Carnegie Mellon

Floating Point

15-213/18-213/15-513/18-613: Introduction to Computer Systems
4th Lecture, Jan 23, 2020

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today: Floating Point

m Background: Fractional binary numbers
m |EEE floating point standard: Definition
m Example and properties

m Rounding, addition, multiplication

m Floating pointin C

® Summary

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Fractional binary numbers

= What is 1011.101,?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Fractional Binary Numbers

2[
2/—1
—
bi |bia| o+ | bz | b1 | bo b1 |bz|bs| +e* | b,
1/2 — |
1/4 [I B J
1/8
m Representation 27
= Bits to right of “binary point” represent fractional powers of 2
" Represents rational number: -
P Z bk X 2k
k=—j

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Fractional Binary Numbers: Examples

m Value Representation
53/4 =23/4 101.11> =4+1+1/2 +1/4
27/8 =23/8 10.111> =2+1/2 +1/4+1/8
17/16 =23/16 1.0111; =1+1/4+1/8 +1/16

m Observations
= Divide by 2 by shifting right (unsigned)
= Multiply by 2 by shifting left
" Numbers of form 0.111111...> are just below 1.0
= 1/2+1/4+1/8+...+1/2'+...— 1.0
= Use notation 1.0—¢

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Representable Numbers

m Limitation #1
= Can only exactly represent numbers of the form x/2X
= Other rational numbers have repeating bit representations

= Value Representation
= 1/3 0.0101010101[01]..2
= 1/5 0.001100110011[0011]..2
= 1/10 0.00011001100111[0011]..2

m Limitation #2
= Just one setting of binary point within the w bits
= Limited range of numbers (very small values? very large?)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Today: Floating Point

|
m |EEE floating point standard: Definition

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

IEEE Floating Point

m IEEE Standard 754

= Established in 1985 as uniform standard for floating point arithmetic
= Before that, many idiosyncratic formats
= Supported by all major CPUs

= Some CPUs don’t implement IEEE 754 in full
e.g., early GPUs, Cell BE processor

m Driven by numerical concerns
= Nice standards for rounding, overflow, underflow
®" Hard to make fast in hardware

= Numerical analysts predominated over hardware designers
in defining standard

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

This is important!
m Ariane 5 explodes on maiden voyage: $500 MILLION dollars lost

" 64-bit floating point number assigned to 16-bit integer
= Causes rocket to get incorrect value of horizontal velocity and crash

m Patriot Missile defense system misses scud — 28 people die
= System tracks time in tenths of second
" Converted from integer to floating point number.
= Accumulated rounding error causes drift. 20% drift over 8 hours.

= Eventually (on 2/25/1991 system was on for 100 hours) causes range mis-
estimation sufficiently large to miss incoming missiles.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Floating Point Representation

Example:
m Numerical Form: 15213,, =(-1)° x 1.1101101101101, x 213

(-1 M 2f
= Sign bit s determines whether number is negative or positive

= Significand M normally a fractional value in range [1.0,2.0).
= Exponent E weights value by power of two

m Encoding
= MSB s is sign bits
= exp field encodes E (but is not equal to E)
= frac field encodes M (but is not equal to M)

s |exp frac

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Precision options

m Single precision: 32 bits
~ 7 decimal digits, 10%38

s |exp frac

1 8-bits 23-bits

m Double precision: 64 bits
~ 16 decimal digits, 10%3%8

s |exp frac

1 11-bits 52-bits

m Other formats: half precision, quad precision

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Three “kinds” of floating point numbers

s |exp frac

1 e-bits f-bits

00...00 exp # 0 and exp # 11...11 11...11

denormalized normalized special

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

“Normalized” Values v=(-1F M2

m When: exp # 000...0 and exp # 111...1

m Exponent coded as a biased value: E = exp — Bias

= exp: unsigned value of exp field
= Bias = 2%1-1, where k is number of exponent bits
= Single precision: 127 (exp: 1...254, E: -126...127)
= Double precision: 1023 (exp: 1...2046, E: -1022...1023)

m Significand coded with implied leading 1: M = 1.xxx...x2

= xxx...X: bits of frac field
= Minimum when £rac=000...0 (M = 1.0)
" Maximum when frac=111...1 (M =2.0—¢)

