Carnegie Mellon

Desigh and Debugging

15-213/18-213/14-513/15-513/18-613: Introduction to Computer Systems
12th Lecture, February 20, 2020

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

After this lecture

m You will be able to:
= Describe the steps to debug complex code failures
= |dentify ways to manage the complexity when programming
= State guidelines for communicating the intention of the code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Outline

m Debugging
= Defects and Failures
= Scientific Debugging
= Tools

m Design
= Managing complexity
" Communication

" Naming

Comments

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Defects and Infections

1. The programmer creates a defect
2. The defect causes an infection

3. The infection propagates

4. The infection causes a failure

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Curse of Debugging

m Not every defect causes a failure!

m Testing can only show the presence of errors — not their
absence. (Dijkstra 1972)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Defects to Failures

m Code with defects will introduce erroneous or “infected”

state
Variable and input values
= Correct code may
propagate this state Erds : \i ; [Sane state
'
= Eventually an erroneous Program {03 Erroneous code
state is observed R T— ' .
! X Infected state
5 1 ' |
m Some executions will not ¢ 30
&]
trigger the defect : T Tx T
= QOthers will not propagate B ' |]
“infected” state
f } % ﬁ
m Debugging sifts through f

the code to find the defect

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Explicit Debugging

m Stating the problem

= Describe the problem aloud or in writing
= A.k.a. “Rubber duck” or “teddy bear” method

= Often a comprehensive problem description is sufficient to solve
the failure

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Scientific Debugging

m Before debugging, you need to construct a hypothesis as
to the defect

" Propose a possible defect and why it explains the failure conditions

m Ockham’s Razor — given several hypotheses, pick the
simplest / closest to current work

Failing

Code RUNS
Problem Other
Description Runs

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Scientific Debugging

= Make predictions based on your hypothesis

= What do you expect to happen under new conditions

[Prediction J

= What data could confirm or refute your hypothesis

= How can |l collect that data? /
= What experiments?
= What collection mechanism? {HypothesisJ

* Does the data refute the hypothesis? \
= Refine the hypothesis based on the new inputs [g’gziﬁﬁgf;”n]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

N\

[Experiment]

/

Scientific Debugging

m A set of experiments has confirmed the hypothesis
= This is the diagnosis of the defect

m Develop a fix for the defect

m Run experiments to confirm the fix

= Otherwise, how do you know that it is fixed?

Conclusion Diagnosis Fix Confirm

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Code with a Bug

int fib(int n) $ gcc -o fib fib.c

{ fib (9) =55
int £, £f0 =1, £f1 = 1; fib (8) =34

while (n > 1) {

n=n-1; o _

£ = £0 + f£1; f}b(z)zz

f0 = f1: fib(1)=134513905
fl = £;

}

return f;

}
A defect has caused a failure.
int main(..) {

for (i = 9; i > 0; i--)

printf (“£ib (%d)=%d\n",
i, fib(i));

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Constructing a Hypothesis

m Specification defined the first Fibonacci number as 1
= We have observed working runs (e.g., fib(2))

" We have observed a failing run
= We then read the code

m fib(1) failed // Hypothesis
Code Hypothesis
for(i=9;..) Result depends on order of calls
while (n > 1) { Loop check is incorrect
int f; F is uninitialized

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Brute Force Approach

m First, compilation flags
= MUST include “-Wall”
= Should include “~-Werror”

Prompt> gcc -Wall -Werror -03 -o badfib badfib.c

badfib.c: In function ‘fib’:
badfib.c:12:5: error: ‘f’ may be used uninitialized in this funct

return f;
A

ccl: all warnings being treated as errors

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

prompt>gcc -03 -o badfib badfib.c

Brute Force Approa p.ompt>. /badfib

: lat; .«_ £ib(2)=2
m First, compilation flags: s (e
= MUST include “-Wall” fib (0)=0
= Should include ““Werror” Pprompt>gcc -02 -o badfib badfib.c

o . prompt>./badfib
m Second, other optimizatiol

" Try at least =03 and —00 fib (2) =2
fib(1)=0
fib (0)=0
prompt>gcc -01 -o badfib badfib.c
prompt>. /badfib

fib (2)=2

fib(1)=9

fib (0)=9

prompt>gcc -00 -o badfib badfib.c
prompt>. /badfib

£ib (2)=2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third | flb (1) =2 l

Carnegie Mellon

Brute Force Approach

m First, compilation flags: “-Wall —-Werror”
= MUST include “-Wall”

®" Should include “~-Werror”

m Second, other optimization levels
" Try at least —O3 and —00

m Valgrind (even if your program appears to be working!)
®= Run on both—-03 and —00

