
213/513 Linu-
x/Git Bootcamp

Shivi, Di, Spoorthi

outline
1. ssh but also Windows ssh client especially
2. bash commands + navigating Linux
3. VIM and VS Code
4. Git

how to ssh
1. on OS X/Linux:

$ ssh ANDREW-ID@shark.ics.cs.cmu.edu

(don’t type in the “$” this just means you’re typing what follows into
terminal)

2. type your password when prompted
3. if you see a warning about SSH host keys, click or enter “yes”

Windows computers???
● Use MobaXTerm for file transfer and ssh client!
● Instructions can be found here:

http://www.cs.cmu.edu/~213/activities/linux-bootcamp/windows-setup.pdf

http://www.cs.cmu.edu/~213/activities/linux-bootcamp/windows-setup.pdf

what are shark machines?
shark machines, linux.andrew.cmu.edu and unix.andrew.cmu.edu are all
machines that access the same Andrew File System (AFS)

shark machines are explicitly set up for 213: they’re standardized for
benchmark tests and have correct versions of gcc, gdb and other tools

use the shark
machines…
otherwise your
compiled code won’t
behave as
expected!!!

navigating the shark machines
● $ ls list all files in folder. “-a” flag lists hidden files
● $ pwd print current file path
● $ cd PATH enter the folder PATH. “.” is current folder, “..” is parent
● $ mkdir NAME make a folder called NAME
● $ touch NAME make a file called NAME
● $ rm NAME remove file called NAME
● $ cat NAME output file NAME’s content to commandline
● $ mv FILE DEST move FILE to DEST folder
● $ cp FILE DEST move FILE to DEST folder
● $ scp FILE ANDREW-ID@shark.ics.cs.cmu.edu:DEST

move FILE from local machine to DEST folder on shark machine
● $ tar OPT NAME compress to tar file or open tar file based on OPTs

make files
● Makefile provided in the assignment handout

○ specifies source files and flags to compile with
● $ make compiles and links files; generates an executable
● $ make clean removes files created by running make

Editing files

Example 1: VIM
1. Can be run on pretty much any terminal, typically used in ssh and remote

access
2. Highly customizable, in terms of plugins and scripting (with vimscript)
3. According to legend, if you learn all the keyboard shortcuts, the rate at

which you code approaches lightspeed to the point of being potentially
dangerous to those around you

Example 1: VIM
1. Vim has a command grammar, and most fancy functionality originate from

a coherent verb-modifier-noun structure of commands, just like
simplified English. Some examples: (<> to denote the key combination, in
normal mode unless specified)
a. verbs: <i> (insert), <a> (append after cursor), <Shift-a> (append to end of the line), <c>

(change), <d> (delete), <y> (yank/copy), <h><j><k><l> (move one char left, down, up, right
resp.)

b. modifiers: f (find and jumps to char), / (search..find a string/regex)
c. text objects: w (word), s (sentence), p (paragraph), b (block/parentheses)

2. Three big modes
a. Normal mode: <esc> from anywhere (terminates all pending commands), default mode
b. -- INSERT -- mode: in normal mode, <i> to insert (prior to the cursor)
c. -- VISUAL -- mode: in normal mode, <v> to highlight in the traditional sense

Example 1: VIM
1. Let’s start by SSH’ing into the shark machines!

$ ssh ANDREW-ID@shark.ics.cs.cmu.edu

2. From here, let’s make VIM “spicy” by running the following (to initialize
your own custom vim configuration file!):

$ vim ~/.vimrc

mailto:ANDREW-ID@shark.ics.cs.cmu.edu

Example 1: VIM
3. Press <i> and make sure you see “-- INSERT --” at the

bottom. Then type that into the text buffer → → →
4. When done, press <esc> and then type in <:w> to save
5. Type in <:q> to quit VIM. (This can be combined into

