Carnegie Mellon

Concurrent Programming

15-213: Introduction to Computer Systems
244 Lecture, April 14, 2020

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Concurrent Programming is Hard!

m The human mind tends to be sequential
m The notion of time is often misleading

m Thinking about all possible sequences of events in a
computer system is at least error prone and
frequently impossible

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mello

Data Race

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Deadlock

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Deadlock

m Example from signal handlers.
m Why don’t we use printf in handlers?

void catch child(int signo) {

printf ("Child exited!'\n") ; // this call may reenter printf/puts! BAD! DEADLOCK!
while (waitpid(-1, NULL, WNOHANG) > 0) continue; //reap all children

}
Acquire Receive

m Printf code: I, 4 lOCK signal 11 o)

- . next ®--____ .

Acquire lock T ' acquire
T v
= Do something | lock
= Release lock v

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Deadlock

m Example from signal handlers.

m Why don’t we use printf in handlers?

void catch child(int signo) {

printf ("Child exited!'\n") ; // this call may reenter printf/puts! BAD! DEADLOCK!
while (waitpid(-1, NULL, WNOHANG) > 0) continue; //reap all children

}
l Acquire Receive
m Printf code: lourr + 1OCK signal 11 o)
= Acquire lock next ' acquire
Y Jock

RS ' Deadlocked!
= Release lock

m What if signal handler interrupts call to printf?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Testing Printf Deadlock

void catch child(int signo) {
printf ("Child exited!\n") ; // this call may reenter printf/puts! BAD! DEADLOCK!
while (waitpid(-1, NULL, WNOHANG) > 0) continue; //reap all children

}

int main(int argc, char** argv) {

Child #0 started

for (1 = 0; i < 1000000; i++) { Child #1 started

1f/}f9rk(;.iz 0) !t _ diatel Child #2 started
exit(0) ;

Child exited!
} Child #4 started

// in parent ; '
: o . . Child exited!
sprintf (buf, "Child #%d started\n", 1i); Child #5 started

printf ("%$s", buf);
}

return 0;

} Child #5888 started
Child #5889 started

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Why Does Printf require Locks?

m Printf (and fprintf, sprintf) implement buffered 1/0

v

< Buffered Portion

no longer in buffer already read unread unseen

J

Current File Position

m Require locks to access the shared buffers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Livelock

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Livelock

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Starvation

m Yellow must yield to
green

m Continuous stream
of green cars

Overall system
makes progress, but
some individuals
wait indefinitely

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Concurrent Programming is Hard!

m Classical problem classes of concurrent programs:

" Races: outcome depends on arbitrary scheduling decisions
elsewhere in the system

= Example: who gets the last seat on the airplane?

" Deadlock: improper resource allocation prevents forward progress
= Example: traffic gridlock

= [jvelock / Starvation / Fairness: external events and/or system
scheduling decisions can prevent sub-task progress

= Example: people always jump in front of you in line
m Many aspects of concurrent programming are beyond the
scope of our course..
= but, notall ©
= We'll cover some of these aspects in the next few lectures.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Concurrent Programming is Hard!

It may be hard, but ...

it can be useful and more and more necessary!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Reminder: Iterative Echo Server

open_clientfd <

Client /
Server
Session

> open_listenfd

Await connection

request from
next client

Client Server
socket socket
bind
listen
Connection l
request
connect [~ ""------ > accept >
v v
rio writen »rio readlineb«
rio_readlineb < rio_writen
v \4
close -----FQF ----- +»rio readlineb

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

close

14

Carnegie Mellon

Iterative Servers

m Iterative servers process one request at a time

Client 1 Server
ConneCt .. >
accept
Write | read
call read m::
ret read [« write
read
close ... close
.......... »)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Iterative Servers

m Iterative servers process one request at a time

Client 1 Server Client 2
Connect .. >
accept| e connect
PUISIFRRIITELL
write "mm"mm"m"mm"fi?f _______________ write
call read PYFTPRRRSPRRILELL L
.............................. s call read
ret read [v” write ~
read
close um"mm"mm"m"9l9se Wait for server
” accept > to finish with
Client 1
read
write
............................... _/
| [— :ret read

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Where Does Second Client Block?

