Carnegie Mellon

Thread-Level Parallelism

15-213 /18-213 / 14-513 / 15-513: Introduction to Computer Systems
271 Lecture, April 23, 2020

Logisitics

m Proxy Checkpoint Due Toaday 11pm EDT

m Final Exam full details soon

= Review session: Sunday 4/26 at 6pm EDT
details on piazza

= Final will be at university scheduled time

Carnegie Mellon

Today

m Parallel Computing Hardware
= Multicore
= Multiple separate processors on single chip
= Hyperthreading
= Efficient execution of multiple threads on single core

m Consistency Models

= What happens when multiple threads are reading & writing shared state

m Thread-Level Parallelism
= Splitting program into independent tasks
= Example: Parallel summation
= Examine some performance artifacts
= Divide-and conquer parallelism
= Example: Parallel quicksort

Carnegie Mellon

e ———
' AmERE L A e : s

N -
.“?_.gv

Typical Multicore Processor

L3 unified cache
(shared by all cores)

Core0 Corel - Core2 Core3 -
1 Core O Core n-1 E o
| | LRees Regs : Shared L3 Cache
: : '
: L1 L1 L1 L1 :
E d-cache| | i-cache d-cache| | i-cache :
: :
E L2 unified cache L2 unified cache E
: :
: :
: :

Main memory

m Multiple processors operating with coherent view of memory

Carnegie Mellon

Out-of-Order Processor Structure

Instruction Control
Instruction
Cache
Registers Op. Queue
7'y PC
\ 4 A 4
Functional Units

m Instruction control dynamically converts program into stream
of operations

m Operations mapped onto functional units to execute in parallel

Carnegie Mellon

Hyperthreading Implementation

Instruction Control
Instruction
Reg A Op. Queue A l Cache
A
Reg B Op. Queue B
T PCA PCB

A 4 1 Y.V

Functional Units

m Replicate instruction control to process K instruction streams

m K copies of all registers
m Share functional units

Carnegie Mellon

Benchmark Machine

m Get data about machine from /proc/cpuinfo

m Shark Machines
" |ntel Xeon E5520 @ 2.27 GHz
= Nehalem, ca. 2010
= 8 Cores
® Each can do 2x hyperthreading

Carnegie Mellon

Exploiting parallel execution

m So far, we’ve used threads to deal with 1/0 delays
= e.g.,one thread per client to prevent one from delaying another
m Multi-core CPUs offer another opportunity

= Spread work over threads executing in parallel on N cores
" Happens automatically, if many independent tasks

= e.g., running many applications or serving many clients
= Can also write code to make one big task go faster

= by organizing it as multiple parallel sub-tasks
m Shark machines can execute 16 threads at once

= 8 cores, each with 2-way hyperthreading
" Theoretical speedup of 16X

= never achieved in our benchmarks

Carnegie Mellon

Memory Consistency

inta=1;

int b =100;
Threadl: Thread2:
Wa: a=2; Wb: b = 200;
Rb: print(b); | | Ra: print(a);

m What are the possible values printed?
= Depends on memory consistency model

= Abstract model of how hardware handles concurrent accesses

Carnegie Mellon

Non-Coherent Cache Scenario

m Write-back caches, without
coordination between them

Thread1 Cache
a: 2 b:100

™~

a:1

inta=1;

int b = 100;
Threadl: Thread2:
Wa: a=2; Wb: b = 200;
Rb: print(b); | | Ra: print(a);

Thread2 Cache

a:1 b:200

7

In Me

b:100

print 1

print 100

At later points, a:2 and b:200
are written back to main memory

10

Carnegie Mellon

Snoopy Caches —
int b = 100;

m Tag each cache block with state /\
Invalid Cannot use value Thread1: Thread2:
Shared Readable copy Wa: a=2; Wb: b = 200;
Exclusive Writeable copy Rb: print(b); | | Ra: print(a);

