213/513 Linu-
x/Git Bootcamp

Shivi, Di, Spoorthi

outline

ssh but also Windows ssh client especially
bash commands + navigating Linux

VIM and VS Code

Git

1.
2.
3.
4.

how to ssh
1. on OS X/Linux:

S ssh ANDREW-ID@shark.ics.cs.cmu.edu

(don't type in the "$" this just means you're typing what follows into
terminal)

2. type your password when prompted
3. if you see a warning about SSH host keys, click or enter "yes"

Windows computers???

e Use MobaXTerm for file transfer and ssh client!
e Instructions can be found here:

http://www.cs.cmu.edu/~213/activities/linux-bootcamp/windows-setup.pdf

http://www.cs.cmu.edu/~213/activities/linux-bootcamp/windows-setup.pdf

what are shark machines?

shark machines, linux.andrew.cmu.edu and unix.andrew.cmu.edu are all
machines that access the same Andrew File System (AFS)

shark machines are explicitly set up for 213: they're standardized for
benchmark tests and have correct versions of gcc, gdb and other tools

use the shark
machines...
otherwise your
compiled code won't
behave as
expected!!

navigating the shark machines

e S 1s list all files in folder. "-a" flag lists hidden files

e S pwd print current file path

e $ cd PATH enter the folder PATH. "." is current folder, ".." is parent
e $ mkdir NAME make a folder called NAME

e $ touch NAME make a file called NAME

e $ rm NAME remove file called NAME

® $ cat NAME output file NAME's content to commandline

e $ mv FILE DEST move FILE to DEST folder

e S cp FILE DEST move FILE to DEST folder

® S scp FILE ANDREW-ID@shark.ics.cs.cmu.edu:DEST

move FILE from local machine to DEST folder on shark machine
e S tar OPT NAME compress to tar file or open tar file based on OPTs

make files

e Makefile provided in the assignment handout

o specifies source files and flags to compile with
e S make compiles and links files; generates an executable
e $ make clean removes files created by running make

Editing files

Example 1: VIM

1. Can be run on pretty much any terminal, typically used in ssh and remote
access

2. Highly customizable, in terms of plugins and scripting (with vimscript)

3. According to legend, if you learn all the keyboard shortcuts, the rate at
which you code approaches lightspeed to the point of being potentially
dangerous to those around you

nanp? REAL HEY. REAL
PROGRAMMERS PROGRAMMERS
USE emocs USE vim.

\ /

b R

Example 1: VIM

1. Vim has a command grammar, and most fancy functionality originate from
a coherent verb-modifier-noun structure of commands, just like
simplified English. Some examples: (<> to denote the key combination, in

normal mode unless specified)

a. verbs: <i> (insert), <a> (append after cursor), <Shift-a> (append to end of the line), <c>
(change), <d> (delete), <y> (yank/copy), <h><j><k><|> (move one char left, down, up, right
resp.)

b. modifiers: f (find and jumps to char), / (search..find a string/regex)

c. textobjects: w (word), s (sentence), p (paragraph), b (block/parentheses)

2. Three big modes
a. Normal mode: <esc> from anywhere (terminates all pending commands), default mode

b. -- INSERT -- mode: in normal mode, <i> to insert (prior to the cursor)
c. -- VISUAL -- mode: in normal mode, <v> to highlight in the traditional sense

Example 1: VIM

1. Let's start by SSH'ing into the shark machines!

S ssh ANDREW-—-ID@shark.ics.cs.cmu.edu

2. From here, let's make VIM "spicy” by running the following (to initialize
your own custom vim configuration filel):

S vim ~/.vimrc

mailto:ANDREW-ID@shark.ics.cs.cmu.edu

Example 1: VIM

3.

