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Today: Floating Point

m Background: Fractional binary numbers
m |EEE floating point standard: Definition
m Example and properties

m Rounding, addition, multiplication

m Floating pointin C

® Summary
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Fractional binary numbers

= What is 1011.101,?
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Fractional Binary Numbers

2[
2/—1
—
bi |bia| o+ | bz | b1 | bo b1 |bz|bs| +e* | b,
1/2 — |
1/4 [ I B J
1/8
m Representation 27
= Bits to right of “binary point” represent fractional powers of 2
" Represents rational number: -
P Z bk X 2k
k=—j
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Fractional Binary Numbers: Examples

m Value Representation
53/4 =23/4 101.11> =4+1+1/2 +1/4
27/8 =23/8 10.111> =2+1/2 +1/4+1/8
17/16 =23/16 1.0111; =1+1/4+1/8 +1/16

m Observations
= Divide by 2 by shifting right (unsigned)
= Multiply by 2 by shifting left
" Numbers of form 0.111111...> are just below 1.0
= 1/2+1/4+1/8+...+1/2'+...— 1.0
= Use notation 1.0—¢
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Representable Numbers

m Limitation #1
= Can only exactly represent numbers of the form x/2X
= Other rational numbers have repeating bit representations

= Value Representation
= 1/3 0.0101010101[01]..2
= 1/5 0.001100110011[0011]..2
= 1/10 0.00011001100111[0011]..2

m Limitation #2
= Just one setting of binary point within the w bits
= Limited range of numbers (very small values? very large?)
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Today: Floating Point

|
m |EEE floating point standard: Definition
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IEEE Floating Point

m IEEE Standard 754

= Established in 1985 as uniform standard for floating point arithmetic
= Before that, many idiosyncratic formats
= Supported by all major CPUs

= Some CPUs don’t implement IEEE 754 in full
e.g., early GPUs, Cell BE processor

m Driven by numerical concerns
= Nice standards for rounding, overflow, underflow
®" Hard to make fast in hardware

= Numerical analysts predominated over hardware designers
in defining standard
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This is important!
m Ariane 5 explodes on maiden voyage: $500 MILLION dollars lost

" 64-bit floating point number assigned to 16-bit integer
= Causes rocket to get incorrect value of horizontal velocity and crash

m Patriot Missile defense system misses scud — 28 people die
= System tracks time in tenths of second
" Converted from integer to floating point number.
= Accumulated rounding error causes drift. 20% drift over 8 hours.

= Eventually (on 2/25/1991 system was on for 100 hours) causes range mis-
estimation sufficiently large to miss incoming missiles.
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Floating Point Representation

Example:
m Numerical Form: 15213,, =(-1)° x 1.1101101101101, x 213

(-1 M 2f
= Sign bit s determines whether number is negative or positive

= Significand M normally a fractional value in range [1.0,2.0).
= Exponent E weights value by power of two

m Encoding
= MSB s is sign bits
= exp field encodes E (but is not equal to E)
= frac field encodes M (but is not equal to M)

s |exp frac
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Precision options

m Single precision: 32 bits
~ 7 decimal digits, 10%38

s |exp frac

1 8-bits 23-bits

m Double precision: 64 bits
~ 16 decimal digits, 10%3%8

s |exp frac

1 11-bits 52-bits

m Other formats: half precision, quad precision

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11



Carnegie Mellon

Three “kinds” of floating point numbers

s |exp frac

1 e-bits f-bits

00...00 exp # 0 and exp # 11...11 11...11

denormalized normalized special
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“Normalized” Values v=(-1F M2

m When: exp # 000...0 and exp # 111...1

m Exponent coded as a biased value: E = exp — Bias

= exp: unsigned value of exp field
= Bias = 2%1-1, where k is number of exponent bits
= Single precision: 127 (exp: 1...254, E: -126...127)
= Double precision: 1023 (exp: 1...2046, E: -1022...1023)

m Significand coded with implied leading 1: M = 1.xxx...x2

= xxx...X: bits of frac field
= Minimum when £rac=000...0 (M = 1.0)
" Maximum when frac=111...1 (M =2.0—¢)