Thread1 Cache Thread2 Cache
E| a:2
E [b:200
Main Memory
a:1 b:100

1

Snoopy Caches

Tag each cache block with state
Invalid Cannot use value
Shared Readable copy
Exclusive Writeable copy

Carnegie Mellon

inta=1;

int b =100;
Threadl: Thread2:
Wa: a=2; Wb: b = 200;
Rb: print(b); | | Ra: print(a);

Thread1 Cache Thread2 Cache

S| a:2 3:2

_ S
\

\lvmrrmﬁry/

a:1 b:100

print 2
print 200

m When cache sees request for
one of its E-tagged blocks

m Supply value from cache
(Note: value in memory
may be stale)

m SettagtoS

12

Memory Consistency

inta=1;

int b =100;
Threadl: Thread2:
Wa: a=2; Wb: b = 200;
Rb: print(b); | | Ra: print(a);

m What are the possible values printed?

= Depends on memory consistency model

Carnegie Mellon

Thread consistency
constraints

Wa—— Rb

Wb—— Ra

= Abstract model of how hardware handles concurrent accesses

13

Carnegie Mellon

Memory Consistency

inta=1;

int b = 100; Thread consistency

/\ constraints

Wa—— Rb
Thread1l: Thread2:
Wa: a=2; Wb: b = 200;
Rb: print(b); | | Ra: print(a);

Wb—— Ra

m What are the possible values printed?

= Depends on memory consistency model

= Abstract model of how hardware handles concurrent accesses
m Sequential consistency

= As if only one operation at a time, in an order consistent with the
order of operations within each thread

= Thus, overall effect consistent with each individual thread but
otherwise allows an arbitrary interleaving

14

Carnegie Mellon

Sequential Consistency Example

- - Thread consistency
!nt Z ~ 1’00 constraints
int —/I\ Wa———Rb
Thread1: Thread2: Wb Ra
Wa: a=2; Wb: b = 200;
Rb: print(b); | | Ra: print(a); Rb Wb Ra 100, 2
Wa < Rb ————Ra 200, 2
Wb <
Ra —————Rb 2,200
Ra ———— Wa ———Rb 1,200
Wb < Ra ———Rb 2,200
Wa <
Rb ————Ra 200, 2

m Impossible outputs

= 100,1and 1,100
= Would require reaching both Ra and Rb before either Wa or Wb

15

Carnegie Mellon

Non-Coherent Cache Scenario

inta=1;
m Write-back caches, without int b = 100;
coordination between them /\
Thread1l: Thread2:
Wa: a=2; Wb: b = 200;
Rb: print(b); | | Ra: print(a);

Thread1 Cache Thread2 Cache
a: 2 b:100 a1 b:200 print 1

N ‘ print 100

in Me . .
m Sequentially consistent? No!

a:1 b:100

16

Carnegie Mellon

Non-Sequentially Consistent Scenario

m Coherent caches, but thread
consistency constraints violated
due to operation reordering

inta=1;

int b =100;
Threadl: Thread2:
Wa: a=2; Wb: b = 200; 4
Rb: print(b); | | Ra: print(a); 1

a:2 b:200
Threadl Cache Thread2 Cache
b:100 a:1
Maih MemqQry
a:1 b:100

print 1

print 100

m Arch lets reads finish before writes b/c single thread accesses
different memory locations

17

Carnegie Mellon

Non-Sequentially Consistent Scenario

Buffer

Threadl Write

a:2

Thread2 Write

Buffer b:200

Threadl Cache

Thread2 Cache

3
2

inta=1;

int b =100;
Threadl: Thread2:
Wa: a=2; Wb: b = 200; 4
Rb: print(b); | | Ra: print(a); 1

m Why Reordered? Writes

take long time. Buffer
write, let read go ahead.
Instruction-level parallelism

m Fix: Add SFENCE instructions between Wa & Rb and Wb & Ra

18

Carnegie Mellon

Memory Models

m Sequentially Consistent:
= Each thread executes in proper order, any interleaving

m To ensure, requires
" Proper cache/memory behavior
® Proper intra-thread ordering constraints

