
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation:
Advanced Concepts

15-213/18-213/15-513/18-613:
Introduction to Computer Systems
16th Lecture, March 5, 2020

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Dynamic Memory Allocation

Programmers use dynamic
memory allocators (such as
malloc) to acquire virtual
memory (VM) at runtime
 For data structures whose size

is only known at runtime

Dynamic memory allocators
manage an area of process
VM known as the heap

Application

Dynamic Memory Allocator

Heap

Kernel virtual memory

Memory-mapped region for
shared libraries

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Run-time heap
(created by malloc)

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Keeping Track of Free Blocks
Method 1: Implicit list using length—links all blocks

Method 2: Explicit list among the free blocks using pointers

Method 3: Segregated free list
 Different free lists for different size classes

Method 4: Blocks sorted by size
 Can use a balanced tree (e.g., Red-Black tree) with pointers within

each free block, and the length used as a key

Need to tag
each block as
allocated/free

Need space
for pointers

Unused
32 48 32 16

32 48 32 16

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Implicit Lists Summary
Implementation: very simple
Allocate cost:
 linear time worst case

Free cost:
 constant time worst case
 even with coalescing

Memory Overhead:
 Depends on placement policy
 Strategies include first fit, next fit, and best fit

Not used in practice for malloc/free because of linear-
time allocation
 used in many special purpose applications

However, the concepts of splitting and boundary tag
coalescing are general to all allocators

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
Explicit free lists
Segregated free lists
Garbage collection
Memory-related perils and pitfalls

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Keeping Track of Free Blocks
Method 1: Implicit list using length—links all blocks

Method 2: Explicit list among the free blocks using pointers

Method 3: Segregated free list
 Different free lists for different size classes

Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

Unused
32 48 32 16

32 48 32 16

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Free Lists

Maintain list(s) of free blocks, not all blocks
 Luckily we track only free blocks, so we can use payload area
 The “next” free block could be anywhere

 So we need to store forward/back pointers, not just sizes
 Still need boundary tags for coalescing

 To find adjacent blocks according to memory order

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free

Optional

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Free Lists
Logically:

Physically: blocks can be in any order

A B C

32 32 32 32 4848 3232 32 32

Forward (next) links

Back (prev) links

A B

C

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocating From Explicit Free Lists
Before

After

= malloc(…)

(with splitting)

conceptual graphic

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With Explicit Free Lists
Insertion policy: Where in the free list do you put a newly
freed block?
Unordered
 LIFO (last-in-first-out) policy

 Insert freed block at the beginning of the free list
 FIFO (first-in-first-out) policy

 Insert freed block at the end of the free list
 Pro: simple and constant time
 Con: studies suggest fragmentation is worse than address ordered

Address-ordered policy
 Insert freed blocks so that free list blocks are always in address order:

addr(prev) < addr(curr) < addr(next)
 Con: requires search
 Pro: studies suggest fragmentation is lower than LIFO/FIFO

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 1)

Insert the freed block at the root of the list

free()

Root

Root

Before

After

conceptual graphic
Allocated Allocated

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 2)

Splice out adjacent successor block, coalesce both memory
blocks, and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphicAllocated Free

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 3)

Splice out adjacent predecessor block, coalesce both memory
blocks, and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphic
AllocatedFree

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 4)

Splice out adjacent predecessor and successor blocks, coalesce
all 3 blocks, and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphic
Free Free

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Some Advice: An Implementation Trick

Use circular, doubly-linked list
Support multiple approaches with single data structure
First-fit vs. next-fit
 Either keep free pointer fixed or move as search list

LIFO vs. FIFO
 Insert as next block (LIFO), or previous block (FIFO)

A B C D

Free
Pointer

FIFO Insertion
Point

LIFO Insertion
Point

Next fit

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit List Summary
Comparison to implicit list:
 Allocate is linear time in number of free blocks instead of all blocks

 Much faster when most of the memory is full
 Slightly more complicated allocate and free because need to splice

blocks in and out of the list
 Some extra space for the links (2 extra words needed for each block)

 Does this increase internal fragmentation?