® Only run after all warnings are gone!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

prompt> gcc -g -03 -o badfib badfib.c

prompt> valgrind badfib

==1462== Memcheck, a memory error detector

==1462== Copyright (C) 2002-2017, and GNU GPL'd, by Julia
==1462== Using Valgrind-3.13.0 and LibVEX; rerun with -h
==1462== Command: badfib

==1462==

fib (9)=55

fib(8) =34

fib(7)=21

fib(6)=13

fib(5)=8

fib (4)=5

£ib Valgrind is not perfect. On —03 it finds no errors!

fib (2) =2

fib (1)=0

fib (0)=0

Bryant a&d&’&‘alﬂrﬂ,ﬁq&m_ﬂer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

prompt> gcc -g -00 -o badfib badfib.c

prompt> valgrind badfib

==1561== Memcheck, a memory error detector

==1561== Copyright (C) 2002-2017, and GNU GPL'd, by Julia
==1561== Using Valgrind-3.13.0 and LibVEX; rerun with -h
==1561== Command: badfib

==1561==

fib (9)=55

fib(8) =34

fib(7)=21

fib(6)=13

fib(5)=8

fib(4)=5

£ib Valgrind is not perfect, but pretty darn good.

fib (2) =2

==1561== Conditional jump or move depends on uninitialise

==1561== at Ox4E988DA: vfprintf (vfprintf.c:1642)
Bryant Qg R Famper Systems PRPE W AR AN D P H o ri n+ £ (nrintf ~-) Y

Carnegie Mellon

Constructing a Hypothesis

m Specification defined the first Fibonacci number as 1
= We have observed working runs (e.g., fib(2))

" We have observed a failing run
= We then read the code

m fib(1) failed // Hypothesis
Code Hypothesis
for(i=9;..) Result depends on order of calls
while (n > 1) { Loop check is incorrect
int f; F is uninitialized

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Prediction

m Propose a new condition or conditions
= What will logically happen if your hypothesis is correct?
= What data can be

m fib(1) failed // Hypothesis
= // Result depends on order of calls
= |f fib(1) is called first, it will return correctly.
= // Loop check is incorrect
= Change to n >=1 and run again.
= //fis uninitialized

= Changetointf=1;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Experiment

m Ildentical to the conditions of a prior run
= Except with one condition changed
m Conditions

" Program input, using a debugger, altering the code

m fib(1) failed // Hypothesis
= |f fib(1) is called first, it will return correctly.
= Fails.
" Changeton>=1
= fib(1)=2
= fib(0)=...
" Changetointf=1,;

= Works. Sometimes a prediction can be a fix.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Observation

m What is the observed result?
= Factual observation, such as “Calling fib(1) will return 1.”
" The conclusion will interpret the observation(s)

m Don’t interfere.
= printf() can interfere

= Like quantum physics, sometimes observations are part of the
experiment

m Proceed systematically.

= Update the conditions incrementally so each observation relates to
a specific change

m Do NOT ever proceed past first bug.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Debugging Tools

m Observing program state can require a variety of tools
= Debugger (e.g., gdb)
= What state is in local / global variables (if known)
= What path through the program was taken

= Valgrind
= Does execution depend on uninitialized variables
= Are memory accesses ever out-of-bounds

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Diagnosis
m A scientific hypothesis that explains current observations

and makes future predictions becomes a theory
= We’'ll call this a diagnosis

m Use the diagnosis to develop a fix for the defect
= Avoid post hoc, ergo propter hoc fallacy
= Or correlation does not imply causation

m Understand why the defect and fix relate

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Fix and Confirm

m Confirm that the fix resolves the failure

m If you fix multiple perceived defects, which fix was for the
failure?

" Be systematic

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Learn

m Common failures and insights
= Why did the code fail?
= What are my common defects?

m Assertions and invariants
= Add checks for expected behavior
= Extend checks to detect the fixed failure

m Testing

= Every successful set of conditions is added to the test suite

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Quick and Dirty

m Not every problem needs scientific debugging
= Set a time limit: (for example)
= 0 minutes —-Wall, valgrind
= 1-10 minutes — Informal Debugging
= 10 — 60 minutes — Scientific Debugging
= > 60 minutes — Take a break / Ask for help

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Code Smells

Use of uninitialized variables
Unused values

Unreachable code

Memory leaks

Interface misuse

Null pointers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Quiz Time!

m https://canvas.cmu.edu/courses/13182

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Outline

m Debugging
= Defects and Failures
= Scientific Debugging
= Tools

m Design
= Managing complexity
= Communication
= Naming
"= Comments

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Design

m A good design needs to achieve many things:
= Performance
= Availability
= Modifiability, portability
= Scalability
= Security
= Testability
= Usability
" Cost to build, cost to operate

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Design

m A good design needs to achieve many things:
= Performance
= Availability
= Modifiability, portability
= Scalability
= Security
= Testability
= Usability
" Cost to build, cost to operate

But above all else: it must be readable

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Design

Good Design does:

Complexity Management &
Communication

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Complexity

m There are well known limits to how much complexity a
human can manage easily.

