Carnegie Mellon

Network Programming: Part Il

15-213/18-213/14-513/15-513/18-613:
Introduction to Computer Systems
April 9, 2020

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

2. Start client 1. Start server

Client Server Review:
Echo
Server
+ Client
Structure

open_ listenfd

open_clientfd

Connectian l Await connection
request request from client
'-7 ------ == accept a
/ N _—
_ v v 3. Exchange\
| terminal read _ ket d e
Client / | socket write "| Socxer read = data
Server l l
Session socket read]
) . < socket write
terminal write
. I Y,
close ---- FQF ----- socket read
)) 5. Drop client
4. Disconnect client
2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: C Standard 1/0O, Unix I/O and RIO

m Robust I/0 (RIO): 15-213 special wrappers
good coding practice: handles error checking, signals, and
“short counts”

fopen fdopen
fread fwrite
fscanf fprintf

sscanf sprintf | C application program
fgets fputs \ rio readn
fflush fseek rio writen
fclose | Standard /0 RIO --» rio readinitb
functions functions rio readlineb
open read P
P Unix 1/0O functions rio_readnb

write lseek |«----
stat close

(accessed via system calls)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

2. Start client 1. Start server

Client Server Review:
Echo
Server
+ Client
Structure

open_ listenfd

open_clientfd

Connectian l Await connection
request request from client
re==) ------ == accept a
/ N _—
_— v 3. Exchange\
ets . .
Client / > rio gwriten »rio readlineb« data
Server l l
Session rio readlineb | . .
_fputs < rlo_wr:l.ten

¥

close = }---1-------- rio_readl ineb

5. Drop client

4. Disconnect client

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client Server Sockets

N
(getaddrinfo getaddrinfo I nte rfa ce
socket socket
l » open_listenfd
open clientfd < bind
listen
Connection l /
request
\ connect [~""""TT-Too- > accept <
A 4 v
Cﬁent/ » rio writen »rio readlineb«
Server | | _ .
Session Await connection
rio_readlineb [« rio writen requestﬁ0n1
next client
v A 4
close -----PQF ----- »rio_readlineb
\4
close
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Socket Address Structures & getaddrinfo

m Generic socket address:
= For address arguments to connect, bind, and accept

= Necessary only because C did not have generic (void *) pointers when
the sockets interface was designed

" For casting convenience, we adopt the Stevens convention:
typedef struct sockaddr SA;

struct sockaddr {
uintlé t sa family; /* Protocol family */
char sa data[l4]; /* Address data. */
};
sa family ~

Family Specific

m getaddrinfo converts string representations of hostnames,
host addresses, ports, service names to socket address structures

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Socket Address Structures

m Internet (IPv4) specific socket address:

" Mustcast (struct sockaddr in *)to(struct sockaddr ¥*)
for functions that take socket address arguments.

struct sockaddr in {

uintl6é t sin family; /* Protocol family (always AF INET) */
uintlé_t sin_port; /* Port num in network byte order */
struct in _addr sin addr; /* IP addr in network byte order */

unsigned char sin zero[8]; /* Pad to sizeof(struct sockaddr) */

sin port sin_addr

AF INET o;0(0|0|O0O]O0O]|]O0]O

sa_family -

Family Specific

sin family

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Sockets
Interface

> open_ listenfd

Await connection

request from
next client

Client Server
N
getaddrinfo getaddrinfo
I sAlist SAlist |
open clientfd < bind
listen
Connection l /
request
connect [~""""TT-Too- > accept <
A 4 A 4
Cﬁent/ » rio writen »rio readlineb«
Server l l
Session rio_readlineb « rio _writen
v v
close -----PQF ----- »rio_readlineb
\ 4
close

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linked List Returned by getaddrinfo

addrinfo structs

result

Socket address structs

ai_panonname

ai_addr

ai next

NULL
ai_addr

ai next

NULL
ai addr
NULL

m Clients: walk this list, trying each socket address in turn, until
the calls to socket and connect succeed.

m Servers: walk the list until calls to socket and bind succeed.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

addrinfo Struct

struct addrinfo {
int ai flags; /* Hints argument flags */
int ai family; /* First arg to socket function */
int ai socktype; /* Second arg to socket function */
int ai protocol; /* Third arg to socket function */
char *ai canonname; /* Canonical host name */
size t ai addrlen; /* Size of ai_addr struct */
struct sockaddr *ai addr; /* Ptr to socket address structure */
struct addrinfo *ai next; /* Ptr to next item in linked list */
}i

m Each addrinfo struct returned by getaddrinfo contains
arguments that can be passed directly to socket function.

m Also points to a socket address struct that can be passed
directly to connect and bind functions.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Sockets
Interface

> open_ listenfd

Await connection

request from
next client

Client Server
N
getaddrinfo getaddrinfo
I sAlist SAlist |
open clientfd < bind
listen
Connection l /
request
connect [~""""TT-Too- > accept <
A 4 A 4
Cﬁent/ » rio writen »rio readlineb«
Server l l
Session rio_readlineb « rio _writen
v v
close -----PQF ----- »rio_readlineb
\ 4
close

