Carnegie Mellon

S Al g e ‘ﬂm.ua\m w P '8'2'3 .

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Bits, Bytes, and Integers — Part 2

15-213: Introduction to Computer Systems
3rd Lecture, Jan. 21, 2020

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Assignment Announcements

m Lab O available via course web page and Autolab.
® Due Thursday, Jan. 23, 11:00pm
= No grace days

= No late submissions
= Just do it!
m Lab 1 available via Autolab

® Due Thurs., Jan. 30, 11:00pm
Read instructions carefully: writeup, bits.c, tests.c

= Quirky software infrastructure
Based on lectures 2, 3, and 4 (CS:APP Chapter 2)

After today’s lecture you will know everything for the integer
problems

Floating point covered Thurs. Jan. 23

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Summary From Last Lecture

m Representing information as bits
m Bit-level manipulations

m Integers
= Representation: unsigned and signed
= Conversion, casting
= Expanding, truncating

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Encoding Integers

Unsigned Two’s Complement
w—1) w=2)
BUX) = Y x;-2 BT(X) = —x, 2"+ x -2
: \ZO

Sign Bit

-16 8 4 2 1
10= 0 1 0 1 O 8+2

10

-16 8 4 2 1
-10 =1 0 1 1 O -16+4+2 = -10

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Unsigned & Signed Numeric Values

X B2u(X) | B2T(X) O
0000 0 0
0001 1 1
0010 2 2
0011 3 3 -
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8 =
1001 9 —7
1010 10 -6
1011 11 -5
1100 12 —4
1101 13 -3
1110 14 -2
1111 15 -1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Equivalence
= Same encodings for nonnegative
values
Uniqueness

= Every bit pattern represents
unique integer value

= Each representable integer has
unique bit encoding
Expression containing signed

and unsigned int:
int is casttounsigned

Carnegie Mellon

Sign Extension and Truncation

m Sign Extension

A
S
N

x LIl eee JTT]

y v r v Y
r
e 00 e 00
& 5 & 5

m Truncation

<€ k >€ w
X [T TTTTTIT <ee TTT]

Yy vV v v vy v
X' LI eee [T]1]

<€

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

R

m Misunderstanding integers
can lead to the end of the
world as we know it!

m Thule (Qaanaaq), Greenland

m US DoD “Site J” Ballistic
Missile Early Warning
System (BMEWS)

10/5/60: world nearly ends
Missile radar echo: 1/8s
BMEWS reports: 75s echo(!)
1000s of objects reported , \ %
NORAD alert level 5: 1 @'; 9

" |mmediate incoming nuclear
attack!!!!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m—:mcn S TOP SECRET 5
Ml IRY RESEARCH ncsm:v

Kruschev was in NYC 10/5/60 (weird time to attack)

= someone in Qaanaaq said “why not go check outside?”
“Missiles” were actually THE MOON RISING OVER NORWAY
Expected max distance: 3000 mi; Moon distance: .25M miles!
.25M miles % sizeof(distance) = 2200mi.

m Overflow of distance nearly caused nuclear apocalypse!!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Today: Bits, Bytes, and Integers

O
O
m Integers
o
o
o
= Addition, negation, multiplication, shifting
O
O

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Unsighed Addition

Operands: w bits U =
+ v)
True Sum: w+1 bits 4+ v T e
Discard Carry: w bits UAdd,(u , v) 0o \
>
. : o o@o(:ei\“&
m Standard Addition Function o T 0 10000
" |gnores carry output é é 8833
= Implements Modular Arithmetic 2 o100
s = UAdd, (u,v) = wu+v mod2% 2 2 gﬂé
7 | 7 | 0111
unsigned char 1110 1001 E9 223 R
+ 1101 0101 + D5 + 213 A [10] 1010
— B [11 | 1011
C [12 [1100
— D [13 | 1101
E [14 | 1110
F |15 | 1111