<:wq> to save and quit in one command :-0)

colorscheme desert
set mouse=a
set number
set cursorline
set colorcolumn=81
set tabstop=2
set shiftwidth=2
set softtabstop=2
set expandtab
set smartindent

Example 1: VIM
- Normal mode: <esc>

- -- INSERT -- mode: <i> key
- Type and stuff :-0

- -- VISUAL -- mode: <v> key
- Use any movement verb (command that move your cursor) to highlight a selection
- “Copy and paste”:

- Highlight text, press <y> to yank (copy) and <p> to paste (within VIM)
- Similarly, pressing <dd> will delete the selection, which also makes it available

to paste with <p>
- Save: <:w>
- Quit: <:q>

- With “set mouse=a” in .vimrc, you can also scroll and click with the mouse
- Highly recommend $ vimtutor for a canonical introduction into VIM
- Some useful links: https://devhints.io/vim

https://devhints.io/vim

Example 2: VSCode + SFTP
1. Visually appealing text editor with lots of cool keyboard shortcuts and

functionality
2. Tabs, easy window split, built-in terminal
3. Cool plugins to make code pretty + life easy
4. People won’t make fun of you for using the mouse

Example 2: VSCode + SFTP
- Download here: https://code.visualstudio.com/download
- You can check out some of the other extensions (Microsoft C plugin?,

tabnine?!???) but absolutely download liximomo’s sftp plugin because
that’s how we’re gonna be writing code

https://code.visualstudio.com/download

Example 2: VSCode + SFTP
- Go to your 213/513 folder on your local machine and create a folder

called “linux-bootcamp.” Open it in VSCode
- Ctrl + Shift + P (Windows) or Cmd + Shift + P (Mac) to open up Command

Palette:
- Type in “SFTP: Config”
- This should open “sftp.json”
- Type in the following info → → →

- Visit https://github.com/liximomo/vscode-sftp/wiki/config for extra
config options

https://github.com/liximomo/vscode-sftp/wiki/config

Example 2: VSCode + SFTP
- Create a file called “example.txt” and type whatever you want into it
- When you save, this should prompt a popup to type in your ssh password
- Now if you ssh into a shark machine and navigate to the same file path,

you should see “example.txt” inside!

Example 2: VSCode + SFTP
REMINDERS:

1. SFTP means you’re downloading code from AFS onto your local machine,
so take extra precaution to make sure that code is secure and no one
steals it!

2. Any time you run $ make, please do so on the shark machines!!

G I T

What is git?
● Version control system

○ Better than:
■ copy pasting code
■ emailing the code to yourself
■ taking a picture of your code and texting it to yourself
■ zipping the code and messaging it to yourself on facebook

● git ≠ github
● using git this semester is mandatory!!! ~*style*~ point deductions if you

don’t use it

Important commands
● $ git init make a new repository
● $ git clone initialize a repository locally from a remote server
● $ git status MOST IMPORTANT COMMAND
● $ git log show commit history. Can use --decorate --graph --all to make it pretty
● $ git add stages files to be committed. Flags: --a, -u
● $ git commit -m commit the changes in the staged files (use good messages!)
● $ git push push changes to a remote server (--set-upstream origin branchname)
● $ git pull pull changes from a server
● $ git branch make a new branch
● $ git checkout switch to a different branch. Can use -b to make a new branch
● $ git merge name merge “name” branch into your current branch
● $ git reset HEAD Used to unstage files
● $ git reset --hard + hash Used to reset to an old commit (with a commit hash)

Example
https://github.com/eyluo/linux-bootcamp

if that link is too long, try:

https://tinyurl.com/goKnicks213

https://github.com/eyluo/linux-bootcamp
https://tinyurl.com/goKnicks213

Configuring git
$ git config --global user.name "<Your Name>"

$ git config --global user.email “<Your Email>”

$ git config --global push.default simple

(Make sure the email is your Andrew ID, and make sure to add that email to
your GitHub account!)