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
Explicit free lists
Segregated free lists
Garbage collection
Memory-related perils and pitfalls

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Segregated List (Seglist) Allocators
Each size class of blocks has its own free list

Often have separate classes for each small size
For larger sizes: One class for each size [𝟐𝒊 + 𝟏, 𝟐𝒊ା𝟏]

16

32-48

64–inf

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Seglist Allocator
Given an array of free lists, each one for some size class

To allocate a block of size n:
 Search appropriate free list for block of size m > n (i.e., first fit)
 If an appropriate block is found:

 Split block and place fragment on appropriate list
 If no block is found, try next larger class

 Repeat until block is found

If no block is found:
 Request additional heap memory from OS (using sbrk())
 Allocate block of n bytes from this new memory
 Place remainder as a single free block in appropriate size class.

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Seglist Allocator (cont.)
To free a block:
 Coalesce and place on appropriate list

Advantages of seglist allocators vs. non-seglist allocators
(both with first-fit)
 Higher throughput

 log time for power-of-two size classes vs. linear time
 Better memory utilization

 First-fit search of segregated free list approximates a best-fit
search of entire heap.

 Extreme case: Giving each block its own size class is equivalent to
best-fit.

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

More Info on Allocators
D. Knuth, The Art of Computer Programming, vol 1, 3rd edition,
Addison Wesley, 1997
 The classic reference on dynamic storage allocation

Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.
 Comprehensive survey
 Available from CS:APP student site (csapp.cs.cmu.edu)

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/13182/quizzes/31659

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
Explicit free lists
Segregated free lists
Garbage collection
Memory-related perils and pitfalls

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit Memory Management:
Garbage Collection

Garbage collection: automatic reclamation of heap-allocated
storage—application never has to explicitly free memory

Common in many dynamic languages:
 Python, Ruby, Java, Perl, ML, Lisp, Mathematica

Variants (“conservative” garbage collectors) exist for C and C++
 However, cannot necessarily collect all garbage

void foo() {
int *p = malloc(128);
return; /* p block is now garbage */

}

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Garbage Collection
How does the memory manager know when memory can be
freed?
 In general we cannot know what is going to be used in the future since it

depends on conditionals
 But we can tell that certain blocks cannot be used if there are no

pointers to them

Must make certain assumptions about pointers
 Memory manager can distinguish pointers from non-pointers
 All pointers point to the start of a block
 Cannot hide pointers

(e.g., by coercing them to an int, and then back again)

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Classical GC Algorithms
Mark-and-sweep collection (McCarthy, 1960)
 Does not move blocks (unless you also “compact”)

Reference counting (Collins, 1960)
 Does not move blocks (not discussed)

Copying collection (Minsky, 1963)
 Moves blocks (not discussed)

Generational Collectors (Lieberman and Hewitt, 1983)
 Collection based on lifetimes

 Most allocations become garbage very soon
 So focus reclamation work on zones of memory recently allocated

For more information:
Jones and Lin, “Garbage Collection: Algorithms for Automatic
Dynamic Memory”, John Wiley & Sons, 1996.

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory as a Graph
We view memory as a directed graph
 Each block is a node in the graph
 Each pointer is an edge in the graph
 Locations not in the heap that contain pointers into the heap are called

root nodes (e.g. registers, locations on the stack, global variables)

Root nodes

Heap nodes

Not-reachable
(garbage)

reachable

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (cannot be needed by the application)

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Collecting
Can build on top of malloc/free package
 Allocate using malloc until you “run out of space”

When out of space:
 Use extra mark bit in the head of each block
 Mark: Start at roots and set mark bit on each reachable block
 Sweep: Scan all blocks and free blocks that are not marked

After mark Mark bit set

After sweep freefree

root

Before mark

Note: arrows
here denote

memory refs, not
free list ptrs.