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Unsighed Addition

Operands: w bits U ==
+ v XK
True Sum: w+1 bits 3+ -
Discard Carry: wbits ~ UAdd, (u , v) xy .
>
. : & o@o(:ei\“&
m Standard Addition Function 5T 0 T 0000
" |gnores carry output é ; 8823
m Implements Modular Arithmetic + T2 10160
s = UAdd, (u,v) = wu+v mod2% 2 2 gﬂé
7 7 0111
unsigned char 1110 1001 E9 223 oS 1900
+ 1101 0101 + D5 + 213 A [10 [1010
B (11 | 1011
1 1011 1110 1BE 446 C |12 | 1100
1011 1110 BE 190 g {14110
F |15 | 1111

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Visualizing (Mathematical) Integer Addition

m Integer Addition Add,(u, v)

= 4-bitintegers u, v Integer Addition

" Compute true sum
Add,(u, v)

= Values increase linearly
with uand v

" Forms planar surface

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Visualizing Unsignhed Addition

m Wraps Around

Overflow
|

\

If true sum > 2%

® At most once

UAdd,(u, v)

True Sum °

2W+1' 14
Overflow 12

e

Modular Sum

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14

Carnegie Mellon

Two’s Complement Addition

Operands: w bits u 000
+ v o 00

True Sum: w+1 bits
u + YV o0 0
Discard Carry: w bits TAdd, (u , v) so 0

m TAdd and UAdd have Identical Bit-Level Behavior

= Signed vs. unsigned addition in C:
int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);
t=u+v
= Will give s == 1110 1001 E9 -23
+ 1101 0101 + D5 + -43
1 1011 1110 1BE -66

1011 1110 BE -66

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

TAdd Overflow

m Functionality
" True sum requires w+1
bits
" Drop off MSB

" Treat remaining bits as
2’s comp. integer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0111..

0 100...

0 000...

1011...

1 000...

True Sum
W1 -
PosOver
2W—1_1 -
0 +
_2w—1 -
ow 1 NegOver

Carnegie Mellon

TAdd Result

011..1

000...0

100...0

16

Carnegie Mellon

Visualizing 2’s Complement Addition

NegOver
m Values \

= 4-bit two’s comp.

TAdd,(u, v)

= Range from -8 to +7

m Wraps Around
= |fsum > 2w 86
= Becomes negative
= At most once
" |f sum < —-2w-1
= Becomes positive
= At most once

u 46 - PosOver

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Characterizing TAdd

Positive Overflow

m Functionality TAdd(u, v) |
= True sum requires w+1 bits 50 X
= Drop off MSB Vv
" Treat remaining bits as 2’s <0 \
comp. integer /
/<Ou>0

Negative Overflow

(U+v+ pw u+v < TMin,, (NegOver)
TAdd,(u,v) = Ju+v TMin,, <u+v<TMax,,

u+v-— 2% TMax,, <u+V (PosOver)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Multiplication

m Goal: Computing Product of w-bit numbers x, y

= Either signed or unsigned

m But, exact results can be bigger than w bits
= Unsigned: up to 2w bits
= Resultrange:0<x*y<(2w—-1)2 = 22w —-2w+l 4+ 1
= Two’s complement min (negative): Up to 2w-1 bits
= Result range: x *y > (2w 1)*(2w1-1) = —22w=24 w-1
" Two’s complement max (positive): Up to 2w bits, but only for (TMin ,)?
= Result range: x * y < (-2w1) 2 = 22w
m So, maintaining exact results...
= would need to keep expanding word size with each product computed
® js done in software, if needed
= e.g., by “arbitrary precision” arithmetic packages

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Unsigned Multiplication in C

Operands: w bits " —
* V o000
True Product: 2*w bits U " V ¢ o0 K
Discard w bits: w bits UMult, (u, v) —
m Standard Multiplication Function
= |gnores high order w bits
m Implements Modular Arithmetic
UMult, (u,v)= u -v mod?2¥
1110 1001 E9 223
* 1101 0101 * D5 * 213
1100 0001 1101 1101 C1DD 47499
1101 1101 DD 221