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

1

Sockets Interface: socket

m Clients and servers use the socket function to create a
socket descriptor:

int socket(int domain, int type, int protocol)

m Example:

int clientfd = socket (AF_INET, SOCK_STREAM, O0);

/ \

Indicates that we are using Indicates that the socket
32-bit IPV4 addresses will be the end point of a
reliable (TCP) connection

Protocol specific! Best practice is to use getaddrinfo to
generate the parameters automatically, so that code is
protocol independent.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Sockets Interface: socket

m Clients and servers use the socket function to create a
socket descriptor:

int socket(int domain, int type, int protocol)

m Example:

int clientfd = socket (AF_INET, SOCK_STREAM, O0);

/ \

Indicates that we are using Indicates that the socket
32-bit IPV4 addresses will be the end point of a
reliable (TCP) connection

struct addrinfo {

int ai flags; /* Hints argument flags */
Pr int ai family; /* First arg to socket function */
ge int ai socktype; /* Second arg to socket function */

int ai protocol; /* Third arg to socket function */
pr char *ai canonname; /* Canonical host name */

size t ali addrlen; /* Size of ai addr struct */

Bryant and O’ struct sockaddr *aili addr; /* Ptr to socket address structure */

Sockets Interface: socket

m Clients and servers use the socket function to create a
socket descriptor:

int socket(int domain, int type, int protocol)

m Example:

int clientfd = socket (AF_INET, SOCK_STREAM, O0);

/ \

Indicates that we are using Indicates that the socket
32-bit IPV4 addresses will be the end point of a
reliable (TCP) connection

m Better Example: (protocol independent)

struct addrinfo *infop = ..;
int sockfd = socket(p->ai family, p-> ai socktype, p->ai protocol);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

open clientfd <

Client /
Server
Session

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client

getaddrinfo

! SA list

Server

getaddrinfo

list l

socket

socket

clientfd

listenfd l

listen

Connection

!

request

connect

J

accept

A

v

v

rio writen

\ 4

I

rio_readlineb

rio_readlineb

I

A

A

rio_writen

close

+rio_readlineb

v

close

Carnegie Mellon

Sockets

Interface

> open_ listenfd

Await connection
request from
next client

15

Sockets Interface: bind

m A server uses bind to ask the kernel to associate the
server’s socket address with a socket descriptor:

int bind(int sockfd, SA *addr, socklen t addrlen);

Recall: typedef struct sockaddr SA;

m Process can read bytes that arrive on the connection whose
endpoint is addr by reading from descriptor sockfd

m Similarly, writes to sockfd are transferred along
connection whose endpoint is addr

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Sockets Interface: bind

m A server uses bind to ask the kernel to associate the
server’s socket address with a socket descriptor:

int bind(int sockfd, SA *addr, socklen t addrlen);

Recall: typedef struct sockaddr SA;

m Process can read bytes that arrive on the connection whose
endpoint is addr by reading from descriptor sockfd

m Similarly, writes to sockfd are transferred along
connection whose endpoint is addr

m Best Practice is to use result from getaddrinfo

struct addrinfo {

int ali flags; /* Hints argument flags */
int al family; /* First arg to socket function */
int al socktype; /* Second arg to socket function */
int al protocol; /* Third arg to socket function */
char *al canonname; /* Canonical host name */
size t ai addrlen; /* Size of ai addr struct */

Bryant a —J—-.--:J— PEREE. T, K P *-.'_-.AA'I.... 1d T oo 4o ...A..:A.n. PGP, DX, P R T T |

Sockets Interface: bind

m A server uses bind to ask the kernel to associate the
server’s socket address with a socket descriptor:

int bind(int sockfd, SA *addr, socklen t addrlen);

Recall: typedef struct sockaddr SA;

m Process can read bytes that arrive on the connection whose
endpoint is addr by reading from descriptor sockfd

m Similarly, writes to sockfd are transferred along
connection whose endpoint is addr

m Best Practice is to use result from getaddrinfo

struct addrinfo {
int ali flags; /* Hints argument flags */
int al family; /* First arg to socket function */
int al socktype; /* Second arg to socket function */
int al protocol; /* Third arg to socket function */
char *al canonname; /* Canonical host name */
size t ai addrlen; /* Size of ai addr struct */
Bryant a —J—-.--:J— PEREE. T, K P *-.'_-.AA'I.... 1d T oo 4o ...A..:A.n. PGP, DX, P R T T | B

Carnegie Mellon

Sockets
Interface

> open_ listenfd

Await connection

request from
next client

Client Server
(. .)
getaddrinfo getaddrinfo
I salist SAlist |
socket socket
clientfd listenfd |
open clientfd < bind
listenfd <-> SA |
Connection /
request
\ connect [~""""TT-Too- > accept <
A 4 A 4
Cﬁent/ » rio writen »rio readlineb«
Server l l
Session rio_readlineb « rio _writen
v v
close -----PQF ----- »rio_readlineb
\ 4
close