m Second client attemptsto = Call to connect returns

connect to iterative server = Even though connection not
yet accepted

Client _
) = Server side TCP manager
SEELGE queues request
= Feature known as “TCP
listen backlog”
open_clientfd { m Call to rio_writen returns
Connection = Server side TCP manager
request buffers input data
connect [~~~ ""------- > . .
\ I m Call torio_readlineb
rio writen > bIOCkS
] = Server hasn’t written
A5 s P anything for it to read yet.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Fundamental Flaw of Iterative Servers

Client 1 Server Client 2
Connect .. >
accept| e connect
write ... call read =" s
call read PYRFSTRRRRIRTIIE L
............................... call read
ret read PETTLLL L Write
User goes call read Client 2 blocks
out to lunch Server blocks waiting to read
waiting for from server
Client 1 blocks data from
waiting for user |} Client 1} ,

to type in data

m Solution: use concurrent servers instead

= Concurrent servers use multiple concurrent flows to serve multiple
clients at the same time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18

Carnegie Mellon

Approaches for Writing Concurrent Servers

Allow server to handle multiple clients concurrently

1. Process-based
= Kernel automatically interleaves multiple logical flows
= Each flow has its own private address space

2. Event-based
" Programmer manually interleaves multiple logical flows
= All flows share the same address space
= Uses technique called I/O multiplexing

3. Thread-based

= Kernel automatically interleaves multiple logical flows
= Each flow shares the same address space
" Hybrid of of process-based and event-based

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Approaches for Writing Concurrent Servers

Allow server to handle multiple clients concurrently

1. Process-based

= Kernel automatically interleaves multiple logical flows
= Each flow has its own private address space

2. Event-based
" Programmer manually interleaves multiple logical flows
= All flows share the same address space
= Uses technique called I/O multiplexing

3. Thread-based

= Kernel automatically interleaves multiple logical flows
= Each flow shares the same address space
" Hybrid of of process-based and event-based

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Approach #1: Process-based Servers

m Spawn separate process for each client

client 1 server
call connect|.....eri call accept
................... > ret accept
call fgets
J child 1 fork
User goes call read call accept
out to lunch
Child blocks
Client 1 waiting for
blocks data from
waiting for Client 1
user to type
in data

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Approach #1: Process-based Servers

m Spawn separate process for each client

client 1

call connect

call fgets

User goes
out to lunch

Client 1
blocks
waiting for
user to type
in data

A 4

server
call a
... J et ac
PR T s
child 1 fork
call read call a
ret ac
Child blocks
waiting for
fork .
data from W
Client 1 [oain
read
write

close

client 2

ccept

cept

ccept
cept

—

\

call connect

call fgets

write

call read

ret read

A 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

lclose

22

Carnegie Mellon

Iterative Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

listenfd = Open listenfd(argv[1l])
while (1) {
clientlen = sizeof (struct sockaddr storage) ;

connfd = Accept(listenfd, (SA *) &clientaddr, é&clientlen)
echo (connfd) ;

Close (connfd) ;

}
exit (0) ;

= Accept a connection request
"Handle echo requests until client terminates

echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Making a Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

listenfd = Open listenfd(argv[1l])
while (1) {
clientlen = sizeof (struct sockaddr storage) ;
connfd = Accept(listenfd, (SA *) &clientaddr, é&clientlen)

echo (connfd) ; /* Child services client */
Close(connfd); /* child closes connection with client */
exit (0) ;

echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Making a Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

listenfd = Open listenfd(argv[1l])
while (1) {
clientlen = sizeof (struct sockaddr storage) ;
connfd = Accept(listenfd, (SA *) &clientaddr, é&clientlen)

if (Fork() == 0) {
echo (connfd) ; /* Child services client */
Close (connfd) ; /* Child closes connection with client */
exit (0) ; /* Child exits */

echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Making a Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

listenfd = Open listenfd(argv[1l])
while (1) {
clientlen = sizeof (struct sockaddr storage) ;
connfd = Accept(listenfd, (SA *) &clientaddr, é&clientlen)

if (Fork() == 0) {
echo (connfd) ; /* Child services client */
Close (connfd) ; /* Child closes connection with client */
exit (0) ; /* Child exits */