" Get extra leading bit for “free”
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Normalized Encoding Example | v=(-1FM2"
E = exp—Bias

m Value: float F = 15213.0;
= 15213,, = 11101101101101,
=1.1101101101101, x 213

m Significand

M = 1.1101101101101,

frac= 11011011011010000000000,
m Exponent

E = 13

Bias = 127

exp = 140 = 10001100,
m Result:

0/110001100/(11011011011010000000000

S exp frac
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Denormalized Values v=(-1)M 2F
E = 1 - Bias

m Condition: exp = 000...0

m Exponent value: E = 1 — Bias (instead of exp — Bias) (why?)

m Significand coded with implied leading 0: M = 0.xxXx...x2

=" xxx..x: bits of frac

m Cases
" exp=000.0, frac=000..0
= Represents zero value
= Note distinct values: +0 and -0 (why?)
" exp=000.0, frac #000..0
= Numbers closest to 0.0
= Equispaced
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Special Values

m Condition:exp=111..1

m Case:exp=111..1, frac=000..0

= Represents value o0 (infinity)

= Operation that overflows

" Both positive and negative

E.g., 1.0/0.0=-1.0/-0.0 = +o0, 1.0/-0.0 = -0

m Case:exp=111..1, frac # 000..0

= Not-a-Number (NaN)
= Represents case when no numeric value can be determined
= E.g.,sqrt(-1), oo — o0, 00 x 0
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C float Decoding Example v=(-1)M2f
E = exp —Bias

float: 0xCOA00000 Bigs = 2%1—1 =127

binary:

. . \
1 8-bits 23-bits N é\“&’éd
o
E= 0 |0 | 0000
1 |1 | 0001
2 [ 2 | 0010
S = 3 [ 3 0011
4 |4 0100
5 |5 | 0101
M= 6 | 6 | 0110
7 [ 7 | 0111
8 | 8 | 1000
9 |9 | 1001
A (10| 1010
B |11 | 1011
v=(-1)M 2F = C 121100
D |13 | 1101
E |14 | 1110
F |15 1111
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C float Decoding Example #1 v =(=1)s M 2¢

E = exp — Bias

float: 0xCOA00000

binary: 1100 0000 1010 0000 0000 0000 0000 0000

1| 1000 0001 | 010 0000 O0O0OO OOOO 0OOOO 0OOOO

. . \
1 8-bits 23-bits N 6\“&06
o
E= 0 |0 | 0000
1 |1 | 0001
2 [ 2 | 0010
S = 3 [ 3 0011
4 |4 0100
5 |5 | 0101
M=1 6 | 6 | 0110
7 [ 7 | 0111
8 | 8 | 1000
9 |9 | 1001
A (10| 1010
B |11 | 1011
v=(-1)M 2F = C 121100
D |13 | 1101
E |14 | 1110
F |15 1111
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C float Decoding Example #1 v =(=1)s M 2¢

E = exp — Bias

float: 0xCOA00000 Bigs = 2%1—1 =127

binary: 1100 0000 1010 0000 0000 0000 0000 0000

1| 1000 0001 | 010 0000 O0O0OO OOOO 0OOOO 0OOOO

1 8-bits 23-bits \6‘"}00\

, _ o o &
E = exp—Bias =129-127 = 2 (decimal)

0000

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

S =1 -> negative number

M=1.010 0000 0000 0OOOO 0OOOO OOOO
=1 + 1/4 = 1.25

v=(-1)*M 2E = (-1)! *1.25 * 22= -5

RR(R(R R

= H(O[Q|W| |||yt d|w Nk o
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C float Decoding Example #2 V= (1) M 2f
E = 1 — Bias

float: 0x001C0000

binary: 0000 0000 0001 1100 0000 0000 0000 0000

O 0000 0000 | 001 1100 0000 00O0OO 0OOO 0OOO

. . \
1 8-bits 23-bits N 6\“&06
o
E= 0 [0 [ 0000
1 [ 1 | 0001
2 [ 2 | 0010
S = 3 [ 3 0011
4 |4 0100
5 | 5 | 0101
M=0 6 | 6 | 0110
7 [ 7 | 0111
8 |8 | 1000
9 [ 9 [ 1001
A |10 1010
B [11 | 1011
v=(-1)M 2F = C 121100
D |13 | 1101
E |14 | 1110
F |15 1111