" Get extra leading bit for “free”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Normalized Encoding Example | v=(-1FM2"
E = exp—Bias

m Value: float F = 15213.0;
= 15213,, = 11101101101101,
=1.1101101101101, x 213

m Significand

M = 1.1101101101101,

frac= 11011011011010000000000,
m Exponent

E = 13

Bias = 127

exp = 140 = 10001100,
m Result:

0/110001100/(11011011011010000000000

S exp frac

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Denormalized Values v=(-1)M 2F
E = 1 - Bias

m Condition: exp = 000...0

m Exponent value: E = 1 — Bias (instead of exp — Bias) (why?)

m Significand coded with implied leading 0: M = 0.xxXx...x2

=" xxx..x: bits of frac

m Cases
" exp=000.0, frac=000..0
= Represents zero value
= Note distinct values: +0 and -0 (why?)
" exp=000.0, frac #000..0
= Numbers closest to 0.0
= Equispaced

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Special Values

m Condition:exp=111..1

m Case:exp=111..1, frac=000..0

= Represents value o0 (infinity)

= Operation that overflows

" Both positive and negative

E.g., 1.0/0.0=-1.0/-0.0 = +o0, 1.0/-0.0 = -0

m Case:exp=111..1, frac # 000..0

= Not-a-Number (NaN)
= Represents case when no numeric value can be determined
= E.g.,sqrt(-1), oo — o0, 00 x 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

C float Decoding Example v=(-1)M2f
E = exp —Bias

float: 0xCOA00000 Bigs = 2%1—1 =127

binary:

. . \
1 8-bits 23-bits N é\“&’éd
o
E= 0 |0 | 0000
1 |1 | 0001
2 [2 | 0010
S = 3 [3 0011
4 |4 0100
5 |5 | 0101
M= 6 | 6 | 0110
7 [7 | 0111
8 | 8 | 1000
9 |9 | 1001
A (10| 1010
B |11 | 1011
v=(-1)M 2F = C 121100
D |13 | 1101
E |14 | 1110
F |15 1111

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

C float Decoding Example #1 v =(=1)s M 2¢

E = exp — Bias

float: 0xCOA00000

binary: 1100 0000 1010 0000 0000 0000 0000 0000

1| 1000 0001 | 010 0000 O0O0OO OOOO 0OOOO 0OOOO

. . \
1 8-bits 23-bits N 6\“&06
o
E= 0 |0 | 0000
1 |1 | 0001
2 [2 | 0010
S = 3 [3 0011
4 |4 0100
5 |5 | 0101
M=1 6 | 6 | 0110
7 [7 | 0111
8 | 8 | 1000
9 |9 | 1001
A (10| 1010
B |11 | 1011
v=(-1)M 2F = C 121100
D |13 | 1101
E |14 | 1110
F |15 1111

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

C float Decoding Example #1 v =(=1)s M 2¢

E = exp — Bias

float: 0xCOA00000 Bigs = 2%1—1 =127

binary: 1100 0000 1010 0000 0000 0000 0000 0000

1| 1000 0001 | 010 0000 O0O0OO OOOO 0OOOO 0OOOO

1 8-bits 23-bits \6‘"}00\

, _ o o &
E = exp—Bias =129-127 = 2 (decimal)

0000

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

S =1 -> negative number

M=1.010 0000 0000 0OOOO 0OOOO OOOO
=1 + 1/4 = 1.25

v=(-1)*M 2E = (-1)! *1.25 * 22= -5

RR(R(R R

= H(O[Q|W| |||yt d|w Nk o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

C float Decoding Example #2 V= (1) M 2f
E = 1 — Bias

float: 0x001C0000

binary: 0000 0000 0001 1100 0000 0000 0000 0000

O 0000 0000 | 001 1100 0000 00O0OO 0OOO 0OOO

. . \
1 8-bits 23-bits N 6\“&06
o
E= 0 [0 [0000
1 [1 | 0001
2 [2 | 0010
S = 3 [3 0011
4 |4 0100
5 | 5 | 0101
M=0 6 | 6 | 0110
7 [7 | 0111
8 |8 | 1000
9 [9 [1001
A |10 1010
B [11 | 1011
v=(-1)M 2F = C 121100
D |13 | 1101
E |14 | 1110
F |15 1111