}

Close (connfd); /* Parent closes connected socket (important!) */

echoserverp.c

Why?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Making a Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

listenfd = Open listenfd(argv[1l])
while (1) {
clientlen = sizeof (struct sockaddr storage) ;
connfd = Accept(listenfd, (SA *) &clientaddr, é&clientlen)

if (Fork() == 0) {
Close(listenfd); /* Child closes its listening socket */
echo (connfd) ; /* Child services client */
Close (connfd) ; /* Child closes connection with client */
exit (0) ; /* Child exits */

}

Close (connfd); /* Parent closes connected socket (important!) */

echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Process-Based Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

Signal (SIGCHLD, sigchld handler);
listenfd = Open listenfd(argv[1l])
while (1) {
clientlen = sizeof (struct sockaddr storage) ;
connfd = Accept(listenfd, (SA *) &clientaddr, é&clientlen)

if (Fork() == 0) {
Close(listenfd); /* Child closes its listening socket */
echo (connfd) ; /* Child services client */
Close (connfd) ; /* Child closes connection with client */
exit (0) ; /* Child exits */

}

Close (connfd); /* Parent closes connected socket (important!) */

echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Process-Based Concurrent Echo Server
(cont)

void sigchld handler(int sig)

{
while (waitpid(-1, 0, WNOHANG) > 0)
return;

} echoserverp.c

= Reap all zombie children

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Concurrent Server: accept lllustrated

listenfd (3)
1. Server blocks in accept,
Client l T Server waiting for connection
clientfd request on listening
descriptor 1istenfd
Connection listenfd (3)
request . R 2. Client makes connection
Client i T Server request by calling connect
clientfd
listenfd (3)
IS 3. Server returns connfd from
Server accept. Forks child to handle
client. Connection is now
Server established between clientfd
Client L) . L child and connfd

clientfd connfd (4)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Process-based Server Execution Model

Connection requests
Listening
server
process
Client 1 data | Client1 Client2 | cjient 2 data
p > server server ¢ >
process process

= Each client handled by independent child process
" No shared state between them

= Both parent & child have copies of listenfd and connfd
= Parent must close connfd
= Child should close 1istenfd

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Issues with Process-based Servers

m Listening server process must reap zombie children
" to avoid fatal memory leak
m Parent process must close its copy of connfd

= Kernel keeps reference count for each socket/open file
= After fork, refent (connfd) = 2
= Connection will not be closed until refent (connfd) = 0

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen t clientlen;
struct sockaddr sto

listenfd = Open_ lis
while (1) {
clientlen = si:
connfd = Accept

if (Fork() ==
echo (connfd); Hces client */

Close (connfd) ; Pses connection with clien
exit (0) ; exits */

orage) ;
ientaddr, &clientlen);

Bryant and O’Hallaron, Com

Carnegie Mellon

Pros and Cons of Process-based Servers

m + Handle multiple connections concurrently

m + Clean sharing model
= descriptors (no)
= file tables (yes)
= global variables (no)

m + Simple and straightforward
m — Additional overhead for process control

m — Nontrivial to share data between processes
= (This example too simple to demonstrate)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Approach #2: Event-based Servers

m Server maintains set of active connections

= Array of connfd’s

m Repeat:

= Determine which descriptors (connfd’s or 1istenfd) have pending
inputs

= e.g., using select function
= arrival of pending input is an event

= |f listenfd has input, then accept connection
= and add new connfd to array

= Service all connfd’s with pending inputs

m Details for select-based server in book

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

/O Multiplexed Event Processing

Read and service

Active Descriptors Pending Inputs
listenfd = 3 listenfd =3 ¢
connfd’s connfd’s
0 10 |) 10
1 > Active Anything 7 ¢
2 4
; |« happened?
-1 -1
> Inactive
4 -1 . -1
> 12 - 12 |«
6 = Active .)
o’
7 -1 -1
8 1 1
9 -1 Never Used -1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Pros and Cons of Event-based Servers

m + One logical control flow and address space.
m + Can single-step with a debugger.

m + No process or thread control overhead.