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

20

Sockets Interface: 1isten

m Kernel assumes that descriptor from socket function is an
active socket that will be on the client end

m A server calls the listen function to tell the kernel that a
descriptor will be used by a server rather than a client:

int listen(int sockfd, int backlog) ;

m Converts sockfd from an active socket to a listening
socket that can accept connection requests from clients.

m backlog is a hint about the number of outstanding
connection requests that the kernel should queue up
before starting to refuse requests (128-ish by default)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Client Server Sockets

N
(getaddrinfo getaddrinfo I nte rfa ce
I SAlist SA list !
socket socket
clientfd listenfd | > open_listenfd
open clientfd < bind
listenfd <-> SA |
listen
; - .
Connection | listening listenfd
request
connect [~ ------
\
v v
Cﬁent/ » rio writen »rio readlineb«
Server ! ! . _
Session Await connection
rio_readlineb « rio _writen requestﬁon1
next client
v v
close -----PQF ----- »rio_readlineb
\4
close
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Sockets Interface: accept

m Servers wait for connection requests from clients by
calling accept:

int accept(int listenfd, SA *addr, int *addrlen);

m Waits for connection request to arrive on the connection
bound to 1istenfd, then fills in client’s socket address
in addr and size of the socket address in addrlen.

m Returns a connected descriptor that can be used to
communicate with the client via Unix 1/O routines.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

open clientfd <

Client /
Server
Session

Client

getaddrinfo

v SAlist

socket

clientfd

SA |

liste

Server

getaddrinfo

ist l

socket

nfd l

bind

listenfd <-> SA |

Connection
request

listen

Carnegie Mellon

Sockets
Interface

J

> open_ listenfd

J
| listening listenfd

accept

\ 4

rio writen

I

rio_readlineb

\ 4

rio_readlineb‘

I

A

rio_writen

Await connection

request from
next client

close

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

v

rio_readlineb

close

24

Carnegie Mellon

Sockets Interface: connect

m A client establishes a connection with a server by calling
connect:

int connect(int clientfd, SA *addr, socklen t addrlen);

m Attempts to establish a connection with server at socket
address addr
= |f successful, then client£fd is now ready for reading and writing.
= Resulting connection is characterized by socket pair
(x:y, addr.sin addr:addr.sin port)
= xis client address
= y is ephemeral port that uniquely identifies client process on
client host
Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

connect/accept lllustrated

listenfd (3)
1. Server blocks in accept,
Client Server waiting for connection request
clientfd on listening descriptor
listenfd
Connection listen£d (3)
request . > 2. Client makes connection request by
Client i T Server calling and blocking in connect
clientfd
listenfd (3)
3. Server returns connfd from
Client L . »I Server accept. Client returns from connect.
clientfd connfd (4) Connection is now established between

clientfd and connfd

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Connected vs. Listening Descriptors

m Listening descriptor
= End point for client connection requests
= Created once and exists for lifetime of the server

m Connected descriptor
= End point of the connection between client and server

= A new descriptor is created each time the server accepts a
connection request from a client

= Exists only as long as it takes to service client

m Why the distinction?

= Allows for concurrent servers that can communicate over many
client connections simultaneously

= E.g., Each time we receive a new request, we fork a child to
handle the request

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Client Server Sockets

N
(getaddrinfo getaddrinfo I nte rfa ce
Il sAlist SAlist |
socket socket
clientfd listenfd | > open_listenfd
open clientfd < bind
listenfd <-> SA |
listen
: . o
Connection l listening listenfd
request
\ connect [~""""TT-Too- > accept <
connected (to SA) clientfd connected|connfd
. .| rio writen »rio readlineb|,
Client / > — - >
Server . .
. l l Await connection
Session rio_readlineb [« rio writen requestﬁon1
next client
v A 4
close -----PQF ----- »rio_readlineb
\4
close
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Client Server Sockets

N
(getaddrinfo getaddrinfo I nte rfa ce
socket socket
l \ open_listenfd
open clientfd < bind
listen
Connection l /
request
\ connect [~""""T-T-o- > accept <
A 4 v
Cﬁent/ » rio writen »rio readlineb«
Server l l . .
Session Await connection
rio_readlineb [« rio writen requestﬁ0n1
next client
v A 4
close -----PQF ----- »rio_readlineb
\4
close
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Sockets Helper: open clientfd

m Establish a connection with a server

int open clientfd(char *hostname, char *port) ({
int clientfd;
struct addrinfo hints, *listp, *p;

/* Get a list of potential server addresses */

memset (&hints, 0, sizeof(struct addrinfo)) ;

hints.ai socktype = SOCK STREAM; /* Open a connection */

hints.ai flags = AI NUMERICSERV; /* .using numeric port arg. */
hints.ai flags |= AI ADDRCONFIG; /* Recommended for connections */
Getaddrinfo (hostname, port, &hints, &listp);

csapp.c

AI ADDRCONFIG - uses your system’s address type.
You have at least one IPV4 iface? IPV4. At least one IPV6? IPVG.