19

Carnegie Mellon

Today

m Thread-Level Parallelism
= Splitting program into independent tasks
= Example: Parallel summation
= Examine some performance artifacts
= Divide-and conquer parallelism
= Example: Parallel quicksort

20

Summation Example

m Sum numbers O, ..., N-1
= Should add up to (N-1)*N/2
m Partition into K ranges

m |_N/KJ values each
= Each of the t threads processes 1 range

= Accumulate leftover values serially
m Method #1: All threads update single global variable

= 1A: No synchronization
= 1B: Synchronize with pthread semaphore
= 1C: Synchronize with pthread mutex
= “Binary” semaphore. Only values0 & 1

21

Accumulating in Single Global Variable:

Declarations

typedef unsigned long data_t;
/* Single accumulator */
volatile data t global sum;

22

Carnegie Mellon

Accumulating in Single Global Variable:
Declarations

typedef unsigned long data_t;
/* Single accumulator */
volatile data t global sum;

/* Mutex & semaphore for global sum */
sem t semaphore;
pthread mutex t mutex;

23

Accumulating in Single Global Variable:

Declarations

typedef unsigned long data t;
/* Single accumulator */
volatile data t global sum;

/* Mutex & semaphore for global sum */
sem t semaphore;
pthread mutex t mutex;

/* Number of elements summed by each thread */
size t nelems per thread;

/* Keep track of thread IDs */
pthread t tid[MAXTHREADS] ;

/* Identify each thread */
int myid[MAXTHREADS] ;

24

Accumulating in Single Global Variable:

Operation

nelems per thread = nelems / nthreads;

/* Set global value */
global sum = 0;

Thread ID Thread routine

/* Create threads and wait £ them to finish */
for (1 = 0; i < nthreads A++) {
myid[i] = 1;
Pthread create(&tid[i], NULL, thread fun, &myid[i]);
} }'\
for (i = 0; 1 < nthreads; i++)
Pthread join(tid[i], NULL); Thread arguments
- (void *p)

result = global sum;

/* Add leftover elements */
for (e = nthreads * nelems per thread; e < nelems; e++)
result += e;

25

Carnegie Mellon

Thread Function: No Synchronization

void *sum race(void *vargp)

{
int myid = *((int *)wvargp):
size t start = myid * nelems per thread;
size t end = start + nelems per thread;
size t i;

for (i = start; i < end; i++) {
global sum += i;

}

return NULL;

26

Carnegie Mellon

Unsynchronized Performance

Parallel Sums #1
2.5
2 \
1.5
== Race
1

0.5

Elapsed Seconds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Threads

m N=230
m Best speedup = 2.86X
m Gets wrong answer when > 1 thread! Why?

27

Carnegie Mellon

Thread Function: Semaphore / Mutex

Semaphore

void *sum sem(void *vargp)

{
int myid = *((int *)vargp):
size t start = myid * nelems per thread;
size t end = start + nelems per thread;
size t i;

for (1 = start; 1 < end; i++) {
sem wait (&semaphore) ;
global sum += i;

sem post (&semaphore) ;

}
return NULL;

Mutex
pthread mutex lock (&mutex) ;
global sum += i;

pthread mutex unlock (&mutex) ;

28

Carnegie Mellon

Semaphore / Mutex Performance

Parallel Sums #2

/"‘v\/\/ Vo

—fli—Semaphore
200 / Mutex
100 [

1 2 3 4 5 6 7 & 9 1011 12 13 14 15 16

700

600

500

I
(]
Lo]

Elapsed Seconds
(V%)
]
o

E

Threads

What is main reason for

m Terrible Performance
poor performance?

