Carnegie Mellon

S Al g e ‘ﬂm.ua\m w P '8'2'3 .

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Bits, Bytes and Integers — Part 1

15-213/18-213/14-513/15-513: Introduction to Computer Systems
2" L ecture, Jan 14, 2020

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Announcements

m Recitations are on Mondays, but next Monday (1/20) is
MLK Day, so recitations are cancelled

m Linux Boot Camp Sunday 6pm, Rashid Auditorium

m Lab O is available via course web page and Autolab.
" Due Thulan 23, 11:00pm
= No grace days

= No late submissions
= Just doit!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Representing information as bits

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Everything is bits

m EachbitisOor1

m By encoding/interpreting sets of bits in various ways
= Computers determine what to do (instructions)

= .. and represent and manipulate numbers, sets, strings, etc...

m Why bits? Electronic Implementation

An Amazing & Successful Abstraction.

(which we won’t dig into in 213)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Everything is bits

m EachbitisOor1

Carnegie Mellon

m By encoding/interpreting sets of bits in various ways

= Computers determine what to do (instructions)

= .. and represent and manipulate numbers, sets, strings, etc...

m Why bits? Electronic Implementation

= Easy to store with bistable elements

= Reliably transmitted on noisy and inaccurate wires

— 0

1.1V —
0.9V —

1

7\

02V~

0.0V —

/

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

— 0 —

Carnegie Mellon

For example, can count in binary

m Base 2 Number Representation
" Represent 15213,,as 11101101101101,
= Represent 1.20,,as 1.0011001100110011[0011]...,
" Represent 1.5213 X 10 as 1.1101101101101, X 213

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Encoding Byte Values

m Byte = 8 bits
= Binary 00000000, to 11111111,

0|0
1 1
2 | 2
3|3
" Decimal: 010 to 25510 4 [4 | 0100
_ . 5 |5 | o101
Hexadecimal 0016 to FFis ¢ T6 o110
= Base 16 number representation 7 |7 (0111
'TaYs 'TaY4 { 4 ir’ 8 8 1000
= Use characters ‘0’ to ‘9’ and ‘A’ to ‘F 9O 19 [1001
= Write FA1D37Bis in C as A |10]1010
B (11| 1011
— OxFA1D37B C (12| 1100
D (13| 1101
Oxfald37b = 114
F |15

J \ J
I

15213: 0011 1011 0110 1101

3 B 6 D

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64

char

short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
pointer 4 8 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64

char

short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
pointer 4 8 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Bit-level manipulations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as O

And Or

= A&B = 1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1
&[0 1 | 10 1
O0[{0 O O(0 1
110 1 111 1

Not Exclusive-Or (Xor)

= “A =1 when A=0

= A’B = 1 when either A=1 or B=1, but not both

~ AMO 1
0|1 O[O0 1
1[0 1(1 O

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

12

Carnegie Mellon

General Boolean Algebras

m Operate on Bit Vectors

= QOperations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 “* 01010101 ~ 01010101

01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Example: Representing & Manipulating Sets

m Representation

= Width w bit vector represents subsets of {0, ..., w—1}
" a=1lifj €A

01101001 {0,3,5,6}
76543210

01010101 {0,2,4,6}

= 76543210
m Operations
= & Intersection 01000001 {0,6}
= | Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}

= ~ Complement 10101010 {1,3,5,7}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Bit-Level Operations in C

N
>
o 06\6\\(‘@6
m Operations &, |, ~, * Availablein C ? ? g)oo
= Apply to any “integral” data type 1|1 |0001
: . 2 | 2 | 0010
long, int, short, char, unsigned 3 | 3 | 0011
= View arguments as bit vectors 4 |4 10100
= Arguments applied bit-wise 22 o110
g PP 6 | 6 | 0110
7 |7 | 0111
m Examples (Char data type) 8 T8 11000
. ~Oxd1 > 9 |9 [1001
A |10 | 1010
B |11 | 1011
D |13
E |14
F (15

= 0x69 & 0x55 -

= 0x69 | 0x55 >

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Bit-Level Operations in C

+

o]) e 0
m Operations &, |, ~, * Available in C R 0¥ &
= Apply to any “integral” data type

= long, int, short, char, unsigned

= View arguments as bit vectors

= Arguments applied bit-wise

m Examples (Char data type)
= ~0x41 - OxBE
= ~0100 00012 > 1011 11102
= ~0x00 - OxFF
= ~0000 00002 > 1111 11112
= 0x69 & 0x55 - 0x41
- 0110 10012 & 0101 01012 = 0100 0001
= 0Ox69 | 0x55 - 0x7D
- 0110 10012 | 0101 01012 = 0111 1101

R(R(RR|R(=
ol wlolin| oo N oo s w(d=|o
=
o
|—l
o

HE O Q|W(oo doyu|d|w(Nk|lo

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Contrast: Logic Operations in C

m Contrast to Bit-Level Operators
" Logic Operations: &&, ||, !
= View 0 as “False”
= Anything nonzero as “True”
= Always returnOor1
= Early termination

m Examples (char data type)
= 10x41 > 0x00
= 10x00 - 0xO01
= 110x41-> 0x01

Watch out for && vs. & (and | | vs. |)...
Super common C programming pitfall!