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20



Carnegie Mellon

C float Decoding Example #2 V= (1) M 2f
E = 1 — Bias

Bigs =2%1—-1=127
binary: 0000 0000 0001 1100 0000 0000 0000 0000

float: 0x001C0000

O 0000 0000 | 001 1100 0000 00O0OO 0OOO 0OOO

1 8-bits 23-bits \6‘"}00\

] . \e@."oevéé\o
E=1-Bias=1-127 =-126 (decimal)

0000

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

S = 0 -> positive number

M=0.001 1100 0000 0000 0000 00O0O
=1/8 + 1/16 + 1/32 7/32 T*27>

V= (_1)5 M 2E = (_1)0 * 7%9-5 % 2-126 = 7%9-131

RR(R(R R

= H(O[Q|W| |||yt d|w Nk o

=~ 2.571393892 X 10-3°
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Visualization: Floating Point Encodings

—o0 . ) +00
| -Normalized (~Denorm .+Denorm | +Normalized |

: |
I I falxc I I
NaN / \ NaN
-0 +0
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Today: Floating Point

N
N
m Example and properties
N
N
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Tiny Floating Point Example

S exp frac

1 4-bits 3-bits

m 8-bit Floating Point Representation

= the sign bit is in the most significant bit
= the next four bits are the exp, with a bias of 7
= the last three bits are the frac

m Same general form as IEEE Format
" normalized, denormalized
= representation of 0, NaN, infinity
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v=(-1)p M2
norm: E = exp — Bias

Dynamlc Range (s=0 only)

sxp frac E value denorm: E = 1 — Bias

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64 = 1/512 closest to zero
Denormalized © 0000 010 -6 2/8*1/64 = 2/512  (-1)°(0+1/4)*2-6
numbers

0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512 largest denorm

0 0001 000 -6  8/8*1/64 = 8/512 smallest norm

0 0001 001 -6 9/8*1/64 = 9/512  (-1)0(141/8)*2-5

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16 closest to 1 below
Normalized 0 0111 000 0 8/8*1 =1
numbers 0 0111 o001 0 9/8*1 = 9/8 closest to 1 above

0 0111 010 0 10/8*1 = 10/8

0 1110 110 7 14/8*%128 = 224

0 1110 111 7 15/8*128 = 240 largest norm

0 1111 000 n/a inf
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Distribution of Values

m 6-bit IEEE-like format

" e =3 exponent bits
= f=2 fraction bits > exp frac

" Bjasis231-1=3 1 3-bits 2-bits

m Notice how the distribution gets denser toward zero.

/8values
A A A A A A

-15 -10 -5 0 5 10 15
¢ Denormalized A Normalized  Infinity

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26



Distribution of Values (close-up view)

m 6-bit IEEE-like format

" e =3 exponent bits
= f=2 fraction bits > €Xp frac
= Biasis 3 1 3-bits 2-bits

A A A A A AAAAOGOOCOOOOALAAAA A A A A
-1 -0.5 0 0.5 1
¢ Denormalized A Normalized B Infinity
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Special Properties of the IEEE Encoding

m FP Zero Same as Integer Zero
= All bits =0

m Can (Almost) Use Unsigned Integer Comparison
" Must first compare sign bits
= Must consider -0=0
= NaNs problematic
= Will be greater than any other values
= What should comparison yield? The answer is complicated.
= Otherwise OK
= Denorm vs. normalized
= Normalized vs. infinity
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Quiz Time!