VoLr. 63, No. 2 MarcH, 1956

THE PSYCHOLOGICAL REVIEW

THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO:
SOME LIMITS ON OUR CAPACITY FOR
PROCESSING INFORMATION *

GEORGE A. MILLER

Harvard University

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Complexity Management

m However, patterns can be very helpful...

COGNITIVE PSYCHOLOGY 4, 55-81 (1973)

Perception in Chess’

Wmriam G, CHASE AND HERBERT A. StmMON
Carnegie—Mellon University

This paper develops a technique for isolating and studying the per-
ceptual structures that chess players perceive. Three chess players of varying
strength — from master to novice — were confronted with two tasks: (1)
A perception task, where the player reproduces 2 chess position in plain
view, and (2) de Groot’s {1965) short-term recall task, where the player
reproduces a chess position after viewing it for 5 sec. The successive glances
at the position in the perceptual task and long pauses in the memory task
were used to segment the structures in the reconstruction protocol. The size
and nature of these structures were then analyzed as a function of chess skill.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Complexity Management

Many techniques have been developed to help manage
complexity:

Separation of concerns
Modularity

Reusability
Extensibility

DRY

Abstraction
Information Hiding

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Managing Complexity
m Given the many ways to manage complexity

= Design code to be testable
= Try to reuse testable chunks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Complexity Example

m Split a cache access into three+ testable components

= State all of the steps that a cache access requires

= Which steps depend on the operation being a load or a store?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Complexity Example

m Split a cache access into three+ testable components
= State all of the steps that a cache access requires
Convert address into tag, set index, block offset
Look up the set using the set index
Check if the tag matches any line in the set
If so, hit
If not a match, miss, then
Find the LRU block
Evict the LRU block
Read in the new line from memory
Update LRU
Update dirty if the access was a store

= Which steps depend on the operation being a load or a store?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Designs need to be testable

m Testable design
= Testing versus Contracts
" These are complementary techniques

m Testing and Contracts are
= Acts of design more than verification
= Acts of documentation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Designs need to be testable

m Testable design
= Testing versus Contracts
" These are complementary techniques

m Testing and Contracts are
= Acts of design more than verification
= Acts of documentation: executable documentation!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Testing Example

m For your cache simulator, you can write your own traces

= Write a trace to test for a cache hit

L 50,1
L 50,1

= Write a trace to test dirty bytes in cache
S$100, 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Trust the Compiler!

m Use plenty of temporary variables
m Use plenty of functions
m Let compiler do the math

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Communication

When writing code, the author is communicating with:
m The machine

m Other developers of the system

m Code reviewers

m Their future self

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Communication

There are many techniques that have been developed
around code communication:

Tests

Naming
Comments
Commit Messages
Code Review
Design Patterns

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Naming

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Avoid deliberately meaningless names:

Pull requests Issues Marketplace Explore

Repositories Showing 8,937,025 available code results ® e
| Code +

alexef/gobject-introspection
Commits .

tests/scanner/foo.h
Issues #ifndef _ FOO_OBIECT_H__

#define _ FOO_DBIECT_H__

Packages

#include <glib-object.h>
Marketplace #include <giofgio.h> /* GAsyncReadyCallback */

#include "utility.h"

80-009090

Topics
L #define FOO_SUCCES5_INT @x1138
Wikis
#define FOO_DEFIME_SHOULD_BE_EXPOSED "should be exposed”
Users
@ C Showing the top three matches Last indexed on Jun 25, 2018
Languages
PHP 26,699,388 alexef/gobject-introspection
tests/scanner/foo.c
JavaScript 8042 989
#include “foo.h"
#include "girepository.h"
Python 7,892 881
HTML 4228224 /* A hidden type not exposed publicly, similar to GUPNP's XML wrapper
object *
Ces 4,093,394 typedef struct FooHidden FooHidden;
Ruby 4,021,592
int foo_init_argv (int argc, char **argv);
Java 2891173
@ C Showing the top four matches Last indexed on Jun 25, 2018
Text 2612262
XML 2,599 848 48

Bryant an

Carnegie Mellon

Naming is understanding

“If you don’t know what a thing should be
called, you cannot know what it is.