30

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: getaddrinfo Linked List

addrinfo structs

result

Socket address structs

ai_panonname

ai_addr

ai next

NULL
ai_addr

ai next

NULL
ai addr
NULL

m Clients: walk this list, trying each socket address in turn, until
the calls to socket and connect succeed.

m Servers: walk the list until calls to socket and bind succeed.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

}

/ Ve o G Lbdw e Vi PchllL—J-aJ- Dol Ved GQAUWGUWLGCGowoEW Y 4

memset (&hints, 0, sizeof(struct addrinfo));

hints.ai socktype = SOCK STREAM; /* Open a connection */
hints.ai flags = AI NUMERICSERV; /* .using numeric port */
hints.ai flags |= AI_ADDRCONFIG; /* Recommended for ection*/
Getaddrinfo (hostname, port, &hints, &listp);

/* Walk the list for one that we can successfully connect to */
for (p = listp; p; p = p—->ai_next) {
/* Create a socket descriptor */
if ((clientfd = socket(p->ai family, p->ai_socktype,
p->ai_protocol)) < 0)
continue; /* Socket failed, try the next */

/* Connect to the server */

if (connect(clientfd, p->ai_addr, p->ai_ addrlen) !'= -1)
break; /* Success */

Close(clientfd); /* Connect failed, try another */

}

/* Clean up */

Freeaddrinfo (listp) ;

if ('p) /* All connects failed */
return -1;

else /* The last connect succeeded */
return clientfd;

csapp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

32

Client Server Sockets

N
(getaddrinfo getaddrinfo I nte rfa ce
socket socket
l \ open_listenfd
open clientfd < ot
listen
Connection l /
request
\ connect [~""""TT-Too- > accept <
A 4 v
Cﬁent/ » rio writen »rio readlineb«
Server l l . .
Session Await connection
rio_readlineb [« rio writen requestﬁ0n1
next client
v A 4
close -----PQF ----- »rio_readlineb
\4
close
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Sockets Helper: open listenfd

m Create a listening descriptor that can be used to accept
connection requests from clients.

int open_listenfd(char *port)

{
struct addrinfo hints, *listp, *p;
int listenfd, optval=1;

/* Get a list of potential server addresses */
memset (&hints, 0, sizeof(struct addrinfo));

hints.ai socktype = SOCK_STREAM; /* Accept connect. */
hints.ai flags = AI PASSIVE | AI ADDRCONFIG; /* .on any IP addr */
hints.ai flags |= AI_NUMERICSERV; /* ..using port no. */

Getaddrinfo (NULL, port, &hints, &listp)

csapp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Sockets Helper: open listenfd (cont)

/* Walk the list for one that we can bind to */
for (p = listp; p; p = p->ai_next) {
/* Create a socket descriptor */
if ((listenfd = socket(p->ai_ family, p->ai_socktype,
p->ai_protocol)) < 0)
continue; /* Socket failed, try the next */

/* Eliminates "Address already in use" error from bind */
Setsockopt (listenfd, SOL SOCKET, SO REUSEADDR,
(const void *) &optval , sizeof(int));

/* Bind the descriptor to the address */

if (bind(listenfd, p->ai_addr, p->ai_addrlen) == 0)
break; /* Success */

Close(listenfd); /* Bind failed, try the next */

} csapp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Sockets Helper: open listenfd (cont)

/* Clean up */

Freeaddrinfo (listp) ;

if (!'p) /* No address worked */
return -1;

/* Make it a listening socket ready to accept conn. requests */
if (listen(listenfd, LISTENQ) < 0) {

Close(listenfd) ;

return -1;

}

return listenfd;
} csapp.c

m Key point: open clientfd and open listenfdare
both independent of any particular version of IP.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Testing Servers Using telnet

m The telnet program is invaluable for testing servers
that transmit ASCII strings over Internet connections
® Qur simple echo server
= Web servers
= Mail servers

m Usage:
" linux> telnet <host> <portnumber>

" Creates a connection with a server running on <host>and
listening on port <portnumber>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Testing the Echo Server With telnet

whaleshark> ./echoserveri 15213

Connected to (MAKOSHARK.ICS.CS.CMU.EDU, 50280)
server received 11 bytes

server received 8 bytes

makoshark> telnet whaleshark.ics.cs.cmu.edu 15213
Trying 128.2.210.175...

Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).
Escape character is '*]'.

Hi there!

Hi there!

Howdy!

Howdy!