= 2.5seconds = ~10 minutes
m Mutex 3X faster than semaphore
m Clearly, neither is successful N

Carnegie Mellon

Separate Accumulation

m Method #2: Each thread accumulates into separate variable
= 2A: Accumulate in contiguous array elements
= 2B: Accumulate in spaced-apart array elements
= 2C: Accumulate in registers

/* Partial sum computed by each thread */
data t psum[MAXTHREADS*MAXSPACING] ;

/* Spacing between accumulators */
size_ t spacing = 1;

30

Carnegie Mellon

Separate Accumulation: Operation

nelems per thread = nelems / nthreads;

/* Create threads and wait for them to finish */
for (1 = 0; i < nthreads; i++) {
myid[i] = 1;
psum[i*spacing] = 0;
Pthread create(&tid[i], NULL, thread fun, &myid[i]);
}
for (i = 0; i < nthreads; i++)
Pthread join(tid[i], NULL);

result = 0;

/* Add up the partial sums computed by each thread */
for (1 = 0; i < nthreads; i++)
result += psum[i*spacing];

/* Add leftover elements */
for (e = nthreads * nelems per thread; e < nelems; e++)
result += e;

3

Carnegie Mellon

Thread Function: Memory Accumulation

Where is the mutex?

void *sum global (void *vargp)

{
int myid = *((int *)wvargp):
size t start = myid * nelems per thread;
size t end = start + nelems per thread;
size_t i;

size t index = myid*spacing;

psum[index] = O;

for (1 = start; 1 < end; i++) {
psum[index] += 1i;

}

return NULL;

32

Carnegie Mellon

Memory Accumulation Performance

Parallel Sums #3

]
ra (9

Elapsed Seconds
=
= n
9

—4—Race
M Adjacent memory acc
\\\ == Spaced memory acc

1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16

©
n

o

Threads

m Clear threading advantage
= Adjacent speedup: 5 X
= Spaced-apart speedup: 13.3 X (Only observed speedup > 8)

m Why does spacing the accumulators apart matter?

33

Carnegie Mellon

False Sharing

psum

Y Y

Cache Block m Cache Block m+1

m Coherence maintained on cache blocks
m To update psumli], thread i must have exclusive access

" Threads sharing common cache block will keep fighting each other
for access to block

34

Carnegie Mellon

False Sharing Performance

False Sharing Effects

=151

=52

—8—54

S8
——516

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Threads

= Best spaced-apart performance 2.8 X better than best adjacent

m Demonstrates cache block size = 64
= 8-byte values
" No benefit increasing spacing beyond 8

35

Carnegie Mellon

Thread Function: Register Accumulation

void *sum local (void *vargp)
{
int myid = *((int *)wvargp):
size t start = myid * nelems per thread;
size t end = start + nelems per thread;
size t i;
size t index = myid*spacing;
data t sum = 0;
for (1 = start; i < end; i++) {
sum += 1i;
}
psum[index] = sum;
return NULL;

36

Carnegie Mellon

Register Accumulation Performance

Parallel Sums #4

e

2.5 X
\\ : —=Race
\ \ —fli—Spaced memory acc

T — _
‘\‘1"-"!—.—-.._-__._-_.,. o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

=
un

Elapsed Seconds

=

ot
u-l

o

Threads

m Clear threading advantage
= Speedup=7.5X
m 2X better than fastest memory accumulation

Beware the speedup metric!

37

Carnegie Mellon

Lessons learned

m Sharing memory can be expensive
= Pay attention to true sharing
= Pay attention to false sharing

m Use registers whenever possible
= (Remember cachelab)
= Use local cache whenever possible

m Deal with leftovers

m When examining performance, compare to best possible
sequential implementation

38

Carnegie Mellon

Quiz Time!