If you don’t know what it is, you cannot sit
down and write the code.” - Sam Gardiner

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Better naming practices

Start with meaning and intention

Use words with precise meanings (avoid “data”, “info”,
“perform”)

Prefer fewer words in names

Avoid abbreviations in names

Use code review to improve names

Read the code out loud to check that it sounds okay

N o U ReW

Actually rename things

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Naming guidelines — Use dictionary words

m Only use dictionary words and abbreviations that appear
in a dictionary.
= For example: FileCpy -> FileCopy
= Avoid vague abbreviations such as acc, mod, auth, etc..

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Avoid using single-letter names

m Single letters are unsearchable

® Give no hints as to the variable’s usage

m Exceptions are loop counters

= Especially if you know why i, j, etc were originally used

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Limit name character length

“Good naming limits individual name length, and reduces
the need for specialized vocabulary” — Philip Relf

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Limit name word count

m Keep names to a four word maximum

m Limit names to the number of words that people can read
at a glance.

m Which of each pair do you prefer?
al) arraysOfSetsOflLinesOfBlocks

a?2) cache

bl) evictedData

b2) evictedDataBytes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Describe Meaning

m Use descriptive names.

m Avoid names with no meaning: a, foo, blah, tmp, etc

m There are reasonable exceptions:
void swap (int* a, int* b) {

int tmp = *a;
*a — *b;
*b = tmp;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

Use a large vocabulary

m Be more specific when possible:

= Person -> Employee

m What is size in this binaryTree?

struct binaryTree {

int size;
height
numChildren
subTreeNumNodes
keyLength

b

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

Use problem domain terms

m Use the correct term in the problem domain’s language.

" Hint: as a student, consider the terms in the assignment

m In cachelab, consider the following:

line

element

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Use opposites precisely

m Consistently use opposites in standard pairs
= first/end -> first/last

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Comments

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

Don’t Comments

= Don’t say what the code does

= because the code already says that

= Don’t explain awkward logic

= improve the code to make it clear

= Don’t add too many comments

= jt's messy, and they get out of date

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Awkward Code

m Imagine someone (TA, employer, etc) has to read your
code

= Would you rather rewrite or comment the following?

(* (void **) ((*(void **) (bp)) + DSIZE)) = (*(void **) (bp + DSIZE));

= How about?
bp->prev->next = bp->next;

= Both lines update program state in the same way.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

Carnegie Mellon

Do Comments

m Answer the question: why the code exists

m When should | use this code?
m When shouldn’t | use it?
m What are the alternatives to this code?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Carnegie Mellon

Why does this exist?

m Explain why a magic number is what it is.

// Each address is 64-bit, which is 16 + 1 hex characters
const int MAX ADDRESS LENGTH = 17;

m When should this code be used? Is there an alternative?

unsigned power?Z (unsigned base, unsigned expo) {
unsigned 1i;

unsigned result = 1;
for (1=0; i<expo;i++) {
result+=result;

}

return result;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

Carnegie Mellon

How to write good comments

1. Write short comments of what the code will do.

1. Single line comments
2. Example: Write four one-line comments for quick sort

// Initialize locals
// Pick a pivot value
// Reorder array around the pivot

// Recurse

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Carnegie Mellon

How to write good comments

1. Write short comments of what the code will do.

1. Single line comments
2. Example: Write four one-line comments for quick sort

2. Write that code.

3. Revise comments / code
1. If the code or comments are awkward or complex
2. Join / Split comments as needed

4. Maintain code and comments

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Carnegie Mellon

Commit Messages

m Committing code to a source repository is a vital part of
development
" Protects against system failures and typos:
= cat foo.c versus cat > foo.c
" The commit messages are your record of your work
= Communicating to your future self
= Describe in one line what you did
“Parses command line arguments”
“fix bug in unique tests, race condition not solved”
“seg list finished, performance is ...”

m Use branches

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 67

Carnegie Mellon

Summary

m Programs have defects

= Be systematic about finding them

m Programs are more complex than humans can manage

= Write code to be manageable

m Programming is not solitary, even if you are
communicating with a grader or a future self

= Be understandable in your communication

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 68

Carnegie Mellon

Acknowledgements

m Some debugging content derived from:
" http://www.whyprogramsfail.com/slides.php

m Some code examples for design are based on:
" “The Art of Readable Code”. Boswell and Foucher. 2011.

m Lecture originally written by

= Michael Hilton and Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 69