= Design of choice for high-performance Web servers and search engines.
e.g., Node.js, nginx, Tornado

m - Significantly more complex to code than process- or thread-
based designs.

m - Hard to provide fine-grained concurrency
= E.g., how to deal with partial HTTP request headers

m — Cannot take advantage of multi-core
= Single thread of control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/13182

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

https://canvas.cmu.edu/courses/5

Approach #3: Thread-based Servers

m Very similar to approach #1 (process-based)
= .but using threads instead of processes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Traditional View of a Process
m Process = process context + code, data, and stack

e e - fr_o_ce_si E°_"Ee_"t_ ______ i Code, data, and stack

Program context: Stack

Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

SP

Shared libraries

Run-time heap
Read/write data
PC — Read-only code/data

Kernel context:
VM structures
Descriptor table
brk pointer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Alternate View of a Process

m Process = thread + code, data, and kernel context

Thread (main thread) Code, data, and kernel context

Shared libraries

Stack R
il brk Run-time heap
Thread context: Read/write data

Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:
VM structures
Descriptor table
brk pointer

I I
I 1
I 1
I [
I I
I 1
1
: Data registers 1 PC — Read'only COdE/data
I
: !
I 1
I [
I I
I 1
I 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

A Process With Multiple Threads

m Multiple threads can be associated with a process
® Each thread has its own logical control flow
= Each thread shares the same code, data, and kernel context
= Each thread has its own stack for local variables
= but not protected from other threads
" Each thread has its own thread id (TID)

Thread 1 (main thread) Thread 2 (peer thread) Shared code and data
shared libraries
stack 1 stack 2
run-time heap
Thread 1 context: Thread 2 context: read/write data
Data registers Data registers read-only code/data
Condition codes Condition codes 0
SP, SP,
PC, PC, Kernel context:
VM structures

Descriptor table
brk pointer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Logical View of Threads

m Threads associated with process form a pool of peers
= Unlike processes which form a tree hierarchy

Threads associated with process foo Process hierarchy

® @ O
' (P1)

OJOXO
B - (oo
ar

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

“a | shared code, data
and kernel context

Carnegie Mellon

Concurrent Threads

m Two threads are concurrent if their flows overlap in
time

m Otherwise, they are sequential

m Examples: Thread A Thread B Thread C
* Concurrent: A&B,A&C | |
= Sequential: B & C I

Time [

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Concurrent Thread Execution

m Single Core Processor = Multi-Core Processor

= Simulate parallelism by " Can have true
time slicing parallelism
Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Threads vs. Processes

m How threads and processes are similar
= Each has its own logical control flow
= Each can run concurrently with others (possibly on different cores)
= Eachis context switched

m How threads and processes are different

" Threads share all code and data (except local stacks)
= Processes (typically) do not

" Threads are somewhat less expensive than processes

= Process control (creating and reaping) twice as expensive as thread
control

= Linux numbers:
— ~20K cycles to create and reap a process
— ~10K cycles (or less) to create and reap a thread

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Threads vs. Signals

Receive
| signal
curr

> Handler

}

m Signal handler shares state with regular program
" |ncluding stack

m Signal handler interrupts normal program execution
= Unexpected procedure call
= Returns to regular execution stream
" Not a peer

m Limited forms of synchronization

= Main program can block / unblock signals
®= Main program can pause for signal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Posix Threads (Pthreads) Interface

m Pthreads: Standard interface for ~60 functions that
manipulate threads from C programs
" Creating and reaping threads
= pthread create()
= pthread join()
= Determining your thread ID
= pthread self()
" Terminating threads
= pthread cancel ()
= pthread exit()
» exit () [terminates all threads]
= return [terminates current thread]
= Synchronizing access to shared variables
= pthread mutex init

= pthread mutex [un]lock

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

The Pthreads "hello, world" Program

/*

* hello.c - Pthreads "hello, world" program

*/ Thread attributes
#include "csapp.h" , Thread ID
void *thread(void *vargp) ; (usua”y NULL)

int main(int argc, char*¥* gv)

{ - Thread routine

Pthread create(&tid, NULL, thread, NULL) ;

return O; B (void *p)
} hello.c
. Return value
void *thread(void *vargp) /* thread routine */ (void **p)

{
printf ("Hello, world!'\n");
return NULL;