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assumptions For a Simple Implementation
Application
 new(n): returns pointer to new block with all locations cleared
 read(b,i): read location i of block b into register
 write(b,i,v): write v into location i of block b

Each block will have a header word
 addressed as b[-1], for a block b
 Used for different purposes in different collectors

Instructions used by the Garbage Collector
 is_ptr(p): determines whether p is a pointer
 length(b): returns the length of block b, not including the header
 get_roots(): returns all the roots

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // recursively call mark on all words

mark(p[i]); // in the block
return;

}

Mark using depth-first traversal of the memory graph

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // recursively call mark on all words

mark(p[i]); // in the block
return;

}

Mark using depth-first traversal of the memory graph

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // recursively call mark on all words

mark(p[i]); // in the block
return;

}

Mark using depth-first traversal of the memory graph

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // recursively call mark on all words

mark(p[i]); // in the block
return;

}

Mark using depth-first traversal of the memory graph

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block

mark(p[i]);
return;

}

Mark using depth-first traversal of the memory graph

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block

mark(p[i]); // make recursive call
return;

}

Mark using depth-first traversal of the memory graph

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block

mark(p[i]); // make recursive call
return;

}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet(p)

clearMarkBit();
else if (allocateBitSet(p))

free(p);
p += length(p+1);

}

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block

mark(p[i]); // make recursive call
return;

}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet(p) // did we reach this block?

clearMarkBit();
else if (allocateBitSet(p))

free(p);
p += length(p+1);

}

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block

mark(p[i]); // make recursive call
return;

}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet(p) // did we reach this block?

clearMarkBit(); // yes -> so just clear mark bit
else if (allocateBitSet(p))

free(p);
p += length(p+1);

}

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block

mark(p[i]); // make recursive call
return;

}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet(p) // did we reach this block?

clearMarkBit(); // yes -> so just clear mark bit
else if (allocateBitSet(p)) // never reached: is it allocated?

free(p);
p += length(p+1);

}

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block

mark(p[i]); // make recursive call
return;

}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet(p) // did we reach this block?

clearMarkBit(); // yes -> so just clear mark bit
else if (allocateBitSet(p)) // never reached: is it allocated?

free(p); // yes -> its garbage, free it
p += length(p+1);

}

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block

mark(p[i]); // make recursive call
return;

}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet(p) // did we reach this block?

clearMarkBit(); // yes -> so just clear mark bit
else if (allocateBitSet(p)) // never reached: is it allocated?

free(p); // yes -> its garbage, free it
p += length(p+1); // goto next block

}

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
Explicit free lists
Segregated free lists
Garbage collection
Memory-related perils and pitfalls

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory-Related Perils and Pitfalls
Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory
Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks
Failing to free blocks

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dereferencing Bad Pointers
The classic scanf bug

int val;

...

scanf("%d", val);

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Uninitialized Memory
Assuming that heap data is initialized to zero

Can avoid by using calloc

/* return y = Ax */
int *matvec(int **A, int *x) {

int *y = malloc(N*sizeof(int));
int i, j;

for (i=0; i<N; i++)
for (j=0; j<N; j++)

y[i] += A[i][j]*x[j];
return y;

}

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
Allocating the (possibly) wrong sized object

Can you spot the bug?

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {
p[i] = malloc(M*sizeof(int));

}

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
Off-by-one errors

char **p;

p = malloc(N*sizeof(int *));

for (i=0; i<=N; i++) {
p[i] = malloc(M*sizeof(int));

}

char *p;

p = malloc(strlen(s));
strcpy(p,s);

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
Not checking the max string size

Basis for classic buffer overflow attacks

char s[8];
int i;

gets(s); /* reads “123456789” from stdin */

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
Misunderstanding pointer arithmetic

int *search(int *p, int val) {

while (p && *p != val)
p += sizeof(int);

return p;
}

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
Referencing a pointer instead of the object it points to

What gets decremented?
 (See next slide)

int *BinheapDelete(int **binheap, int *size) {
int *packet;
packet = binheap[0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify(binheap, *size, 0);
return(packet);

}

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C operators
Operators Associativity
() [] -> . ++ -- left to right
! ~ ++ -- + - * & (type) sizeof right to left
* / % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
?: right to left
= += -= *= /= %= &= ^= != <<= >>= right to left
, left to right

