Carnegie Mellon

(} Electrical & Computer
€Y ENGINEERING

Parallelization

18-613: Foundations of Computer Systems
8t Lecture, April 9, 2019

Instructor:
Franz Franchetti

Q Eeive
Outline
m Example: Solving a Linear System of Equations
m Parallel machine models
m Algorithmic approaches
m Amdabhl, strong and weak scaling

m CUDA

m MPI, OpenMP, OpenACC

Carnegie Mellon

(y Electrical & Computer
€Y ENGINEERING

Solving a Linear System of Equations

m Problem specification
Find z s.t. Az = b with

a1 ai2 ... Qip X1 b1
a a .. a €T b
P R I I I e
am1 Am2 .. Gmn] | Tn | | bm |

m Textbook approach: Gauss Elimination
= Augmented matrix
= Elementary row operations

= Reach echelon form

1 3 1 9 1 3 1 9 1 3 1 9 1 0 =2 =3
1 1 -1 1 -+ !0 -2 -2 -8|—=10 -2 -2 —-8|—=101 1 4
3 11 5 35

0 2 2 8 0 0 0 0 0 0 0 0
Do you see any issues here?

Carnegie Mellon
ectrical & Computer

) ENGNERRIE
Gauss-Seidel and Jacobi Iterations
m Gauss Seidel: in-place updates 033 0 s o-
for (t=0; t<T; t++) { 0.33 0.33 0 0
for (i=1; i<N-1; i++) { A — 0.33 0.33 0.33 0
A[i] = 0.33*(A[i-1] + O 0.33 033 033 O
A[i] + A[i+1]); : C., . . :
} | 0 0 0 0 0.33

m Jacobi Iteration

for (t=0; t<T; t++) {
for (i=1; i<N-1; i++) {
B[i] = 0.33*(A[i-1] + A[i] + A[i+1]);
for (i=1; i<N-1; i++)
A[i] = B[1i];

m Special case: tri-diagonal matrix

Blocking: Locality and Parallelism

m Representation of iteration

—0—0—0—0§I7—0—0—0—0—0—0—>

— 00000 0 0 0 0 0 0 0 —

Time iteration

m Trapezoidal blocking

Time iteration

Overhead: recomputation, data reloading/communicating

Carnegie Mellon

A ENGNERRINE
Better Parallelization

Prologue

4 N\

Corel Core 2
Steady state

between cores
Epilogue requires a memory fence

SOy AN OO0
BOSSOHOON 2088 000 a

Q Eeive
Outline
m Example: Solving a Linear System of Equations
m Parallel machine models
m Algorithmic approaches
m Amdabhl, strong and weak scaling

m CUDA

m MPI, OpenMP, OpenACC

Carnegie Mellon

(y Electrical & Computer
€Y ENGINEERING

Distributed Memory: Clusters and MPP

m Topology: memory distributed, may have central storage

CPU CPU CPU
I I “es I

memory memory memory

m Programming
" Programming model: Bulk synchronous parallel
= (Classical/cluster: message passing (MPI)
= Modern/big data: MapReduce/Hadoop
= Disks can be central or local (file system can hide that)

A EREREERNE
Shared Memory: SMP, NUMA, SIMT

m Topology: memory is globally addressable (may be
physically partitioned)

CPU CPU CPU
| | |
memory

m Programming
" Programming model: PRAM
" OpenMP, pthreads
= Cilk, TBB
" CUDA, OpenCL

A ENGINEERING
Pipelining: Systolic Arrays, Workflow

m Topology: Data is pipelined from unit to unit

CPU CPU CPU CPU

memory memory memory memory

m Programming
" Programming model: data flow
"= TensorFlow
= Simulink, Labview, Streamlt
= Graphical tools