= 0x69 && 0x55 > 0x01
= 0xB9 || 0x55 > 0x01

" p&&*p (avoids null pointer access)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Shift Operations
m Left Shift: x << y Argument x| 01100010
" Shift bit-vector x left y positions << 3 00010000

— Throw away extra bits on left
= Fill with 0’s on right

= Right Shift: x >> y
= Shift bit-vector x right y positions

Log.>> 2 | 00011000

Arith.>> 2| 00011000

= Throw away extra bits on right Argument x| 10100010

= |Logical shift << 3 00010000
= Fill with 0’s on left

= Arithmetic shift
= Replicate most significant bit on left

Log.>> 2 | 00101000

Arith. >> 2| 11101000

m Undefined Behavior

= Shift amount < 0 or > word size

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Today: Bits, Bytes, and Integers

n
n
m Integers
= Representation: unsigned and signed
o
o
o
o
n
n

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Encoding Integers

Unsigned Two’s Complement
w—1 _ w—2 .
BRUKX) = Y x -2 BT(X) = —x, ;2" "+ x -2
i=0 i=0
short int x = 15213; ‘\\\\\\\
short int y = -15213; Sign Bit

m Cdoes not mandate using two’s complement

= But, most machines do, and we will assume so

m Cshort 2 bytes long

Decimal Hex Binary
X 15213| 3B 6D| 00111011 01101101
y -15213| €4 93| 11000100 10010011

m Sign Bit
" For 2’s complement, most significant bit indicates sign
= 0 for nonnegative
= 1 for negative .

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two-complement: Simple Example

-16 8 4 2 1

Il

)
=
)
=
)

10 8+2 10

-16 8 4 2 1
-10=1 0 1 1 O -16+4+2 = -10

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Two-complement Encoding Example (Cont.)

X = 15213: 00111011 01101101
y = -15213: 11000100 10010011
Weight 15213 -15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0
16 0 0 1 16
32 1 32 0 0
64 1 64 0 0
128 0 0 1 128
256 1 256 0 0
512 1 512 0 0
1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0
16384 0 0 1 16384
-32768 0 0 1 -32768

Sum 15213 -15213

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Numeric Ranges

m Unsigned Values

m Two’s Complement Values

[] 1 —
UMin 0 = TMin = -2
000...0 100...0
[— w_
UMax 2" = TMax = 2wi-1
111.1 011..1
" Minus 1
111..1
Values for W =16
Decimal Hex Binary
UMax 65535(FF FF| 11111111 11111111
TMax 32767| 7F FF| 01111111 11111111
TMin -32768| 80 00| 10000000 0OOOOOOOQO
-1 -1 FF FF| 11111111 11111111
0 0| 00 00| 00000000 0OOOOOOO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

23

Carnegie Mellon

Values for Different Word Sizes

w
8 16 32 64
UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808
m Observations m CProgramming
= |TMin| = TMax+1 = f#include <limits.h>
= Asymmetric range = Declares constants, e.g.,
"= UMax = 2*TMax+1 = ULONG_MAX
= Question: abs(TMin)? = LONG_MAX

= LONG_MIN
= Values platform specific

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Unsigned & Signed Numeric Values

X B2u(X) | B2T(X)
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 —7
1010 10 -6
1011 11 -5
1100 12 —4
1101 13 -3
1110 14 -2
1111 15 -1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m Equivalence

= Same encodings for nonnegative
values

m Uniqueness

= Every bit pattern represents
unique integer value

= Each representable integer has
uniqgue bit encoding

m = Can Invert Mappings

= U2B(x) = B2U(x)
= Bit pattern for unsigned
integer

= T2B(x) = B2T(x)
= Bit pattern for two’s comp
integer

25

Carnegie Mellon

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/13182

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Today: Bits, Bytes, and Integers

u
u
m Integers
o
= Conversion, casting
o
o
o
u

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Mapping Between Signed & Unsigned