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Signed Multiplication in C

u o 00
Operands: w bits
* o000
\ %
True Product: 2*w bits U " V o0 ° o
T™Mult (v, v cee
Discard w bits: w bits CERY
m Standard Multiplication Function
" |gnores high order w bits
= Some of which are different for signed
vs. unsigned multiplication
" Lower bits are the same
1110 1001 E9 -23
* 1101 0101 * D5 * -43
0000 0011 1101 1101 03DD 989
1101 1101 DD -35

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Power-of-2 Multiply with Shift

m Operation
" u << kgivesu * 2k
= Both signed and unsigned k

Operands: w bits

% 2k Ol eee |0Ol110] eee |00
True Product: w+k bits U - Dk (XK 0] eee [0]0
Discard k bits: w bits UMult, (u , 2) eoe 0] eee [0]O
TMult, (u , 2F)
m Examples
" u << 3 == u * 8
" (u<<K 5 - (u KK 3)== u * 24

" Most machines shift and add faster than multiply

= Compiler generates this code autc .
pliere Important Lession:

Trust Your Compiler!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Multiplication

m Goal: Computing Product of w-bit numbers x, y

= Either signed or unsigned

m But, exact results can be bigger than w bits
= Unsigned: up to 2w bits
= Resultrange:0<x*y<(2w—-1)2 = 22w —-2w+l 4+ 1
= Two’s complement min (negative): Up to 2w-1 bits
= Result range: x *y > (2w 1)*(2w1-1) = —22w=24 w-1
" Two’s complement max (positive): Up to 2w bits, but only for (TMin ,)?
= Result range: x * y < (-2w1) 2 = 22w
m So, maintaining exact results...
= would need to keep expanding word size with each product computed
® js done in software, if needed
= e.g., by “arbitrary precision” arithmetic packages

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Unsigned Power-of-2 Divide with Shift

m Quotient of Unsigned by Power of 2
= u > kgies|lu / 2¢]
= Uses logical shift

k
U e e Binary Point
Operands:
l 2k Ol eee |01110]| eee |0O]|0O
Division: y/ 2k [0] eee 0]O r[cee
Result: | u/2k] [0l e« o]0
Division | Computed Hex Binary

x 15213 15213 3B 6D| 00111011 01101101

x >> 1 7606.5 7606 1D B6| 00011101 10110110

x >> 4 950.8125 950 03 B6(00000011 10110110

x >> 8 | 59.4257813 59 00 3B 00000000 00111011

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Signed Power-of-2 Divide with Shift

m Quotient of Signed by Power of 2
= x >> kgives |l x / 2¢]|
= Uses arithmetic shift
= Rounds wrong direction whenu < 0

k
X see see Binary Point
Operands:
l 2k O eee |[0|1]10]| eee |O]|0O /
Division: x / 2k Ll LU r{ Ll
Result: RoundDown(x / 2%) voo vee
Division [Computed Hex Binary
y -15213 -15213 C4 93| 11000100 10010011
y > 1 -7606.5 -7607 E2 49| 11100010 01001001
y > 4 -950.8125 -951 FC 49| 11111100 01001001
y >> 8 |-59.4257813 -60 FF C4| 11111111 11000100

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Correct Power-of-2 Divide

m Quotient of Negative Number by Power of 2
= Want [x / 2¢| (Round Toward 0)
= Computeas | (x+2¥-1)/ 2k]
= InC: (x + (1<<k)-1) >> k

» Biases dividend toward O

Case 1: No rounding k

Dividend: gy L1 | eee [10] e OO
4ok_1 [0 eee"ToOTO[1l eee TiJa

1 coe 1] eee [1]1] Binary Point

Divisor: | 2k O] eee [0]1]0] e+ |OJO /
/

|_u/2k—| 11 eee [1[1]1 coe TIT eee [1[1

Biasing has no effect

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend: X 1 °ce oo
+2k_1 0| eee JO[O|1] eee J1]1