4,

ol

Press <i> and make sure you see "-- INSERT --" at the
bottom. Then type that into the text buffer - — —
When done, press <esc> and then type in <:w> to save
Type in <:g> to quit VIM. (This can be combined into
<:w@> to save and quit in one command :-0)

colorscheme desert
set mouse=a

set number

set cursorline

set colorcolumn=81
set tabstop=2

set shiftwidth=2
set softtabstop=2
set expandtab

set smartindent

Example 1: VIM

- Normal mode: <esc>
- -- INSERT -- mode: <i> key
- Type and stuff :-0
- -- VISUAL -- mode: <v> key
- Use any movement verb (command that move your cursor) to highlight a selection
- "“Copy and paste”:
- Highlight text, press <y> to yank (copy) and <p> to paste (within VIM)
- Similarly, pressing <dd> will delete the selection, which also makes it available
to paste with <p>
- Save: <:w>
- Quit: <:g>
- With "set mouse=a" in .vimrc, you can also scroll and click with the mouse
- Highly recommend s vimtutor for a canonical introduction into VIM

- Some useful links: https://devhints.io/vim

https://devhints.io/vim

Example 2: VSCode + SFTP

1.

w

Visually appealing text editor with lots of cool keyboard shortcuts and

functionality

Tabs, easy window split, built-in terminal

Cool plugins to make code pretty + life easy
People won't make fun of you for using the mouse

HOTTEST EDITORS

1995
2000
2005
2010

2015

> 2018

2025

EDITOR WAR

VIM
NOTEPAD +t

SUBLIME TEXT

[Emcs-vm}

- VSCode

CRISPR (VM
KEYBINDINGS)

Example 2: VSCode + SFTP

- Download here: https://code.visualstudio.com/download
- You can check out some of the other extensions (Microsoft C plugin?,

tabnine?!???) but absolutely download liximomo's sftp plugin because
that's how we're gonna be writing code

SFTP/ETP sync
Disablev | Uninstal

hangelog

sftp sync extension for VS Code

Very simple, requires just three lines of config Very fast, finished in a blink.

Features

https://code.visualstudio.com/download

Example 2: VSCode + SFTP

- Go to your 213/513 folder on your local machine and create a folder
called "linux-bootcamp.” Open it in VSCode

- Ctrl + Shift + P (Windows) or Cmd + Shift + P (Mac) to open up Command
Palette: "name": "213ssh”,

- Type in "SFTP: Config" S —

- This ShOUId Open “Spr.jsonll EE:ZE;”:"‘E .":"_ mu.edu/usr3/ANDREW-ID/private/15213/linux—bootcamp",
- Type in the following info - — —

- Visit https://qgithub.com/liximomo/vscode-sftp/wiki/config for extra
config options

https://github.com/liximomo/vscode-sftp/wiki/config

Example 2: VSCode + SFTP

- Create a file called "example.txt" and type whatever you want into it

- When you save, this should prompt a popup to type in your ssh password

- Now if you ssh into a shark machine and navigate to the same file path,
you should see "example.txt" inside!

Also, go [houndshark.ics.cs.cmu.edu]: Enter your password (Press 'Enter' to confirm or 'Escape’ to
cancel)

Example 2: VSCode + SFTP

REMINDERS:

1. SFTP means you're downloading code from AFS onto your local machine,
so take extra precaution to make sure that code is secure and no one

steals it!
2. Any time you run $ make, please do so on the shark machinesl!

GIT

What is git?

e Version control system
o Better than:

m copy pasting code

m emailing the code to yourself

m taking a picture of your code and texting it to yourself

m zipping the code and messaging it to yourself on facebook
e git # github
e using git this semester is mandatorylll ~*style*~ point deductions if you

don't use it

Important commands

o U»r Uvr U»r U»r L v ¥ »r »r »r U»r Ur

git
git
git
git
git
git
git
git
git
git
git
git
git

init
clone
status
log

add
commit -m
push

pull
branch

checkout

make a new repository

initialize a repository locally from a remote server

MOST IMPORTANT COMMAND

show commit history. Can use --decorate --graph --all fo make it pretty
stages files to be committed. Flags: --a, -u

commit the changes in the staged files (use good messages!)

push changes to a remote server (--set-upstream origin branchname)
pull changes from a server

make a new branch

switch to a different branch. Can use -b to make a new branch

merge name merge "name" branch into your current branch
reset HEAD Used to unstage files
reset --hard + hash Used to reset to an old commit (with a commit hash)

Example

https://github.com/eyluo/linux-bootcamp

if that link is too long, try:

https://tinyurl.com/goKnicks213

https://github.com/eyluo/linux-bootcamp
https://tinyurl.com/goKnicks213

Configuring git

$ git config --global user.name "<Your Name>"

$ git config --global user.email “<Your Email>"
$ git config --global push.default simple

(Make sure the email is your Andrew ID, and make sure to add that email to
your GitHub account!)