Check out: Day 27 — Thread Level Parallelism

https://canvas.cmu.edu/courses/31658

39

https://canvas.cmu.edu/courses/31658

Carnegie Mellon

A More Substantial Example: Sort

m Sort set of N random numbers
m Multiple possible algorithms
= Use parallel version of quicksort

m Sequential quicksort of set of values X

= Choose “pivot” p from X

Rearrange X into
= L:Values<p
= R:Values>p

Recursively sort L to get L’

Recursively sort R to get R’

Return Ll : p: R’

40

Carnegie Mellon

Sequential Quicksort Visualized

X

L [R

41

Carnegie Mellon

Sequential Quicksort Visualized

-'

X
[[
3]
s w] R
N <~ e
PHEET r

42

Carnegie Mellon

Sequential Quicksort Code

void gsort serial (data t *base, size t nele) {
if (nele <= 1)
return;
if (nele == 2) {
if (base[0] > base[l])
swap (base, base+l) ;
return;

}

/* Partition returns index of pivot */
size t m = partition(base, nele);
if (m > 1)
gsort serial (base, m);
if (nele-1 > m+l)
gsort serial (base+m+l, nele-m-1);

}

m Sort nele elements starting at base
= Recursively sort L or R if has more than one element

43

Carnegie Mellon

Parallel Quicksort

m Parallel quicksort of set of values X
= |f N < Nthresh, do sequential quicksort
= Else

= Choose “pivot” p from X
= Rearrange X into
— L: Values<p
— R: Values > p
= Recursively spawn separate threads
— Sort Lto get L
— Sort Rto get R’
= Returnl':p: R’

44

Parallel Quicksort Visualized

45

Carnegie Mellon

Thread Structure: Sorting Tasks

Task Threads
m Task: Sort subrange of data

= Specify as:
= base: Starting address

= nele: Number of elements in subrange
m Run as separate thread

46

Small Sort Task Operation

X
A
Task Threads

m Sort subrange using serial quicksort

47

Carnegie Mellon

Large Sort Task Operation

’/
. L) ¢’
Partition Subrange et
-
/””
[o o
L
l, z”
I, /”
Spawn 2 tasks y _
ll ;”

48

Carnegie Mellon

Top-Level Function (Simplified)

void tgsort(data_t *base, size_t nele) {
init task(nele);
global base = base;
global end = global base + nele - 1;
task queue ptr tq = new_task queue();
tgsort helper (base, nele, tq);
join tasks(tq) ;
free task queue(tq);

Sets up data structures

[

m Calls recursive sort routine

m Keeps joining threads until none left
[

Frees data structures

49

Carnegie Mellon

Recursive sort routine (Simplified)

/* Multi-threaded quicksort */
static void tgsort helper (data t *base, size t nele,
task queue ptr tqg) {
if (nele <= nele max sort serial) ({
/* Use sequential sort */
gsort serial (base, nele);
return;

}
sort _task t *t = new_task(base, nele, tq);
spawn_task(tq, sort thread, (void *) t);

m Small partition: Sort serially
m Large partition: Spawn new sort task

50

Carnegie Mellon

Sort task thread (Simplified)

/* Thread routine for many-threaded quicksort */
static void *sort thread(void *vargp) ({
sort task t *t = (sort task t *) vargp;
data t *base = t->base;
size t nele = t->nele;
task queue ptr tg = t->tq;
free (vargp) ;
size t m = partition(base, nele);
if (m > 1)
tgsort helper (base, m, tq);
if (nele-1 > m+l)
tgsort helper (base+m+l, nele-m-1, tq);
return NULL;

m Get task parameters
m Perform partitioning step

m Call recursive sort routine on each partition (if size of part > 1)

51

Carnegie Mellon

Parallel Quicksort Performance

22.00

Parallel Quicksort

20.00 \\ Q
18.00
16.00 \
14.00 \\
12.00

\ ——Elapsed seconds
10.00

\ Multicore limit
8.00 \ = Hyperthread limit
6.00 \ /
4.00

\.._________________..—-—""‘

2.00

0.00

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Serial Fraction

m Serial fraction: Fraction of input at which do serial sort
m Sort 227 (134,217,728) random values
m Best speedup = 6.84X

