsing

Appendix: Clang / LLVM

m Clang is a (gcc equivalent) C compiler
m Support for code analyses and transformation
m Compiler will check you variable usage and declarations
m Compiler will create code recording all memory accesses to a file
m Useful for Cache Lab Part B (Matrix Transpose)