Cloning the repository

1. Go to to link in previous slide and click "fork" in the top right corner to copy the
repository to your Github account
2. Make sure you are in your account, and click the green "clone or download" on the right
Copy the link
4. Open up a terminal window (or xterm for windows users) and ssh into a shark machine
a. $ ssh ANDREW-ID@shark.ics.cs.cmu.edu
b. navigate o a folder where you want to do this example
5. $ git clone + the link you copied
a. This will initialize the git repository on your computer, with GitHub as the remote
server
6. $ cd switch into the repository

w

mailto:ANDREW-ID@shark.ics.cs.cmu.edu

Committing, pushing, pulling

w

10.

12.

o NOo OB

Ur

vr U U U U Uy Ur Urx Uy

1s
git
git

vim
git
git
git
git
git
git
git
git

we have 4 files here
status branch is up to date with the server, nothing to commit
log —-—-graph —--decorate --all
i. Shows a pretty graph of the commit history.
example.txt lets make some changes to example.txt

status now shows that we have unstaged files

add example.txt stages the file to be committed

reset HEAD example.txt unstages the file (o show you how to do that)
add example.txt to restage the file

commit -m “insert a relevant commit message here”

status shows you are 1 commit ahead of “origin” = remote server
push this updates the remote server

log --graph --decorate --all now we can see the new commit on top of all

the old ones

Merging

—

N~ W

$ git log --graph --decorate --allnote the other branch "realistic ending” that branches
away from master
$ git checkout realistic endingswitch to the other branch

$ git branch shows all of our branches
$ 1s note that there are different files here
$ vim example.txt we can see the story is different than in the master branch-finish it!

Add and commit the file, push to the server.

$ git checkout master switch back to the master branch

$ git merge realistic_ endingwill attempt o merge the two branches, but there's a conflict
$ git status shows that the conflict is in example.txt

$ vim example.txt fix the story

$ git add example.txt

Q0o oo

$ git commit -m “appropriate message for a merge”now the merge is comple‘re
$ git log -- decorate --graph --allshows that now you still have 2 branches, but they've
been merged and point to the same files

Resetting, Branching

oOkrown

o N o

$ git log --decorate --graph --all copy the commit hash of a past commit
(first 6ish characters usually fine)

$ git branch newbranchname make a hew branch

$ git checkout newbranchname switch to the new branch

$ git reset --HARD + hash from old commit

$ git log --decorate --graph --all note that now HEAD is at the old commit,
master is still at the merge commit from last slide

$ 1s the files are different now

$ vim example.txt the story is different too. Add a line or two to it

Add and commit

$ git log --decorate --graph --all now we can see how it has separated from
the rest of the tree

a. This is how you would test out new feature. If you decide you like it, you can later merge it into the master
branch. If not, you can just leave it and switch back to master.

Adding your new branch to the remote server

1. $ git status note that it says nothing about the origin remote
server

2. $ git push doesn't work, there is no "upstream branch” (nothing
on the server)

3. $ git push —--set-upstream origin newbranchname

a. This creates a new branch on the origin server, and sets it as the "upstream” of your
current branch. In the future when you push, you can just do git push and it will work.

4, $ git status now branch is up to date with origin/newbranchname
5. $ git checkout master

6. $ git status we're far ahead of the remote server

/. $ git push

.gitignore files

Make one in each of your projects
o Can use touch, emacs, vim, whatever you want

.0 will ignore all .o files, or object files (matches any substring, and .o
will match exactly)

Useful because when you add a lot of new files with $ git add -a you want
git to ignore certain files

VIM

Cursor movement

h - move left

j - move down

k - move up

1- move right

w - jump by start of words (punctuation considered words)
W - jump by words (spaces separate words)

e - jump to end of words (punctuation considered words)

E - jump to end of words (no punctuation)

b - jump backward by words (punctuation considered words)
B - jump backward by words (no punctuation)

0 - (zero) start of line

A - first non-blank character of line

$ - end of line

G - Go To command (prefix with number - 5G goes to line 5)
Note: Prefix a cursor movement command with a number to
repeat it. For example, 4j moves down 4 lines.