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

C float Decoding Example #2 V= (1) M 2f
E = 1 — Bias

Bigs =2%1—-1=127
binary: 0000 0000 0001 1100 0000 0000 0000 0000

float: 0x001C0000

O 0000 0000 | 001 1100 0000 00O0OO 0OOO 0OOO

1 8-bits 23-bits \6‘"}00\

] . \e@."oevéé\o
E=1-Bias=1-127 =-126 (decimal)

0000

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

S = 0 -> positive number

M=0.001 1100 0000 0000 0000 00O0O
=1/8 + 1/16 + 1/32 7/32 T*27>

V= (_1)5 M 2E = (_1)0 * 7%9-5 % 2-126 = 7%9-131

RR(R(R R

= H(O[Q|W| |||yt d|w Nk o

=~ 2.571393892 X 10-3°

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Visualization: Floating Point Encodings

—o0 .) +00
| -Normalized (~Denorm .+Denorm | +Normalized |

: |
I I falxc I I
NaN / \ NaN
-0 +0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Today: Floating Point

N
N
m Example and properties
N
N

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Tiny Floating Point Example

S exp frac

1 4-bits 3-bits

m 8-bit Floating Point Representation

= the sign bit is in the most significant bit
= the next four bits are the exp, with a bias of 7
= the last three bits are the frac

m Same general form as IEEE Format
" normalized, denormalized
= representation of 0, NaN, infinity

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

v=(-1)p M2
norm: E = exp — Bias

Dynamlc Range (s=0 only)

sxp frac E value denorm: E = 1 — Bias

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64 = 1/512 closest to zero
Denormalized © 0000 010 -6 2/8*1/64 = 2/512 (-1)°(0+1/4)*2-6
numbers

0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512 largest denorm

0 0001 000 -6 8/8*1/64 = 8/512 smallest norm

0 0001 001 -6 9/8*1/64 = 9/512 (-1)0(141/8)*2-5

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16 closest to 1 below
Normalized 0 0111 000 0 8/8*1 =1
numbers 0 0111 o001 0 9/8*1 = 9/8 closest to 1 above

0 0111 010 0 10/8*1 = 10/8

0 1110 110 7 14/8*%128 = 224

0 1110 111 7 15/8*128 = 240 largest norm

0 1111 000 n/a inf

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Distribution of Values

m 6-bit IEEE-like format

" e =3 exponent bits
= f=2 fraction bits > exp frac

" Bjasis231-1=3 1 3-bits 2-bits

m Notice how the distribution gets denser toward zero.

/8values
A A A A A A

-15 -10 -5 0 5 10 15
¢ Denormalized A Normalized Infinity

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Distribution of Values (close-up view)

m 6-bit IEEE-like format

" e =3 exponent bits
= f=2 fraction bits > €Xp frac
= Biasis 3 1 3-bits 2-bits

A A A A A AAAAOGOOCOOOOALAAAA A A A A
-1 -0.5 0 0.5 1
¢ Denormalized A Normalized B Infinity

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Special Properties of the IEEE Encoding

m FP Zero Same as Integer Zero
= All bits =0

m Can (Almost) Use Unsigned Integer Comparison
" Must first compare sign bits
= Must consider -0=0
= NaNs problematic
= Will be greater than any other values
= What should comparison yield? The answer is complicated.
= Otherwise OK
= Denorm vs. normalized
= Normalized vs. infinity

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/13182

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Today: Floating Point

N
N
N
m Rounding, addition, multiplication
N

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Floating Point Operations: Basic Idea

BmxX +r y = Round(x + y)