52

Carnegie Mellon

Parallel Quicksort Performance

22.00

Parallel Quicksort

20.00 \\ Q
18.00
16.00 \
14.00 \\
12.00

\ ——Elapsed seconds
10.00

\ Multicore limit
8.00 \ = Hyperthread limit
6.00 \ /
4.00

\.._________________..—-""‘

2.00

0.00

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Serial Fraction

m Good performance over wide range of fraction values
= F too small: Not enough parallelism
" Ftoo large: Thread overhead too high

53

Carnegie Mellon

Amdhal’s Law (Travel Analogy)
Speed-Up

m Flying jet non-stop from PIT -> LHR: 7.5 Hours 1

m Or, old fashioned SST way:
= Flyjet from PIT -> JFK: 1.5 Hours

= Fly SST from JFK -> LHR: 3.5 Hours 5 Hours 1.5x
m Or, Using FTL:

= Fly jet from PIT -> JFK: 1.5 Hours

= Fly SST from JFK -> LHR: .01 Hours 1.51 Hours ~5xX

m Best possible speed up is 5X, even with FTL because have to get
to new York.

54

Carnegie Mellon

Amdahl’s Law

m Overall problem
= T Total sequential time required
®" p Fraction of total that can be spedup (0<p <1)
= k Speedup factor

m Resulting Performance
" T, =pT/k+(1-p)T
= Portion which can be sped up runs k times faster
= Portion which cannot be sped up stays the same
= Maximum possible speedup
= k=00

. Too = (1_p)T

55

Carnegie Mellon

Amdhal’s Law (Travel Analogy)
Speed-Up

m Flying jet non-stop from PIT -> LHR: 7.5 Hours 1

m Or, old fashioned SST way:
= Flyjet from PIT -> JFK: 1.5 Hours

= Fly SST from JFK -> LHR: 3.5 Hours 5 Hours 1.5x
m Or, Using FTL:

= Fly jet from PIT -> JFK: 1.5 Hours

= Fly SST from JFK -> LHR: .01 Hours 1.51 Hours ~5xX

m Best possible speed up is 5X, even with FTL because have to get
to new York.
= T=7.5, p=6/7.5=.8, k=0 = T_=(1-p)T=1.5 max speed-up =5x

56

Carnegie Mellon

Amdahl’s Law Example

m Overall problem
= T=10 Total time required
" p=0.9 Fraction of total which can be sped up
= k=9 Speedup factor

m Resulting Performance
" T,=09%10/9+0.1*10=1.0+1.0=2.0 (a5xspeedup)

m Maximum possible speedup
= T.=0.1*10.0=1.0 (a 10x speedup)
= With infinite parallel computing resources!
= Limit speedup shows algorithmic limitation

57

Carnegie Mellon

Amdahl’s Law & Parallel Quicksort

m Sequential bottleneck
= Top-level partition: No speedup
= Second level: < 2X speedup
= kthlevel: <2KIX speedup

m Implications

" Good performance for small-scale parallelism

" Would need to parallelize partitioning step to get large-scale
parallelism

= Parallel Sorting by Regular Sampling

— H. Shi & J. Schaeffer, J. Parallel & Distributed Computing,
1992

58

Carnegie Mellon

Lessons Learned

m Must have parallelization strategy
= Partition into K independent parts
= Divide-and-conquer

m Inner loops must be synchronization free
= Synchronization operations very expensive

m Watch out for hardware artifacts
" Need to understand processor & memory structure
= Sharing and false sharing of global data

m Beware of Amdahl’s Law

= Serial code can become bottleneck

m Youcandoit!
= Achieving modest levels of parallelism is not difficult
= Set up experimental framework and test multiple strategies

61