10

Q Eeive
Outline
m Example: Solving a Linear System of Equations
m Parallel machine models
m Algorithmic approaches
m Amdabhl, strong and weak scaling

m CUDA

m MPI, OpenMP, OpenACC

1

Data Parallelism vs. Task Parallelism

O ERGRERRRE
m Data parallelism: same operation performed on all data
= Datais distributed across computing node
= Parallelism is proportional to problem size
= Often available in large scale scientific/engineering computations

= Automatic parallelization well-studied/well-understood

m Task parallelism: different operation performed across data
= More irregular problems

" Limited parallelism
= Large scale Parallelism often comes from solving many problems

= Web servers, data bases
= Often data parallelism now augmented by task parallelism support

12

Carnegie Mellon

(} Electrical & Computer
€Y ENGINEERING

Loop Parallelization

m ldea: distribute iterations across processors

// sequential program
for (i=0; i<N; i++) {
y[2*1] = x[2*%1] + x[2*i+1]
y[2*i+1l] = x[2*i] - x[2*i+1]
}
// run in parallel on processor i, N/2 processors
void iteration (double *x, double *y, int i) {
y[2*i] = x[2*i] + x[2*i+1]
y[2*i+1l] = x[2*1] - x[2*i+1]
}

m Core approach for data parallelism across parallel architectures
= Shared memory: OpenMP

GPUs: CUDA, OpenCL, OpenACC

Distributed memory: MPI

= Loop pipelining

13

Carnegie Mellon

(} Electrical & Computer
€Y ENGINEERING

Domain Decomposition

m Break problem domain into pieces, distribute across processors
EEEEEEEE
EEEEEEEE
EEEEEEEE
EEEEEEEE
EEEEEEEE EEEE
EEEEEEEE EEEE
EEEEEEEE EEEE
EEEEEEEE 111

m Needed for scalable parallelization
® QOriginally: array-based data structures
= Applies to general data sets
= MUST for distributed memory, BUT needed everywhere for performance
"= Most systems require locality
= Advanced: ghost cells, asynchronous updates
= Distribution: cyclic, block-cyclic,...

14

Carnegie Mellon

A ERGINEERRE

Speculation and Transactions

m How to parallelize sequential problems: try, allow to fail

Parse string (state machine):
Find if string contains “AGCTACGTTAGC”

In parallel:

‘ 1) Find if string contains “AGCTAC”

2) Find if string contains “GTTAGC”
Then: see if locations are consecutive

m Often can predict outcome with high probability of success
" |n hardware: Branch predictions
= Tree traversals: don’t know which way to go—pick one (or all)
= Must be able to roll back data structure if guess was wrong
" Transactions: atomic operations that either succeed or fail
"= Important for parallelizing state machines, discrete simulations, etc.

15

Carnegie Mellon

(y Electrical & Computer
€Y ENGINEERING

Asynchronous Approaches

m What if we can tolerate some stale (older) data?

Newtons metod

300

Newton method with fixed gradient

f(zn)
flzs)

200

Lntl = Ly —

50

m Algorithms are often stable w.r.t. old data
= Algorithms often converge (maybe slower)
= PDEs, message passing algorithms
® Machine learning algorithms: batching of vectors
= Often trade-off cost of iteration vs. cost of communication/update
= Some algorithms absolutely cannot tolerate stale data

16

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=0ahUKEwjDw-eo6_DVAhWK6oMKHUBCBlYQjRwIBw&url=http://www.it.uu.se/edu/course/homepage/bervet1/xvt06/ickelinear.html&psig=AFQjCNHc7xwxNYqRDnQKB_H3mXwYNMHX4Q&ust=1503697358908134

Q Eeive
Outline
m Example: Solving a Linear System of Equations
m Parallel machine models
m Algorithmic approaches
m Amdabhl, strong and weak scaling

m CUDA

m MPI, OpenMP, OpenACC

17

Carnegie Mellon

Characterizing Parallel Program Performance

m p processor cores, T, is the running time using k cores
m Def. Speedup: S,=T,/T,

S, is relative speedup if T, is running time of parallel version of the code
running on 1 core

S, is absolute speedup if T, is running time of sequential version of code
running on 1 core