BX Xf VY Round (x X y)

m Basic idea
= First compute exact result
= Make it fit into desired precision
= Possibly overflow if exponent too large
= Possibly round to fit into £frac

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Rounding

m Rounding Modes (illustrate with S rounding)

$1.40 $1.60 S$1.50 $2.50 -51.50

= Towards zero S1 S1 S1 S2 -S11
= Round down (-) $1 $1 $1 V $2 V ~$24
= Round up (+) $2 1 $2 1 24 s34t 811

Nearest Even* (default) $1J S2 4 s2 4 YR —S24

*Round to nearest, but if half-way in-between then round to nearest even

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Closer Look at Round-To-Even

m Default Rounding Mode
" Hard to get any other kind without dropping into assembly
= C99 has support for rounding mode management
= All others are statistically biased
= Sum of set of positive numbers will consistently be over- or under-
estimated
m Applying to Other Decimal Places / Bit Positions
= When exactly halfway between two possible values
= Round so that least significant digit is even
= E.g., round to nearest hundredth

7.8949999 7.89 (Less than half way)
7.8950001 7.90 (Greater than half way)
7.8950000 7.90 (Half way—round up)

7.8850000 7.88 (Half way—round down)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Rounding Binary Numbers
m Binary Fractional Numbers

= “Even” when least significant bitis 0
= “Half way” when bits to right of rounding position =100...

m Examples
" Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded Value
23/32 10.00011; 10.002 (<1/2—down) 2
2 3/16 10.001102 10.01> (>1/2—up) 21/4
27/8 10.11100; 11.002 (1/2—up) 3

25/8 10.10100: 10.102 (1/2—down) 21/2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Rounding

Round bit: 1% bit removed

m Round up conditions

" Round =1, Sticky=1—>0.5

" Guard =1, Round =1, Sticky =0 — Round to even
Rounded

.000
.101
.000
.010
.001
10.

Fraction

.0000000
.1010000
.0001000
.0011000
.0001010
.1111100

R R R R R R

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

GRS

000
100
010
110
011
111

Incr?
N

K K K 2 2Z

1 . BBGRXXX

Guard bit: LSB of result _/ '

Sticky bit: OR of remaining bits

1

O = =

000

35

Carnegie Mellon

FP Multiplication

m (1)1 M1 281 x (-1)2 M2 2£2
m Exact Result: (-1) M 2f

= Sign s: s1Ns2
= Significand M: M1x M2
" Exponent E: El1+E2

m Fixing

= |f M2 2, shift M right, increment E
= |f E out of range, overflow
" Round M to fit £rac precision

m Implementation
= Biggest chore is multiplying significands

4 bit significand: 1.010*22 x 1.110*23 = 10.0011%*25
= 1.00011*26 = 1.001*2°

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Floating Point Addition
m (1)1 M1 2E1 + (-1)2 M2 2£2

"Assume E1 > E2 Get binary points lined up
m Exact Result: (-1)° M 2f FE1-E2 —
=Sign s, significand M: (—1)% M1
= Result of signed align & add
"Exponent £: E1 + (-1) m2
m Fixing
=" |f M > 2, shift M right, increment E (-1F M

"if M < 1, shift M left k positions, decrement E by k

=Qverflow if E out of range
="Round M to fit £rac precision

1.010*2% + 1.110*23 = (0.1010 + 1.1100) *23
= 10.0110 * 23 = 1.00110 * 24 1.010 * 24

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Mathematical Properties of FP Add

m Compare to those of Abelian Group

" Closed under addition? Yes
= But may generate infinity or NaN

= Commutative? Yes

= Associative? No

= Overflow and inexactness of rounding
= (3.14+1el10)-1e10 = 0, 3.14+(1lel0-1el0) = 3.14

0 is additive identity? Yes
Every element has additive inverse? Almost

= Yes, except for infinities & NaNs

m Monotonicity
" 32>b = a+c2b+c? Almost
= Except for infinities & NaNs

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Mathematical Properties of FP Mult

m Compare to Commutative Ring

= Closed under multiplication? Yes

= But may generate infinity or NaN

" Multiplication Commutative? Yes

= Multiplication is Associative? No
= Possibility of overflow, inexactness of rounding
» EX: (1e20*1e20) *1e-20=1nf, 1e20* (1le20*1e-20)=1e20
1 is multiplicative identity? Yes
"= Multiplication distributes over addition? No

= Possibility of overflow, inexactness of rounding

» 1e20* (1le20-1e20)=0.0, 1e20*1e20 - le20*1le20 =NaN

m Monotonicity
"ag>bh &c=20 =>a*c=>b *c?