]

telnet> quit

Connection closed.

makoshark>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Web Server Basics

m Clients and servers communicate HTTP request

using the HyperText Transfer V‘_’eb : Web
Protocol (HTTP) client server
(browser) /+

® (Client and server establish TCP

, HTTP response
connection

' (content)

= (Client requests content
= Server responds with requested

content HTTP Web content
= (Client and server close connection

(eventually) TCP Streams

m Current version is HTTP/1.1

= RFC 2616, June, 1999. IP Datagrams

http://www.w3.0org/Protocols/rfc2616/rfc2616.html

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Web Content

m Web servers return content to clients

= content: a sequence of bytes with an associated MIME (Multipurpose
Internet Mail Extensions) type

m Example MIME types

" text/html HTML document

" text/plain Unformatted text

" image/gif Binary image encoded in GIF format
" image/png Binary image encoded in PNG format
" image/jpeg Binary image encoded in JPEG format

You can find the complete list of MIME types at:
http://www.iana.org/assignments/media-types/media-types.xhtml

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Static and Dynamic Content

m The content returned in HTTP responses can be either static or
dynamic
= Static content: content stored in files and retrieved in response to an HTTP
request
= Examples: HTML files, images, audio clips, Javascript programs
= Request identifies which content file

® Dynamic content: content produced on-the-fly in response to an HTTP
request

= Example: content produced by a program executed by the server on
behalf of the client

= Request identifies file containing executable code

m Web content associated with a file that is managed by the server

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

URLs and how clients and servers use them

m Unique name for a file: URL (Universal Resource Locator)
m Example URL: http://www.cmu.edu:80/index.html

m Clients use prefix (http://www.cmu.edu: 80) to infer:
= What kind (protocol) of server to contact (HTTP)
" Where the server is (www. cmu . edu)
= What port it is listening on (80)
m Servers use suffix (/index.html) to:
= Determine if request is for static or dynamic content.
= No hard and fast rules for this
= One convention: executables reside in cgi-bin directory
" Find file on file system
= |nitial “/” in suffix denotes home directory for requested content.

= Minimal suffix is “/”, which server expands to configured default
filename (usually, index.html)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

HTTP Requests

m HTTP request is a request line, followed by zero or more
request headers

m Request line: <method> <uri> <version>

= <method> isoneof GET, POST, OPTIONS, HEAD, PUT,
DELETE, or TRACE

" <uri>is typically URL for proxies, URL suffix for servers
= A URL is a type of URI (Uniform Resource Identifier)
= See http://www.ietf.org/rfc/rfc2396.txt
" <version>is HTTP version of request (HTTP/1.0 or HTTP/1.1)

m Request headers: <header name>: <header data>

" Provide additional information to the server

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

http://www.ietf.org/rfc/rfc2396.txt

HTTP Responses

m HTTP response is a response line followed by zero or more
response headers, possibly followed by content, with blank line
(“\r\n"”) separating headers from content.

m Response line:

<version> <status code> <status msg>
= <version>is HTTP version of the response
= <status code> is numeric status
= <status msg> is corresponding English text

= 200 OK Request was handled without error

= 301 Moved Provide alternate URL

= 404 Not found Server couldn’t find the file

m Response headers: <header name>: <header data>
= Provide additional information about response
" Content-Type: MIME type of content in response body
"= Content-Length: Length of contentin response body

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Example HTTP Transaction

whaleshark> telnet www.cmu.edu 80 Client: open connection to server
Trying 128.2.42.52... Telnet prints 3 lines to terminal

Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.

Escape character is '“]'.

GET / HTTP/1.1 Client:
Host: www.cmu.edu Client:

Client:
HTTP/1.1 301 Moved Permanently Server:
Date: Wed, 05 Nov 2014 17:05:11 GMT Server:
Server: Apache/1.3.42 (Unix) Server:
Location: http://www.cmu.edu/index.shtml Server:
Transfer-Encoding: chunked Server:
Content-Type: text/html; charset=... Server:

Server:
15c Server:
<HTML><HEAD> Server:
</BODY></HTML> Server:
0 Server:
Connection closed by foreign host. Server:

request line

required HTTP/1.1 header
empty line terminates headers
response line

followed by 5 response headers
this is an Apache server

page has moved here

response body will be chunked
expect HTML in response body
empty line terminates headers
first line in response body
start of HTML content

end of HTML content
last line in response body
closes connection

m HTTP standard requires that each text line end with “*\r\n”

m Blank line (“\r\n”) terminates request and response headers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

45

Example HTTP Transaction, Take 2

whaleshark> telnet www.cmu.edu 80 Client: open connection to server
Trying 128.2.42.52... Telnet prints 3 lines to terminal
Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.

Escape character is '“]'.

GET /index.shtml HTTP/1.1 Client: request line

Host: www.cmu.edu Client: required HTTP/1.1 header
Client: empty line terminates headers

HTTP/1.1 200 OK Server: response line

Date: Wed, 05 Nov 2014 17:37:26 GMT Server: followed by 4 response headers

Server: Apache/1.3.42 (Unix)
Transfer-Encoding: chunked
Content-Type: text/html; charset=...
Server: empty line terminates headers

1000 Server: begin response body

<html ..> Server: first line of HTML content
</html>

0 Server: end response body

Connection closed by foreign host. Server: close connection

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Example HTTP(S) Transaction, Take 3

whaleshark> openssl s client www.cs.cmu.edu:443
CONNECTED (00000005)