} hello.c

ryant and O Hallaron, cComputer Systems: A Programmer s Perspective, Third Edition 48

Carnegie Mellon

Execution of Threaded “hello, world”

Main thread

call Pthread create()
Pthread create ()returns

.................... Peer thread
call Pthread soin() | e
—Join() printf ()
Main thread waits for return NULL:

peer thread to terminate Peer thread

------------- terminates
Pthread join()returns -

exit ()

Terminates '
main thread and
any peer threads

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon
O r’ 000

Main thread

call Pthread create()
Pthread create ()returns

.................... Peer thread
call Pthread soin() | e .
. —J 0 printf ()
Main thread doesn’t need
to wait for peer thread to } return NULL;

Peer thread

t inate | e
TR e terminates
Pthread join()returns r """"""
exit ()
erminates ¥ And many many more
main thread and possible ways for this

any peer threads

code to execute.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Thread-Based Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, *connfdp;

socklen t clientlen;

struct sockaddr storage clientaddr;
pthread t tid;

listenfd = Open listenfd(argv[1l]) ;
while (1) {
clientlen=sizeof (struct sockaddr storage)
connfdp = Malloc(sizeof (int)) ;
*connfdp = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread create(&tid, NULL, thread, connfdp)

}
return O; echoservert.c

= Spawn new thread for each client
= Pass it copy of connection file descriptor
" Note use ofMalloc () ! [but not Free ()]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Thread-Based Concurrent Server (cont)

/* Thread routine */

void *thread(void *vargp)

{
int connfd = *((int *)vargp):
Pthread detach (pthread self())
Free (vargp) ;
echo (connfd) ;
Close (connfd) ;
return NULL;

} echoservert.c

" Run thread in “detached” mode.
= Runs independently of other threads
= Reaped automatically (by kernel) when it terminates

" Free storage allocated to hold connfd
" Close connfd (important!)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Thread-based Server Execution Model

Connection requests
Listening
server
. main thread .
_ Client 1 Client 2]
Client 1 data A server | Client 2 data
)] peer peer)]
thread thread

= Each client handled by individual peer thread
" Threads share all process state except TID
" Each thread has a separate stack for local variables

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Issues With Thread-Based Servers

m Must run “detached” to avoid memory leak
= At any pointin time, a thread is either joinable or detached
= Joinable thread can be reaped and killed by other threads
= must be reaped (with pthread join)to free memory resources
= Detached thread cannot be reaped or killed by other threads
= resources are automatically reaped on termination
= Default state is joinable
» use pthread detach (pthread self ()) to make detached
m Must be careful to avoid unintended sharing

= For example, passing pointer to main thread’s stack
= Pthread create(&tid, NULL, thread, (void *) &connfd) ;

m All functions called by a thread must be thread-safe
= (next lecture)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Potential Form of Unintended Sharing

while (1) {

int connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread create(&tid, NULL, thread, &connfd);

main thread

connfd = connfd,

.
L
"
L
L
L
...
L
L
"
L]
.......
.
L
"
L
...
L
L
L
"
LT
L]

Main thread stack

connfd

kas
ay,
",
"y
ay,
ay,
na,
"a
........
"y
a,
ay,
"y,
"y
ay,
ay,
"

............. peeh Peer, stack
..... ‘.vargp
>]connfd = *vargp
Race!
peer,
.................. Peer, stack
..... R
Iconnfd = *vargp & varep

v Why would both copies of vargp point to same location?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

A Process With Multiple Threads

m Multiple threads can be associated with a process
® Each thread has its own logical control flow
= Each thread shares the same code, data, and kernel context
= Each thread has its own stack for local variables
= but not protected from other threads
" Each thread has its own thread id (TID)

Thread 1 (main thread) Thread 2 (peer thread) Shared code and data
shared libraries
stack 1 stack 2
run-time heap
Thread 1 context: Thread 2 context: read/write data
Data registers Data registers read-only code/data
Condition codes Condition codes 0
SP, SP,
PC, PC, Kernel context:
VM structures

Descriptor table
brk pointer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

But ALL memory is shared

Thread 1 context: Thread 2 context:
Data registers Data registers
Condition codes Condition codes
SP, SP,