= Except for infinities & NaNs

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Almost

Carnegie Mellon

Today: Floating Point

Floating point in C

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Floating Point in C

m C Guarantees Two Levels
= float single precision
" double double precision

m Conversions/Casting
= Casting between int, £loat, and double changes bit representation
" double/float > int
= Truncates fractional part
= Like rounding toward zero
= Not defined when out of range or NaN: Generally sets to TMin
"int - double
= Exact conversion, as long as int has < 53 bit word size
"int > float

= Will round according to rounding mode

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Floating Point Puzzles
m For each of the following C expressions, either:

= Argue that it is true for all argument values
= Explain why not true

+ x == (int) (float) x X

e x == (int) (double) x v

P + f == (float) (double) £ v
float £ = . * d == (double) (float) d X
double d = ..; P E= -0 4
« 2/3 == 2/3.0 X

Assume neither *d<0.0 = ((d*2) < 0.0) v
d nor £ is NaN e d>f = -f > -d e
e d*d> 0.0 v

¢ (d+f)-d == X

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Summary

m |EEE Floating Point has clear mathematical properties
m Represents numbers of form M x 2F
m One can reason about operations independent of
implementation
= As if computed with perfect precision and then rounded
m Not the same as real arithmetic

= Violates associativity/distributivity

= Makes life difficult for compilers & serious numerical applications
programmers

Single precision: 32 bits

s |exp frac

1 8-bits 23-bits

Double precision: 64 bits

s |exp frac

1 11-bits 52-bits

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Additional Slides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Creating Floating Point Number

m Steps S exp frac
" Normalize to have leading 1

1 4-bits 3-bits
® Round to fit within fraction

= Postnormalize to deal with effects of rounding

m Case Study
= Convert 8-bit unsigned numbers to tiny floating point format
Example Numbers

128 10000000
15 00001101
33 00010001
35 00010011

138 10001010
63 00111111

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Normalize s exp frac

1 4-bits 3-bits

m Requirement
= Set binary point so that numbers of form 1.xxxxx
= Adjust all to have leading one
= Decrement exponent as shift left

Value Binary Fraction Exponent
128 10000000 1.0000000 7
15 00001101 1.1010000 3
17 00010001 1.0001000 4
19 00010011 1.0011000 4
138 10001010 1.0001010 7
63 00111111 1.1111100 5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Postnormalize
m Issue

" Rounding may have caused overflow
" Handle by shifting right once & incrementing exponent

Value Rounded Exp Adjusted Numeric Result
128 1.000 7 128
15 1.101 3 15
17 1.000 4 16
19 1.010 4 20
138 1.001 7 134
63 10.000 5 1.000/6 64

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Interesting Numbers {single,double}
Description exp frac Numeric Value

m Zero 00...00 00...00 0.0

m Smallest Pos. Denorm. 00...00 00...01 2~ (23,52} y 9-{126,1022}

= Single = 1.4 x 107
" Double = 4.9 x 10732
m Largest Denormalized 00..00 11..11 (1.0 — €) x 2-{126,1022}
= Single~1.18x 10738
" Double =2.2 x 107308

m Smallest Pos. Normalized 00..01 00...00 1.0 x 2~ {126,1022}
= Just larger than largest denormalized
m One 01..11 00...00 1.0
m Largest Normalized 11..10 11..11 (2.0 — g) x 2{127,1023}

= Single = 3.4 x 1038
= Double ~ 1.8 x 10398

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