Certificate chain

Server certificate

MIIGD]jCCBPagAwIBAgIRAMiF7LBPDoySilnNoU+mp+gwDQYJKoZIhvcNAQELBQAwW
djELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAk1JIJMRIWEAYDVQQHEw1Bbm4gQXJib3Ix
EJjAQBgNVBAOTCUludGVybmVOMjERMAS8GA1UECxMISW5Db21 tb24xHzAdBgNVBAMT
wkWkvDVBBCWKXrShVxQONsj6J

subject=/C=US/postalCode=15213/ST=PA/L=Pittsburgh/street=5000 Forbes
Ave/O=Carnegie Mellon University/OU=School of Computer
Science/CN=www.cs.cmu.edu issuer=/C=US/ST=MI/L=Ann
Arbor/O=Internet2/0U=InCommon/CN=InCommon RSA Server CA

SSL handshake has read 6274 bytes and written 483 bytes

>GET / HTTP/1.0

HTTP/1.1 200 OK

Date: Tue, 12 Nov 2019 04:22:15 GMT

Server: Apache/2.4.10 (Ubuntu)

Set-Cookie: SHIBLOCATION=scsweb; path=/; domain=.cs.cmu.edu
HTMI. Content Continues Below

http://www.cs.cmu.edu:443/

Carnegie Mellon

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/13182

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

https://canvas.cmu.edu/courses/13182

Tiny Web Server

m Tiny Web server described in text
" Tiny is a sequential Web server

= Serves static and dynamic content to real browsers
= text files, HTML files, GIF, PNG, and JPEG images

= 239 lines of commented C code
"= Not as complete or robust as a real Web server

= You can break it with poorly-formed HTTP requests (e.g.,
terminate lines with “\n” instead of “\r\n”)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Tiny Operation

m Accept connection from client
m Read request from client (via connected socket)
m Split into <method> <uri> <version>

" |f method not GET, then return error

m If URI contains “cgi-bin” then serve dynamic content
= (Would do wrong thing if had file “abegi-bingo.html”)
" Fork process to execute program

m Otherwise serve static content
= Copy file to output

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Tiny Serving Static Content

void serve static(int fd, char *filename, int filesize)
{

int srcfd;

char *srcp, filetype[MAXLINE], buf[MAXBUF];

/* Send response headers to client */

get filetype(filename, filetype)

sprintf (buf, "HTTP/1.0 200 OK\r\n");

sprintf (buf, "%$sServer: Tiny Web Server\r\n", buf);
sprintf (buf, "%$sConnection: close\r\n", buf);

sprintf (buf, "%$sContent-length: %d\r\n", buf, filesize);
sprintf (buf, "%$sContent-type: %$s\r\n\r\n", buf, filetype)
Rio writen(fd, buf, strlen(buf));

/* Send response body to client */
srcfd = Open(filename, O RDONLY, O0);
srcp = Mmap (0, filesize, PROT READ, MAP PRIVATE, srcfd, 0);
Close(srcfd) ;
Rio writen(fd, srcp, filesize);
Munmap (srcp, filesize);
} tiny.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Serving Dynamic Content

m Client sends request to server GET /cgi-bin/env.pl HTTP/1.1

m If request URI contains the Client > Server
string “/cgi-bin”, the Tiny
server assumes that the
request is for dynamic content

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Serving Dynamic Content (cont)

m The server creates a child

S

process and runs the erver

program identified by the

URI in that process "fork/exec
env.pl

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Serving Dynamic Content (cont)

m The child runs and generates Client Joo—— Server
the dynamic content k

A

Content

m The server captures the
content of the child and
forwards it without
modification to the client

env.pl

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Issues in Serving Dynamic Content

m How does the client pass program Request
arguments to the server?

’N'

Client |Content | Server

m How does the server pass these

arguments to the child?

. Content Create
m How does the server pass other info

relevant to the request to the child?

m How does the server capture the
content produced by the child?

m These issues are addressed by the
Common Gateway Interface (CGl)
specification.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

m Because the children are written according to the CGI
spec, they are often called CGI programs.

m However, CGI really defines a simple standard for
transferring information between the client (browser),
the server, and the child process.

m CGl is the original standard for generating dynamic
content. Has been largely replaced by other, faster
techniques:

= E.g., fastCGl, Apache modules, Java servlets, Rails controllers
= Avoid having to create process on the fly (expensive and slow).

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

The add.com Experience

host port CGl program

800 y |_"|whaleshark.ics.cs.ch.Ed X W /
’ L

Carnegie Mellon

arguments

o

€ > C A | [whaleshark.ics.cs.cmu.edu:15213/cgi-bin/adder?15213818213 @ 77 © xH>(CH

Welcome to add.com: THE Internet addition portal.
The answer is: 15213 + 18213 = 33426

Thanks for visiting!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Output page

57

Serving Dynamic Content With GET

m Question: How does the client pass arguments to the server?

m Answer: The arguments are appended to the URI

m Can be encoded directly in a URL typed to a browser or a URL
in an HTML link
= http://add.com/cgi-bin/adder?15213&18213
" adder is the CGl program on the server that will do the addition.
= argument list starts with “?”
= arguments separated by “&”
" spaces represented by “+” or “%$20”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Serving Dynamic Content With GET

m URL suffix:
" cgi-bin/adder?15213&18213

m Result displayed on browser:

Welcome to add.com: THE Internet
addition portal.