Cloning the repository
1. Go to to link in previous slide and click “fork” in the top right corner to copy the

repository to your Github account
2. Make sure you are in your account, and click the green “clone or download” on the right
3. Copy the link
4. Open up a terminal window (or xterm for windows users) and ssh into a shark machine

a. $ ssh ANDREW-ID@shark.ics.cs.cmu.edu
b. navigate to a folder where you want to do this example

5. $ git clone + the link you copied
a. This will initialize the git repository on your computer, with GitHub as the remote

server
6. $ cd switch into the repository

mailto:ANDREW-ID@shark.ics.cs.cmu.edu

Committing, pushing, pulling
1. $ ls we have 4 files here
2. $ git status branch is up to date with the server, nothing to commit
3. $ git log --graph --decorate --all

i. Shows a pretty graph of the commit history.
4. $ vim example.txt lets make some changes to example.txt
5. $ git status now shows that we have unstaged files
6. $ git add example.txt stages the file to be committed
7. $ git reset HEAD example.txt unstages the file (to show you how to do that)
8. $ git add example.txt to restage the file
9. $ git commit -m “insert a relevant commit message here”

10. $ git status shows you are 1 commit ahead of “origin” = remote server
11. $ git push this updates the remote server
12. $ git log --graph --decorate --all now we can see the new commit on top of all

the old ones

1. $ git log --graph --decorate --all note the other branch “realistic ending” that branches
away from master

2. $ git checkout realistic_ending switch to the other branch
3. $ git branch shows all of our branches
4. $ ls note that there are different files here
5. $ vim example.txt we can see the story is different than in the master branch-finish it!
6. Add and commit the file, push to the server.
7. $ git checkout master switch back to the master branch
8. $ git merge realistic_ending will attempt to merge the two branches, but there’s a conflict

a. $ git status shows that the conflict is in example.txt
b. $ vim example.txt fix the story
c. $ git add example.txt
d. $ git commit -m “appropriate message for a merge” now the merge is complete

9. $ git log -- decorate --graph --all shows that now you still have 2 branches, but they’ve
been merged and point to the same files

Merging

1. $ git log --decorate --graph --all copy the commit hash of a past commit
(first 6ish characters usually fine)

2. $ git branch newbranchname make a new branch
3. $ git checkout newbranchname switch to the new branch
4. $ git reset --HARD + hash from old commit
5. $ git log --decorate --graph --all note that now HEAD is at the old commit,

master is still at the merge commit from last slide
6. $ ls the files are different now
7. $ vim example.txt the story is different too. Add a line or two to it
8. Add and commit
9. $ git log --decorate --graph --all now we can see how it has separated from

the rest of the tree
a. This is how you would test out new feature. If you decide you like it, you can later merge it into the master

branch. If not, you can just leave it and switch back to master.

Resetting, Branching

Adding your new branch to the remote server
1. $ git status note that it says nothing about the origin remote

server
2. $ git push doesn’t work, there is no “upstream branch” (nothing

on the server)
3. $ git push --set-upstream origin newbranchname

a. This creates a new branch on the origin server, and sets it as the “upstream” of your
current branch. In the future when you push, you can just do git push and it will work.

4. $ git status now branch is up to date with origin/newbranchname
5. $ git checkout master
6. $ git status we’re far ahead of the remote server
7. $ git push

$.gitignore files
● Make one in each of your projects

○ Can use touch, emacs, vim, whatever you want
● *.o will ignore all .o files, or object files (* matches any substring, and .o

will match exactly)
● Useful because when you add a lot of new files with $ git add -a you want

git to ignore certain files

Appendix

© https://www.reddit.com/r/programming/comments/1jtenm/a_mobile_friendly_vim_cheat_sheet_remake_of_a_pdf/

https://www.reddit.com/r/programming/comments/1jtenm/a_mobile_friendly_vim_cheat_sheet_remake_of_a_pdf/

Courtesy of
git help