Two’s Complement m— Unsigned
X > T2B 7 B2U > UX

Maintain Same Bit Pattern

Unsigned U2T Two’s Complement

ux *|U2B *| B2T > X
X

Maintain Same Bit Pattern

m Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Mapping Signed <> Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 JT2U0l— 5
0110 6 6
0111 7 —U2T|— 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Mapping Signed <> Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 — 3
0100 4 4—) 4
0101 5 5
0110 6 6
0111 7 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 "'/ -16 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Relation between Signed & Unsigned

Two’s Complement m— Unsigned
X > T2B 7’ B2U > UX

Maintain Same Bit Pattern

w—1 0
Uux |+|+|+ XX +|+]+

x [EEEFEC e T+[+[+

Large negative weight
becomes
Large positive weight

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Conversion Visualized

m 2’s Comp. —> Unsigned
= QOrdering Inversion ® UMax
® UMax—-1

= Negative — Big Positive

/_:. TMax +1 | unsigned

- TMax @ "® TMax Range
2’s Complement ® @
Range _2 .J/ 0)
-2
| TMin

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Signed vs. Unsighed in C

m Constants
= By default are considered to be signed integers

= Unsigned if have “U” as suffix
0U, 42949672590

m Casting

= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;

tx = (int) ux;

uy = (unsigned) ty;

= Implicit casting also occurs via assignments and procedure calls
tx = ux; int fun(unsigned u);

uy = ty; uay = fun(tx);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Casting Surprises

m Expression Evaluation

"= |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

" Including comparison operations <, >, ==, <=, >=
= Examples for W=32: TMIN =-2,147,483,648, TMAX=2,147,483,647

m Constant, Constant, Relation Evaluation
0 ouU == unsigned
-1 0 < signed
-1 ou > unsigned
2147483647 -2147483647-1 > signed
2147483647V -2147483647-1 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Summary
Casting Sighed € Unsigned: Basic Rules

m Bit pattern is maintained
m But reinterpreted
m Can have unexpected effects: adding or subtracting 2%

m Expression containing signed and unsigned int
" intiscasttounsigned!!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Today: Bits, Bytes, and Integers

N
N
m Integers
o
o
= Expanding, truncating
o
o
N

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Sign Extension

m Task:

= Given w-bit signed integer x

= Convert it to w+k-bit integer with same value
m Rule:

= Make k copies of sign bit:

= X = Xyg e Xpye1 s Xipe1 r Xz 1++2 X
| J
k copies of MSB < w >
o 00
X' o0 0 o0 0
“— Kk >€ . >

Bryant and O’Hallaron, Computer Systems: A Programmer’s| ctive, Third Edition 38

Carnegie Mellon

Sign Extension: Simple Example

Positive number Negative number
-16 8 4 2 1 -16 8 4 2 1
10 = 0 1 0 1 0 -10 = 0 1 1 0
-3]%6 8 4 2 1 37 16 8 4 2 1
10 = 1 0 1 0 -10 = 1 i 0 1 1 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Larger Sign Extension Example

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101
ix 15213 | 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213| FF FF C4 93 11111111 11111111 11000100 10010011

m Converting from smaller to larger integer data type
m C automatically performs sign extension

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Truncation

m Task:
= Given k+w-bit signed or unsigned integer X
= Convert it to w-bit integer X’ with same value for “small enough” X

m Rule:
= Drop top k bits:
= X' = Xy 1) Xz rer X
y k >< w >
X o0 0 o0 0
X’ o 00
< W >

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Truncation: Simple Example

No sign change Sign change
-16 8 4 2 1 -16 8 4 2 1
2 = 0 0 0 1 0 10 = 0 1 0 1 0
-8 4 2 1 -8 4 2 1
2 = 0 0 1 0 -6 = 1 0 1 0
2 mod 16 = 2 10 mod 16 = 10U mod 16 = 10U = -6

-16 8 4 2 1 -16 8 4 2 1

-6 = 1 1 0 1 0 -10 = 1 0 1 1 0
-8 4 2 1 -8 4 2 1

-6 = 1 0 1 0 6 = 0 1 1 0
-6 mod 16 = 26U mod 16 = 10U = -6 -10 mod 16 = 22U mod 16 = 6U = 6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
= Unsigned: zeros added
= Signed: sign extension
= Both yield expected result

m Truncating (e.g., unsigned to unsigned short)
= Unsigned/signed: bits are truncated
= Result reinterpreted
= Unsigned: mod operation
= Signed: similar to mod

= For small (in magnitude) numbers yields expected behavior

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Summary of Today: Bits, Bytes, and Integers

m Representing information as bits
m Bit-level manipulations

m Integers
= Representation: unsigned and signed
= Conversion, casting
= Expanding, truncating

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