The answer is: 15213 + 18213 = 33426

Thanks for visiting!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Serving Dynamic Content With GET

m Question: How does the server pass these arguments to
the child?
m Answer: In environment variable QUERY_STRING

= Asingle string containing everything after the “?”
" Foradd: QUERY STRING=“15213&18213"

/* Extract the two arguments */

if ((buf = getenv("QUERY STRING")) != NULL) ({
p = strchr(buf, '&');
*p = '\0";

strcpy (argl, buf);
strcpy (arg2, p+1l);
nl = atoi(argl);
n2 = atoi (arg2);
} adder.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Serving Dynamic Content with GET

m Question: How does the server capture the content produced by the child?

m Answer: The child generates its output on stdout. Server uses dup2 to
redirect stdout to its connected socket.

void serve dynamic(int fd, char *filename, char *cgiargs)

{
char buf [MAXLINE], *emptylist[] = { NULL };

/* Return first part of HTTP response */
sprintf (buf, "HTTP/1.0 200 OK\r\n");

Rio writen(fd, buf, strlen(buf));

sprintf (buf, "Server: Tiny Web Server\r\n");
Rio writen(fd, buf, strlen(buf));

if (Fork() == 0) { /* Child */
/* Real server would set all CGI vars here */
setenv ("QUERY STRING", cgiargs, 1);
Dup2 (fd, STDOUT FILENO) ; /* Redirect stdout to client */
Execve (filename, emptylist, environ); /* Run CGI program */

}

Wait (NULL) ; /* Parent waits for and reaps child */

} tiny.c

Serving Dynamic Content with GET

m Notice that only the CGI child process knows the content
type and length, so it must generate those headers.

/* Make the response body */
sprintf (content, "Welcome to add.com: ") ;
sprintf (content, "$sTHE Internet addition portal.\r\n<p>", content);
sprintf (content, "%$sThe answer is: %d + %d = %d\r\n<p>",
content, nl, n2, nl + n2);
sprintf (content, "%$sThanks for visiting!\r\n", content);

/* Generate the HTTP response */

printf ("Content-length: %d\r\n", (int)strlen(content));
printf ("Content-type: text/html\r\n\r\n");

printf ("%s", content);

fflush (stdout) ;

exit (0) ; adder.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Serving Dynamic Content With GET

bash:makoshark> telnet whaleshark.ics.cs.cmu.edu 15213
Trying 128.2.210.175...
Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).
Escape character is '*]°'.

Server: Tiny Web Server HTTP response generated
Connection: close by the server

Content-length: 117
Content-type: text/html

HTTP response generated
Welcome to add.com: THE Internet addition portal. py the CGlprogram
<p>The answer is: 15213 + 18213 = 33426
<p>Thanks for visiting!

Connection closed by foreign host.
bash:makoshark>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

Carnegie Mellon

For More Information

m W. Richard Stevens et. al. “Unix Network Programming:
The Sockets Networking API”, Volume 1, Third Edition,
Prentice Hall, 2003

" THE network programming bible.

m Michael Kerrisk, “The Linux Programming Interface”, No
Starch Press, 2010

® THE Linux programming bible.
m Complete versions of all code in this lecture is available
from the 213 schedule page.
= http://www.cs.cmu.edu/~213/schedule.html
= csapp.{.c,h}, hostinfo.c, echoclient.c, echoserveri.c, tiny.c, adder.c
" You can use any of this code in your assignments.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Carnegie Mellon

Additional slides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Web History

m 1989:

= Tim Berners-Lee (CERN) writes internal proposal to develop a
distributed hypertext system
= Connects “a web of notes with links”

= Intended to help CERN physicists in large projects share and
manage information

m 1990:
= Tim BL writes a graphical browser for Next machines

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 66

Web History (cont)

m 1992
= NCSA server released
= 26 WWW servers worldwide
m 1993
= Marc Andreessen releases first version of NCSA Mosaic browser
" Mosaic version released for (Windows, Mac, Unix)
= Web (port 80) traffic at 1% of NSFNET backbone traffic
= Over 200 WWW servers worldwide

m 1994

" Andreessen and colleagues leave NCSA to form “Mosaic
Communications Corp” (predecessor to Netscape)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 67

HTTP Versions

m Major differences between HTTP/1.1 and HTTP/1.0

= HTTP/1.0 uses a new connection for each transaction
= HTTP/1.1 also supports persistent connections
= multiple transactions over the same connection
» Connection: Keep-Alive
= HTTP/1.1 requires HOST header
» Host: www.cmu.edu
= Makes it possible to host multiple websites at single Internet host
= HTTP/1.1 supports chunked encoding
» Transfer—-Encoding: chunked
= HTTP/1.1 adds additional support for caching