Check out:

https://canvas.cmu.edu/courses/13182
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Today: Floating Point

N
N
N
m Rounding, addition, multiplication
N
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Floating Point Operations: Basic Idea

BmxX +r y = Round(x + y)

BX Xf VY Round (x X y)

m Basic idea
= First compute exact result
= Make it fit into desired precision
= Possibly overflow if exponent too large
= Possibly round to fit into £frac
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Rounding

m Rounding Modes (illustrate with S rounding)

$1.40 $1.60 S$1.50 $2.50 -51.50

= Towards zero S1 S1 S1 S2 -S11
= Round down (-) $1 $1 $1 V $2 V ~$24
= Round up (+) $2 1 $2 1 24 s34t 811

Nearest Even* (default) $1J S2 4 s2 4 YR —S24

*Round to nearest, but if half-way in-between then round to nearest even
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Closer Look at Round-To-Even

m Default Rounding Mode
" Hard to get any other kind without dropping into assembly
= C99 has support for rounding mode management
= All others are statistically biased
= Sum of set of positive numbers will consistently be over- or under-
estimated
m Applying to Other Decimal Places / Bit Positions
= When exactly halfway between two possible values
= Round so that least significant digit is even
= E.g., round to nearest hundredth

7.8949999 7.89 (Less than half way)
7.8950001 7.90 (Greater than half way)
7.8950000 7.90 (Half way—round up)

7.8850000 7.88 (Half way—round down)
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Rounding Binary Numbers
m Binary Fractional Numbers

= “Even” when least significant bitis 0
= “Half way” when bits to right of rounding position =100...

m Examples
" Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded Value
23/32 10.00011; 10.002 (<1/2—down) 2
2 3/16 10.001102 10.01> (>1/2—up) 21/4
27/8 10.11100; 11.002 ( 1/2—up) 3

25/8 10.10100: 10.102 ( 1/2—down) 21/2
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Rounding

Round bit: 1% bit removed

m Round up conditions

" Round =1, Sticky=1—>0.5

" Guard =1, Round =1, Sticky =0 — Round to even
Rounded

.000
.101
.000
.010
.001
10.

Fraction

.0000000
.1010000
.0001000
.0011000
.0001010
.1111100

R R R R R R
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000
100
010
110
011
111

Incr?
N

K K K 2 2Z

1 . BBGRXXX

Guard bit: LSB of result \_/ '

Sticky bit: OR of remaining bits

1

O = =

000
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FP Multiplication

m (1)1 M1 281 x (-1)2 M2 2£2
m Exact Result: (-1) M 2f

= Sign s: s1Ns2
= Significand M: M1x M2
" Exponent E: El1+E2

m Fixing

= |f M2 2, shift M right, increment E
= |f E out of range, overflow
" Round M to fit £rac precision

m Implementation
= Biggest chore is multiplying significands

4 bit significand: 1.010*22 x 1.110*23 = 10.0011%*25
= 1.00011*26 = 1.001*2°
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Floating Point Addition
m (1)1 M1 2E1 + (-1)2 M2 2£2

"Assume E1 > E2 Get binary points lined up
m Exact Result: (-1)° M 2f  FE1-E2 —
=Sign s, significand M: (—1)% M1
= Result of signed align & add
"Exponent £: E1 + (-1) m2
m Fixing
=" |f M > 2, shift M right, increment E (-1F M

"if M < 1, shift M left k positions, decrement E by k

=Qverflow if E out of range
="Round M to fit £rac precision

1.010*2% + 1.110*23 = (0.1010 + 1.1100) *23
= 10.0110 * 23 = 1.00110 * 24 1.010 * 24
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Mathematical Properties of FP Add

m Compare to those of Abelian Group

" Closed under addition? Yes
= But may generate infinity or NaN

= Commutative? Yes

= Associative? No

= Overflow and inexactness of rounding
= (3.14+1el10)-1e10 = 0, 3.14+(1lel0-1el0) = 3.14