Absolute speedup is a much truer measure of the benefits of parallelism

m Def. Efficiency: E,=S, /p=T,/(pT,)
= Reported as a percentage in the range (0, 100]
= Measures the overhead due to parallelization

m Is super-linear speed-up (S, > p, E, > 100%) possible?
= Yes: Due to hyperthreading and cache effects

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Amdahl’s Law

= Gene Amdahl (Nov. 16, 1922 — Nov. 10, 2015)
m Captures the difficulty of using parallelism to speed things up.

m Overall problem
= T Total sequential time required
" p Fraction of total that can be sped up (0<p <1)
= k Speedup factor

m Resulting Performance
" T =pT/k+(1-p)T
= Portion which can be sped up runs k times faster
= Portion which cannot be sped up stays the same
= |Least possible running time:
» k=00
+ T,=(1-p)T

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Amdahl’s Law Example

m Overall problem
= T=10 Total time required
" p=0.9 Fraction of total which can be sped up
= k=9 Speedup factor

m Resulting Performance
" T,=0.9*10/9+0.1*10=1.0+1.0=2.0
= |Least possible running time:
« T,=0.1*10.0=1.0

m Limit on strong scaling: fixed problem size, increasing cores
m Not on weak scaling: problem size scales with increasing cores

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Q) EEREARE
Outline
m Example: Solving a Linear System of Equations
m Parallel machine models
m Algorithmic approaches

m Amdabhl, strong and weak scaling

= CUDA

m MPI, OpenMP, OpenACC

Based on “15-418/15-618: Parallel Computer Architecture and
Programming” by Randy Bryant and Nathan Beckmann

21

) ENGNEERINE
GPU Architecture

N | N | | .
G500 || Boe0 || G000 | | Gagn
el | BRIl EEERETE) EEEDEEEY
EEEE) F P EEER) FEER
N [| |

e i i i (high end GPUs)
[l i | | [mee] i | | e | | e et :?::'I‘)Ro::
I N S | . -
S50 || G050 || Soos | | Sago (~168)
B | | i | | B | | B memid
B R EEEREEE B
N N e | .
Sooo || G000 || Sooo | | S0En
B B EEEETE R
B BT R

GPU

m Multi-core chip

m SIMD execution within a single core (many execution units performing the
same instruction)

m Multi-threaded execution on a single core (multiple threads executed

concurrently by a core)
22

) ENEINEERRE
NVIDIA Tesla architecture (2007)

m (GeForce 8xxx series GPUs)
First alternative, non-graphics-specific (“compute mode”) interface to GPU
hardware

m Lets say a user wants to run a non-graphics
program on the GPU’s programmable cores...

= Application can allocate buffers in GPU memory
and copy data to/from buffers

= Application (via graphics driver) provides GPU a
single kernel program binary

= Application tells GPU to run the kernel in an
SPMD fashion (“run N instances”)

= Go! (launch(myKernel, N))

§j[2
§|[H
i[5
§j[8

i
/L2
/L0
/L0

il
i
i
il

23

A ENGINEERING
CUDA Programming Language

m Introduced in 2007 with NVIDIA Tesla architecture

m “C-like” language to express programs that run on GPUs using
the compute-mode hardware interface

m Relatively low-level: CUDA’s abstractions closely match the
capabilities/performance characteristics of modern GPUs
(design goal: maintain low abstraction distance)

m Note: OpenCL is an open standards version of CUDA
= CUDA only runs on NVIDIA GPUs
® OpenCL runs on CPUs and GPUs from many vendors
= Almost everything we say about CUDA also holds for OpenCL

24

A ENGINEERING
Basic CUDA Syntax

m “Host” code: serial execution -
Runnlng aS part Of normal C/C++ dim3 threadsPerBlock(4, 3, 1);
application on CPU e aeedg