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 68

GET Request to Apache Server
From Firefox Browser

URI is just the suffix, not the entire URL

GET |/~bryant/test.html |HTTP/1.1

Host: www.cs.cmu.edu

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US;
rv:1.9.2.11) Gecko/20101012 Firefox/3.6.1l1

Accept:
text/html,application/xhtml+xml,application/xml;g=0.9,*/*;qg=0.8
Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;9=0.7,*;g9=0.7

Keep-Alive: 115

Connection: keep-alive

CRLF (\r\n)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 69

GET Response From Apache Server

HTTP/1.1 200 OK

Date: Fri, 29 Oct 2010 19:48:32 GMT
Server: Apache/2.2.14 (Unix) mod ssl/2.2.14 OpenSSL/0.9.7m
mod pubcookie/3.3.2b PHP/5.3.1
Accept-Ranges: bytes

Content-Length: 479

Keep-Alive: timeout=15, max=100
Connection: Keep-Alive

Content-Type: text/html

<html>

<head><title>Some Tests</title></head>

<body>
<hl>Some Tests</hl>
</body>
</html>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 70

Carnegie Mellon

Data Transfer Mechanisms

m Standard

= Specify total length with content-length
= Requires that program buffer entire message

m Chunked

= Break into blocks
= Prefix each block with number of bytes (Hex coded)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Chunked Encoding Example

HTTP/1.1 200 OK\n

Date: Sun, 31 Oct 2010 20:47:48 GMT\n

Server: Apache/1.3.41 (Unix)\n

Keep-Alive: timeout=15, max=100\n

Connection: Keep-Alive\n

Transfer-Encoding: chunked\n

Content-Type: text/html\n

\r\n

d75\r\n - - -

Radidull] First Chunk: 0xd75 = 3445 bytes
[<head>

.<link href="http://www.cs.cmu.edu/style/calendar.css" rel="stylesheet"
type="text/css">

</head>

<body id="calendar body">

<div id='calendar'><table width='100%' border='0' cellpadding='0"'
cellspacing='1l"' id='cal'>

</body>
</html>
\r\n
O\r\n
N\

Second Chunk: 0 bytes (indicates last chunk)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 72

Carnegie Mellon

Proxies

m A proxyis an intermediary between a client and an origin server
" To the client, the proxy acts like a server
" To the server, the proxy acts like a client

1. Client request 2. Proxy request

> . .
Origin
Server

4. Proxy response 3. Server response

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 73

Carnegie Mellon

Why Proxies?

m Can perform useful functions as requests and responses pass by

= Examples: Caching, logging, anonymization, filtering, transcoding

Request foo.html

Request foo.html

Origin

foo.html Server

Request foo.html

Slower more
expensive
global network

Fast inexpensive local network

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 74

	Network Programming: Part II��15-213/18-213/14-513/15-513/18-613:�Introduction to Computer Systems	�April 9, 2020
	Review: Echo�Server�+ Client�Structure
	Review: C Standard I/O, Unix I/O and RIO
	Review:�Echo�Server�+ Client�Structure
	Sockets Interface
	Socket Address Structures & getaddrinfo
	Socket Address Structures
	Sockets Interface
	Linked List Returned by getaddrinfo
	addrinfo Struct
	Sockets Interface
	Sockets Interface: socket
	Sockets Interface: socket
	Sockets Interface: socket
	Sockets Interface
	Sockets Interface: bind
	Sockets Interface: bind
	Sockets Interface: bind
	Sockets Interface
	Sockets Interface: listen
	Sockets Interface
	Sockets Interface: accept
	Sockets Interface
	Sockets Interface: connect
	connect/accept Illustrated
	Connected vs. Listening Descriptors
	Sockets Interface
	Sockets Interface
	Sockets Helper: open_clientfd
	Review: getaddrinfo Linked List
	Sockets Helper: open_clientfd (cont)
	Sockets Interface
	Sockets Helper: open_listenfd
	Sockets Helper: open_listenfd (cont)
	Sockets Helper: open_listenfd (cont)
	Testing Servers Using telnet
	Testing the Echo Server With telnet
	Web Server Basics
	Web Content
	Static and Dynamic Content
	URLs and how clients and servers use them
	HTTP Requests
	HTTP Responses
	Example HTTP Transaction
	Example HTTP Transaction, Take 2
	Example HTTP(S) Transaction, Take 3
	Quiz Time!
	Tiny Web Server
	Tiny Operation
	Tiny Serving Static Content
	Serving Dynamic Content
	Serving Dynamic Content (cont)
	Serving Dynamic Content (cont)
	Issues in Serving Dynamic Content
	CGI
	The add.com Experience
	Serving Dynamic Content With GET
	Serving Dynamic Content With GET
	Serving Dynamic Content With GET
	Serving Dynamic Content with GET
	Serving Dynamic Content with GET
	Serving Dynamic Content With GET
	For More Information
	Additional slides
	Web History
	Web History (cont)
	HTTP Versions
	GET Request to Apache Server�From Firefox Browser
	GET Response From Apache Server
	Data Transfer Mechanisms
	Chunked Encoding Example
	Proxies
	Why Proxies?