0 is additive identity? Yes
Every element has additive inverse? Almost

= Yes, except for infinities & NaNs

m Monotonicity
" 32>b = a+c2b+c? Almost
= Except for infinities & NaNs
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Mathematical Properties of FP Mult

m Compare to Commutative Ring

= Closed under multiplication? Yes

= But may generate infinity or NaN

" Multiplication Commutative? Yes

= Multiplication is Associative? No
= Possibility of overflow, inexactness of rounding
» EX: (1e20*1e20) *1e-20=1nf, 1e20* (1le20*1e-20)=1e20
1 is multiplicative identity? Yes
"= Multiplication distributes over addition? No

= Possibility of overflow, inexactness of rounding

» 1e20* (1le20-1e20)=0.0, 1e20*1e20 - le20*1le20 =NaN

m Monotonicity
"ag>bh &c=20 =>a*c=>b *c?

= Except for infinities & NaNs
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Today: Floating Point

Floating point in C
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Floating Point in C

m C Guarantees Two Levels
= float single precision
" double double precision

m Conversions/Casting
= Casting between int, £loat, and double changes bit representation
" double/float > int
= Truncates fractional part
= Like rounding toward zero
= Not defined when out of range or NaN: Generally sets to TMin
"int - double
= Exact conversion, as long as int has < 53 bit word size
"int > float

= Will round according to rounding mode
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Floating Point Puzzles
m For each of the following C expressions, either:

= Argue that it is true for all argument values
= Explain why not true

+ x == (int) (float) x X

e x == (int) (double) x v

P + f == (float) (double) £ v
float £ = . * d == (double) (float) d X
double d = ..; P E= -0 4
« 2/3 == 2/3.0 X

Assume neither *d<0.0 = ((d*2) < 0.0) v
d nor £ is NaN e d>f = -f > -d e
e d*d> 0.0 v

¢ (d+f)-d == X
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Summary

m |EEE Floating Point has clear mathematical properties
m Represents numbers of form M x 2F
m One can reason about operations independent of
implementation
= As if computed with perfect precision and then rounded
m Not the same as real arithmetic

= Violates associativity/distributivity

= Makes life difficult for compilers & serious numerical applications
programmers

Single precision: 32 bits

s |exp frac

1 8-bits 23-bits

Double precision: 64 bits

s |exp frac

1 11-bits 52-bits
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Additional Slides
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Creating Floating Point Number

m Steps S exp frac
" Normalize to have leading 1

1 4-bits 3-bits
® Round to fit within fraction

= Postnormalize to deal with effects of rounding

m Case Study
= Convert 8-bit unsigned numbers to tiny floating point format
Example Numbers

128 10000000
15 00001101
33 00010001
35 00010011

138 10001010
63 00111111
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Normalize s exp frac

1 4-bits 3-bits

m Requirement
= Set binary point so that numbers of form 1.xxxxx
= Adjust all to have leading one
= Decrement exponent as shift left

Value Binary Fraction Exponent
128 10000000 1.0000000 7
15 00001101 1.1010000 3
17 00010001 1.0001000 4
19 00010011 1.0011000 4
138 10001010 1.0001010 7
63 00111111 1.1111100 5
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Postnormalize
m Issue

" Rounding may have caused overflow
" Handle by shifting right once & incrementing exponent

Value Rounded Exp Adjusted Numeric Result
128 1.000 7 128
15 1.101 3 15
17 1.000 4 16
19 1.010 4 20
138 1.001 7 134
63 10.000 5 1.000/6 64
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Interesting Numbers {single,double}
Description exp frac Numeric Value

m Zero 00...00 00...00 0.0

m Smallest Pos. Denorm. 00...00 00...01 2~ (23,52} y 9-{126,1022}

= Single = 1.4 x 107
" Double = 4.9 x 10732
m Largest Denormalized 00..00 11..11 (1.0 — €) x 2-{126,1022}
= Single~1.18x 10738
" Double =2.2 x 107308

m Smallest Pos. Normalized 00..01 00...00 1.0 x 2~ {126,1022}
= Just larger than largest denormalized
m One 01..11 00...00 1.0
m Largest Normalized 11..10 11..11 (2.0 — g) x 2{127,1023}

= Single = 3.4 x 1038
= Double ~ 1.8 x 10398
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