PC, PC,

Thread 1 (main thread) Thread 2 (peer thread)

shared libraries

stack 1 stack 2

run-time heap
read/write data

read-only code/data

Kernel context:
VM structures
Descriptor table
brk pointer

57

- while (1) { u

int connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread create(&tid, NULL, thread, &connfd);

}

Thread 1 context: Thread 2 context:
Data registers Data registers
Condition codes Condition codes
SP, SP,

PC, PC,
Thread 1 Thread 2

shared libraries

run-time heap

connfd ﬁ read/write data
&connfd read-only code/data

Kernel context:
VM structures
Descriptor table
brk pointer

}

(SA *) &clientaddr,

- while (1) { u

int connfd = Accept(listenfd,
Pthread create(&tid, NULL, thread, &connfd);

&clientlen) ;

Thread 1 context:
Data registers
Condition codes

Thread 2 context:
Data registers
Condition codes

Thread 3 context:
Data registers
Condition codes

SP, SP, SP,
PC, PC, PC,
Thread 1 Thread 2 Thread 3
shared libraries
run-time heap
connfd read/write data

&connfd

&connfd

read-only code/data

Kernel context:
VM structures
Descriptor table

brk pointer

Carnegie Mellon

/* Thread routine */
] * 1 *
Thread 1 context: Thread 2 context: Thread eRkel PSEERI YRR, BUEREE))
Data registers Data registers Dat { e o o B e &
Condition codes Condition codes Con totoconn = e) vargp)
Pthread detach (pthread self (
SP, SP, SP, F — . —
PC, PC, PC, EEE TR -
echo (connfd) ;
Close (connfd) ;
return NULL;
Thread 1 Thread 2 TH }

shared libraries

run-time heap
read/write data

read-only code/data

connfd

&connfd

&connfd

Kernel context:
VM structures
Descriptor table
brk pointer

Carnegie Mellon

Could this race occur?

Main Thread
int 1i; void *thread(void *wvargp)
for (i = 0; i < 100; i++) { {

Pthread create(&tid, NULL, int i = *((int *)vargp):

thread, &i); Pthread detach(pthread self())
} save value (i) ;
return NULL;
}
m Race Test

" |f no race, then each thread would get different value of i

= Set of saved values would consist of one copy each of 0 through 99

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

Experimental Results

No Race

0 2 4 6 81012141618202224262830323436384042444648505254565860626466687072747678808284868890929496098

Single core laptop

3

i

1

o L NNRRRE_ RNRRRNER NARRNR NARRNARRNRRNARRNE RNRRARR AR A

0 2 46 8101214161820222426283032343638404244464850525456586062646668707274767880828486889092949698

2

1
0

Multicore server
14

12

10

8

SRIIE

0 2 46 810121416182022242628303234363840424446485052545658606264666870727476788082848688909294 9698

m The race can really happen!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

62

Correct passing of thread arguments

/* Main routine */
int *connfdp;
connfdp = Malloc(sizeof (int)) ;
*connfdp = Accept(. . .),
Pthread create(&tid, NULL, thread, connfdp);

/* Thread routine */
void *thread(void *vargp)

{
int connfd = *((int *)vargp):

Free (vargp) ;

return NULL;

m Producer-Consumer Model
= Allocate in main
" Freein thread routine

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

Pros and Cons of Thread-Based Designs

m + Easy to share data structures between threads
= e.g., logging information, file cache

m + Threads are more efficient than processes

m — Unintentional sharing can introduce subtle and hard-
to-reproduce errors!

" The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads

" Hard to know which data shared & which private
" Hard to detect by testing

= Probability of bad race outcome very low
= But nonzero!

" Future lectures

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Summary: Approaches to Concurrency

m Process-based

" Hard to share resources: Easy to avoid unintended sharing
= High overhead in adding/removing clients

m Event-based
" Tedious and low level
= Total control over scheduling
= Very low overhead
= Cannot create as fine grained a level of concurrency
= Does not make use of multi-core

m Thread-based

= Easy to share resources: Perhaps too easy
= Medium overhead
= Not much control over scheduling policies

= Difficult to debug
= Event orderings not repeatable

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