Insert Mode - Inserting/Appending text
i- start insert mode at cursor

I - insert at the beginning of the line

a - append after the cursor

A - append at the end of the line

o - open (append) blank line below current line

(no need to press return)

0 - open blank line above current line

ea - append at end of word

Esc - exit insert mode

Editing

r - replace a single character (does not use insert mode)
] - join line below to the current one

cc - change (replace) an entire line

cw - change (replace) to the end of word

c$ - change (replace) to the end of line

s - delete character at cursor and subsitute text

S - delete line at cursor and substitute text (same as cc)
Xp - transpose two letters (delete and paste, technically)
u - undo

. - repeat last command

Marking text (visual mode) Search/Replace

v - start visual mode, mark lines, then do
command (such as y-yank)

V - start Linewise visual mode

o - move to other end of marked area
Ctrl+v - start visual block mode

0 - move to Other corner of block
aw - mark a word

ab - a () block (with braces)

aB - a {} block (with brackets)

ib - inner () block

iB - inner {} block

Esc - exit visual mode

Visual commands
> - shift right

< - shift left

y - yank (copy) marked text

d - delete marked text

~ - switch case

Cut and Paste

yy - yank (copy) a line

2yy - yank 2 lines

yw - yank word

y$ - yank to end of line

p - put (paste) the clipboard after cursor
P - put (paste) before cursor

dd - delete (cut) a line

dw - delete (cut) the current word

x - delete (cut) current character
Exiting

:w - write (save) the file, but don't exit
:wq - write (save) and quit

:q - quit (fails if anything has changed)
:q! - quit and throw away changes

© https://www.reddit.com/r/programming/comments/1jtenm/a_mobile_friendly_vim_cheat sheet remake of a_pdf/

/pattern - search for pattern

?pattern - search backward for pattern

n - repeat search in same direction

N - repeat search in opposite direction
:%s/old/new/g - replace all old with new
throughout file

:%s/old/new/gc - replace all old with new
throughout file with confirmations

Working with multiple files
:e filename - Edit a file in a new buffer

:bnext (or :bn) - go to next buffer

:bprev (of :bp) - go to previous buffer

:bd - delete a buffer (close a file)

:sp filename - Open a file in a new buffer and split
window

ctrl+ws - Split windows

ctrl+ww - switch between windows

ctrl+wq - Quit a window

ctrl+wyv - Split windows vertically

https://www.reddit.com/r/programming/comments/1jtenm/a_mobile_friendly_vim_cheat_sheet_remake_of_a_pdf/

$ git help

usage: git [--version] [—help] [-C <path>] [-c <name>=<value>]
[--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]
[-p | ——paginate | —-no-pager] [--no-replace-objects] [——barel
[-—git-dir=<path>] [-——work-tree=<path>] [--namespace=<name>]
<command> [<args>]

These are common Git commands used in various situations:

start a working area (see also: git help tutorial)

clone Clone a repository into a new directory

init Create an empty Git repository or re-initialize an existing one
work on the current change (see also: git help everyday)

add Add file contents to the index

mv Move or rename a file, a directory, or a symlink

reset Reset current HEAD to the specified state

rm Remove files from the working tree and from the index

Courtesy of

examine the history and state (see also: git help revisions)
bisect Use binary search to find the commit that introduced a bug

grep Print lines matching a pattern 't r] I
log Show commit logs gl e p
show Show various types of objects
status Show the working tree status
grow, mark and tweak your common history
branch List, create, or delete branches
checkout Switch branches or restore working tree files
commit Record changes to the repository
diff Show changes between commits, commit and working tree, etc
merge Join two or more development histories together
rebase Reapply commits on top of another base tip
tag Create, list, delete or verify a tag object signed with GPG
collaborate (see also: git help workflows)
fetch Download objects and refs from another repository
pull Fetch from and integrate with another repository or a local branch
push Update remote refs along with associated objects

'git help -a' and 'git help -g' list available subcommands and some concept guides.
See 'git help <command>' or 'git help <concept>' to read about a specific subcommand or concept.