. Bu|k |aunch Of many CUDA threadS // assume A, B, C are allocated Nx x Ny float arrays
“launch a grid of CUDA thread blocks” PR R s e
Ca” returns When a” threads have matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
terminated

m SPMD execution of device kernel function:

m “CUDA device” code: kernel function
(__global denotesa CUDA kernel
function) runs on GPU

m Each thread computes its overall grid
thread id from its position in its block R

__global _ void matrixAdd(float A[Ny][Nx],

(threadIdx) and its block’s position in froat sinyI0NNl,
the grid (blockIdx) I Float CNy][Nx])

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;

C[31[4] = A[31[4] + B[31[i];
¥

25

A ENGINEERING
Clear Separation of Host and Device Code

m Separation of execution into host and device code is performed
statically by the programmer

const int Nx
const int Ny

12;
6;

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
Ny/threadsPerBlock.y, 1);

“Host” code : serial execution on CPU

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAddDoubleB<<<numBlocks, threadsPerBlock>>>(A, B, C);

__device _ float doubleValue(float x)
{

return 2 * x;

}

// kernel definition
__global__ void matrixAddDoubleB(float A[Ny][Nx],

“Device” code (SPMD execution on GPU) float BINy][Nx],

float C[Ny][Nx])
{

int i
int j

blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

C[jI[i] = A[J1[1i] + doubleValue(B[j]l[i]);
}

26

Q© E"ii‘&iah':&ecé’r’a“ NG
Number of SPMD Threads is Explicit in Program

m Number of kernel invocations is not determined by size of data collection (a
kernel launch is not map(kernel, collection) as was the case with graphics
shader programming)

Regular application thread running on CPU (the “host”)

SIS const int Nx = 11; // not a multiple of threadsPerBlock.x
Block (0, 0) Block (1,0) Block (2, 0) const int Ny = 5; // not a multiple of threadsPerBlock.y
’
>
(
04 dim3 threadsPerBlock(4, 3, 1);
I | | dim3 numBlocks((Nx+threadsPerBlock.x-1)/threadsPerBlock.x,
r Block (0, 1)'-’.‘ Block (1, 1) ‘éw(z' 1) (Ny+threadsPerBlock.y-1)/threadsPerBlock.y, 1);
33553 gﬁg) 333533535535
L>§§>5’ % 2 // assume A, B, C are allocated Nx x Ny float arrays
1 k
/:’ 'f \‘ ‘\‘ // this call will cause execution of 72 threads
! % Ry // 6 blocks of 12 threads each
R matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
Block (1, 1)

CUDA kernel definition

__global__ void matrixAdd(float A[Ny][Nx],
float B[Ny][Nx],

float C[Ny][Nx])
int i
int j

blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

// guard against out of bounds array access
if (1 < Nx & j < Ny)
C[JI[4i] = A[JI[4] + BLJI[4il;

27

A ENGINEERING
CUDA Memory Model

m Distinct host and device address spaces

Host CUDA device
(serial execution) (SPMD execution)
Host memory Device “global”
address space memory address space

Implementation: CPU Implementation: GPU

28

Carnegie Mellon

(} Electrical & Computer
€Y ENGINEERING

memcpy Primitive

m Move data between address spaces

Host Device
Host memory Device “global”
address space memory address space
float* A = new float[N]; // allocate buffer in host mem
// populate host address space pointer A
for (int i=@ i<N; i++)
A[i] = (float)i;
int bytes = sizeof(float) * N
float* deviceA; // allocate buffer in
cudaMalloc(&deviceA, bytes); // device address space

// populate deviceA
cudaMemcpy(deviceA, A, bytes, cudaMemcpyHostToDevice);

// note: deviceA[i] is an invalid operation here (cannot
// manipulate contents of deviceA directly from host.
// Only from device code.)