->, (), and [] have high precedence, with * and & just below
Unary +, -, and * have higher precedence than binary forms

Source: K&R page 53, updated

Unary

Postfix

Binary
Prefix

Unary

Binary

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
Referencing a pointer instead of the object it points to

Same effect as
 size--;

Rewrite as
 (*size)--;

int *BinheapDelete(int **binheap, int *size) {
int *packet;
packet = binheap[0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify(binheap, *size, 0);
return(packet);

}

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Referencing Nonexistent Variables
Forgetting that local variables disappear when a function
returns

int *foo () {
int val;

return &val;
}

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing Blocks Multiple Times
Nasty!

x = malloc(N*sizeof(int));
<manipulate x>

free(x);

y = malloc(M*sizeof(int));
<manipulate y>

free(x);

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Referencing Freed Blocks
Evil!

x = malloc(N*sizeof(int));
<manipulate x>

free(x);
...

y = malloc(M*sizeof(int));
for (i=0; i<M; i++)

y[i] = x[i]++;

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Failing to Free Blocks (Memory Leaks)
Slow, long-term killer!

foo() {
int *x = malloc(N*sizeof(int));
...
return;

}

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Failing to Free Blocks (Memory Leaks)
Freeing only part of a data structure

struct list {
int val;
struct list *next;

};

foo() {
struct list *head = malloc(sizeof(struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>
...

free(head);
return;

}

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dealing With Memory Bugs
Debugger: gdb
 Good for finding bad pointer dereferences
 Hard to detect the other memory bugs

Data structure consistency checker
 Runs silently, prints message only on error
 Use as a probe to zero in on error

Binary translator: valgrind
 Powerful debugging and analysis technique
 Rewrites text section of executable object file
 Checks each individual reference at runtime

 Bad pointers, overwrites, refs outside of allocated block
glibc malloc contains checking code
 setenv MALLOC_CHECK_ 3

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Supplemental slides

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conservative Mark & Sweep in C
A “conservative garbage collector” for C programs
 is_ptr() determines if a word is a pointer by checking if it points to

an allocated block of memory
 But, in C pointers can point to the middle of a block

To mark header, need to find the beginning of the block
 Can use a balanced binary tree to keep track of all allocated blocks (key

is start-of-block)
 Balanced-tree pointers can be stored in header (use two additional

words)

Header
ptr

Head Data

Left Right

Size
Left: smaller addresses
Right: larger addresses

Assumes ptr in middle can be
used to reach anywhere in

the block, but no other block

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Pointer Declarations: Test Yourself!
int *p

int *p[13]

int *(p[13])

int **p

int (*p)[13]

int *f()

int (*f)()

int (*(*x[3])())[5]

p is a pointer to int

p is an array[13] of pointer to int

p is an array[13] of pointer to int

p is a pointer to a pointer to an int

p is a pointer to an array[13] of int

f is a function returning a pointer to int

f is a pointer to a function returning int

x is an array[3] of pointers to functions
returning pointers to array[5] of ints

Source: K&R Sec 5.12

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Pointer Declarations: Test Yourself!
int *p

int *p[13]

int *(p[13])

int **p

int (*p)[13]

int *f()

int (*f)()

int (*(*x[3])())[5]

int (*(*f())[13])()

p is a pointer to int

p is an array[13] of pointer to int

p is an array[13] of pointer to int

p is a pointer to a pointer to an int

p is a pointer to an array[13] of int

f is a function returning a pointer to int

f is a pointer to a function returning int

f is a function returning ptr to an array[13]
of pointers to functions returning int

x is an array[3] of pointers to functions
returning pointers to array[5] of ints

Source: K&R Sec 5.12

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Parsing: int (*(*f())[13])()
int (*(*f())[13])() f

int (*(*f())[13])() f is a function
that returns a ptr

int (*(*f())[13])() f is a function that returns
a ptr to an array of 13 ptrs

int (*(*f())[13])() f is a function
that returns a ptr to an
array of 13

int (*(*f())[13])() f is a function that returns
a ptr to an array of 13 ptrs
to functions returning an int

int (*(*f())[13])() f is a function