1 (X X eoo
\ J
Y
Incremented by 1 Binary Point
Divisor: [2k 10| e J0]1]0] e JO]O /
|_X/2k—| 1 o00 11111 o000 _' XX
\ J
Y

Incremented by 1

Biasing adds 1 to final result

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Negation: Complement & Increment

m Negate through complement and increase

~x + 1 == -x
m Example
= QObservation: ~x + x == 1111..111 == -1
x 11]0{0f1}1]1]0]1
+ ~x [0]1]1{0]0]0Of1]0
-1 11)1)1)1}1]1]1]1
X =15213
Decimal | Hex Binary
X 15213| 3B 6D| 00111011 01101101
~X -15214]| C4 92| 11000100 10010010

~x+1 -15213| C4 93| 11000100 10010011
y -15213| C4 93(11000100 10010011

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Complement & Increment Examples

x=0
Decimal | Hex Binary

0 0| 00 00| 00000000 00000000

~0 -1| FF FF| 11111111 11111111

~0+1 0| 00 00| 00000000 00000000
X = TMin

Decimal| Hex Binary

X -32768| 80 00| 10000000 00000000

~X 32767| 7F FF| 01111111 11111111

~x+1 | -32768| 80 00| 10000000 00000000

Canonical counter example

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Today: Bits, Bytes, and Integers

o
o
m Integers

" Summary
o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Arithmetic: Basic Rules

m Addition:

= Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

= Unsigned: addition mod 2%
= Mathematical addition + possible subtraction of 2%
= Signed: modified addition mod 2% (result in proper range)
= Mathematical addition + possible addition or subtraction of 2%

m Multiplication:

= Unsigned/signed: Normal multiplication followed by truncate,
same operation on bit level

= Unsigned: multiplication mod 2%
= Signed: modified multiplication mod 2% (result in proper range)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Why Should | Use Unsigned?

m Don’t use without understanding implications

= Easy to make mistakes
unsigned 1i;
for (1 = cnt-2; 1 >= 0; 1i--)
a[i] += a[i+l];

= Can be very subtle
#define DELTA sizeof (int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Counting Down with Unsigned

m Proper way to use unsigned as loop index
unsigned 1i;
for (i = ent-2; i < cnt; i--)
a[i] += a[i+1];

m See Robert Seacord, Secure Coding in C and C++

= (CStandard guarantees that unsigned addition will behave like modular
arithmetic

= 0—-1 -2 UMax
m Even better

size t 1i;
for (1 = cnt-2; i < cnt; i--)
a[i] += a[i+l];
" Datatype size t defined as unsigned value with length = word size

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Why Should | Use Unsigned? (cont.)

m Do Use When Performing Modular Arithmetic

= Multiprecision arithmetic

m Do Use When Using Bits to Represent Sets

= Logical right shift, no sign extension

m Do Use In System Programming

= Bit masks, device commandes,...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/13182

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Today: Bits, Bytes, and Integers

|
|
m Integers

m Representations in memory, pointers, strings

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Byte-Oriented Memory Organization

QQ. QQ.

m Programs refer to data by address
= Conceptually, envision it as a very large array of bytes
= In reality, it’s not, but can think of it that way
® An address is like an index into that array
= and, a pointer variable stores an address

m Note: system provides private address spaces to each “process”
" Think of a process as a program being executed
= So, a program can clobber its own data, but not that of others

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Machine Words

m Any given computer has a “Word Size”
= Nominal size of integer-valued data
= and of addresses

= Until recently, most machines used 32 bits (4 bytes) as word size
= Limits addresses to 4GB (232 bytes)

" Increasingly, machines have 64-bit word size
= Potentially, could have 18 EB (exabytes) of addressable memory
= That’s 18.4 X 1018

" Machines still support multiple data formats
= Fractions or multiples of word size

= Always integral number of bytes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Word-Oriented Memory Organization

32-bit 64-bit Bvtes Addr

m Addresses Specify Byte Words Words 7Y '

Locations 0000

. . Addr

= Address of first byte in word - 0001

: . 0000 0002

= Addresses of successive words differ Addr 003
by 4 (32-bit) or 8 (64-bit) =

0000 0004

Addr 0005

0004 0006

0007

0008

Addr 0009

0008 Addr 0010

= 0011

0008 0012

Addr 0013

0012 0014

0015

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64

char

short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
pointer 4 8 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Byte Ordering

m So, how are the bytes within a multi-byte word ordered in
memory?

m Conventions
= Big Endian: Sun (Oracle SPARC), PPC Mac, Internet
= Least significant byte has highest address

= Little Endian: x86, ARM processors running Android, iOS, and Linux
= Least significant byte has lowest address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Byte Ordering Example

m Example
= Variable x has 4-byte value of 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
01l 23 45 67

Little Endian 0x100 0x101 0x102 0x103
67 45 23 01

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Decimal: 15213

Representing Integers |sinary: 0011 1011 0110 1101

Hex: 3 B 6 D
int A = 15213; long int C = 15213;
2| |IA32, x86-64 Sun
g 1A32 x86-64 Sun
g)
£ 3B |~
é 00 |
£V 00 |~

int B = -15213;
1A32, x86-64 Sun

T~

Two’s complement representation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Examining Data Representations

m Code to Print Byte Representation of Data

= Casting pointer to unsigned char * allows treatment as a byte array

typedef unsigned char *pointer;

void show bytes (pointer start, size t 1len) {
size t i;
for (i = 0; i < len; i++)
printf ("%$p\t0x%.2x\n",start+i, start[i]);
printf ("\n") ;
}

Printf directives:
%p: Print pointer
%X: Print Hexadecimal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

show bytes Execution Example

int a = 15213;
printf ("int a = 15213;\n");
show bytes ((pointer) &a, sizeof (int));

Result (Linux x86-64):

int a = 15213;

Ox7fffb7f71dbc 6d
Ox7fffb7f71dbd 3b
Ox7fffb7f71dbe 00
Ox7fffb7f£71dbf 00

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Representing Pointers

int B = -15213;
int *P = &B;
Sun IA32 x86-64
EF AC 3C
FF 28 1B
FB F5 FE
2C FF 82
FD
TF
00
00

Different compilers & machines assign different locations to objects

Even get different results each time run program

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Representing Strings

char S[e] = "18213";

m StringsinC
= Represented by array of characters
= Each character encoded in ASCIl format 1A32 Sun

= Standard 7-bit encoding of character set 31 | > 31

= Character “0” has code 0x30 38 |« | 38

— Digit i has code 0x30+/ 32 |« o 32

= man ascii for code table 31 | J 31

= String should be null-terminated 33 | J 33
= Final character =0 00 k J 00

m Compatibility
= Byte ordering not an issue

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Reading Byte-Reversed Listings

m Disassembly
= Text representation of binary machine code
= Generated by program that reads the machine code

m Example Fragment

Address Instruction Code Assembly Rendition
8048365: 5b pop %ebx

8048366: 81l c3 ab 12 00 00 add $0x12ab, $ebx
804836¢c: 83 bb 28 000 00 00 cmpl x0,0x28 (%ebx)

m Deciphering Numbers

= Value: O0x12ab
= Padto 32 bits: 0x000012ab
= Split into bytes: 00 00 12 ab

® Reverse: ab 12 00 00

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Integer C Puzzles

x <0 = ((x*2) < 0)
ux >= 0
X & == 7 = (x<<30) < O
ux > -1
X >y = X< -y
x * x >0
Initialization x>0s&&y>0 = x+y>0
: x >= 0 = -x<=0
int x = foo(); % <= 0 o 3 5= 0
int y = bar(); (x]-x)>>31 == -1
unsigned ux = x; ux >> 3 == ux/8
unsigned uy = y; x >> 3 == x/8

x & (x-1) '=0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