29

A ENGINEERING
CUDA device Memory Model

m Three distinct types of memory visible to kernels

Grid 0
. Per-block
Readable/ writable by shared memory |¢ » Block (0,0) Block (1,0) Block (2, 0)
all threads in block
Block (0,1) Block(1,1) Block(2,1)
Readable/ writable by Per-thread
thread private memory

Device global
memory

Programmer has direct control over memory hierarchy

Readable/writable
by all threads

30

Carnegie Mellon

(} Electrical & Computer
€Y ENGINEERING

CUDA Example: 1D Convolution

input[1] | input[2] | input[3] | input[4] | input[5] | input[6] | input(7] | input[8] | input[9]

<1/

output[0] | output[1] | output[2] | output[3]]| output[4]| output[5]] output[6] | output[7]

output[i] = (input[i] + input[i+l1l] + input[i+2]) / 3.f;

3

) ENGNEERINE
1D Convolution in CUDA

One thread per output element

input[0] input[129] input[N-128] input[N+1]
! } i 4

LI 1T I T I Jeee] T T T T U111 s e Il T VIl Pl Jeee f TP 1T 1
b’ by b’ b/

L1l I P feee] FITTT I s e [T I [[[feee] F U111

t t t t

output[0] output[127] output[N-128] output[N-1]

CUDA Kernel

#tidefine THREADS_PER_BLK 128
__global__ void convolve(int N, float* input, float* output) {

int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local variable

float'res?lt ='e.0f% // thread-local variable I ea(hthreadcornputes
for (int i=0; i<3; i++)
. ; i result for one element
result += input[index + i];

output[index] = result / 3.f; write result to global
} memory

Host code

int N = 1024 * 10824
cudaMalloc(&devInput, sizeof(float) * (N+2)); // allocate array in device memory
cudaMalloc(&devOutput, sizeof(float) * N); // allocate array in device memory

// Initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);
32

A ENGINEERING
CUDA Synchronization Constructs

m _ syncthreads()
Barrier: wait for all threads in the block to arrive at this point

m Atomic operations
e.g., float atomicAdd (float* addr, float amount)
Atomic operations on both global memory and shared memory variables

m Host/device synchronization
Implicit barrier across all threads at return of kernel

33

) ENGNEERINE
CUDA Abstractions

m Execution: thread hierarchy
= Bulk launch of many threads
" Two-level hierarchy: threads are grouped into thread blocks

m Distributed address space
= Built-in memcpy primitives to copy between host and device address spaces
" Three different types of device address spaces
= Per thread, per block (“shared”), or per program (“global”)

m Barrier synchronization primitive for threads in thread block

m Atomic primitives for additional synchronization
shared and global variables

34

Q Eeive
Outline
m Example: Solving a Linear System of Equations
m Parallel machine models
m Algorithmic approaches
m Amdabhl, strong and weak scaling

m CUDA

= MPI, OpenMP, OpenACC

35

PThreads

-

s

1000 ATTEIN

ol
=

I
W
=

Carnegie Mellon

Electrical & Computer

A ERGINEERRE

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void *print message_ function(void *ptr);

main ()

{

}

pthread t threadl, thread2;
char *messagel = "Thread 1";
char *message2 = "Thread 2";
int iretl, iret2;

iretl = pthread create(&threadl, NULL, print message_function,
(void*) messagel) ;

iret2 = pthread create(&thread2, NULL, print message function,
(void*) message2);

pthread join(threadl, NULL);
pthread join(thread2, NULL);

printf ("Thread 1 returns: %d\n",iretl);
printf ("Thread 2 returns: %d\n",iret2);
exit(0);

void *print message function(void *ptr)

{

}

char *message;
message = (char *) ptr;
printf ("%s \n", message);

36

http://node1.yo-linux.com/cgi-bin/man2html?cgi_command=pthread_create
http://node1.yo-linux.com/cgi-bin/man2html?cgi_command=pthread_join

Carnegie Mellon
) ENGINEERING

Bookmarks &
B3~ [
I mtroduction

= Directives

[P Directive Format 1 Svntax
¥ conditional Compilation y
[P Internal Control Variables C / C++

i Array Sections

&P parallel Construct 2 The syntax of the loop construct is as follows:

I canonical Loop Form
= Worksharing Constructs
r Loop Construct

#pragma omp for [clause[[,] clause] ... | new-line
Jor-loops

T sections Construct

 single Construct 3 where clause is one of the following:
I workshare Construct
I S1MD Constructs 4 private (list)
¥ Tasking Constructs 5 firstprivate (/ist)
I Device Constructs i .
I Combined Constructs 6 lastprivate (list)
¥ i Clause 7 linear (list] : linear-step])
I Master and Synchronization .)) »)
TemEmER ane ChEes 8 reduction (reduction-identifier : list)
P : . P . .
Cancellation Constructs 9 schedule ([modifier [, modifier]: Jkind| , chunk_size])
IF Data Environment
¥ declare reduction Directive 10 collapse (n)
T Nesting of Regions 11 ordered/ (n)]
¥ Runtime Library Routines
[P Environment Variables 12 nowalt

void conv_openmp (int n, float *a, float *b) {
int i;
#pragma omp parallel for
for (i=1l; i<n-1; i++) /* i is private by default */
b[i] = (a[i-1] + a[i] + a[i+1]) / 3.0;

37

A ENGINEERING
More OpenMP

#include <stdio.h>
#include <omp.h>

int main() {
int x;
X = 2;
#pragma omp parallel num threads(2) shared(x)
{
if (omp get thread num() == 0) ({
X =5;
} else {
/* Print 1: the following read of x has a race */
printf ("1l: Thread# %d: x = %d\n", omp _get thread num() ,x);
}
#pragma omp barrier
if (omp get thread num() == 0) ({
/* Print 2 */
printf ("2: Thread# %d: x
} else {
/* Print 3 */
printf ("3: Thread# %d: x
}
}

return O;

$d\n", omp get thread num(),x);

$d\n", omp get thread num(),x);

38

Carnegie Mellon

A ENGINEERING
OpenCL

Jookmarks [«

E &
¥ 1 Introduction
o Glossary
S 3 The OpenCL Architecture
r 31 Platform Model
51 3.2 Execution Model

I 3.2.1 Execution Model:
Mapping work-items onto an
NDRange

I 3.2.2 Execution Model:
Execution of kernel-instances

The OpenCL Specification

I 3.2.3 Execution Model: Processing
Device-side enqueue Element ™

I 3.2.4 Execution Model:
Synchronization

I 3.2.5 Execution Model:
Categories of Kernels

P33 Memory Model Compute Unit
IF 2.4 The OpenCL Framework
I 4 The OpenCL Platform Layer

I 5 The OpenCL Runtime Figure 3.1: Platform model ... one host plus one or more compute devices each with one or more compute units
3 6 e e @ composed of one or more processing elements.

Host

Cump-l.ﬁa Device

P ip;,jzzilo;be dded Profile Progra1nn1er§ provide programs 'm. the form of SPIR-V source binar?es, OpenC]T C or OpenCL C++ source strings. or
¥ 5 Appendix A 11nple_1nemat10n-deﬁned binary olfJJects. The OpenCL p]atforn_l provides a compiler to translate program input qf elthgr
form into executable program objects. The device code compiler may be online or offiine. An online compiler is available
* 9 Appendix B Portability during host program execution using standard APIs. An offline compiler is invoked outside of host program control, using
* 10 Appendix C Application Data platform-specific methods. The OpenCL runtime allows developers to get a previously compiled device program
Types executable and be able to load and execute a previously compiled device program executable.
11 Appendix D
CL_MEM_COPY_OVERLAP OpenCL defines two kinds of platform profiles: a full profile and a reduced-functionality embedded profile. A full profile
¥ 12 Appendix E Changes platform must provide an online compiler for all its devices. An embedded platform may provide an online compiler, but is
not required to do so.

A device may expose special purpose functionality as a built-in function. The platform provides APIs for enumerating and
invoking the built-in functions offered by a device, but otherwise does not define their construction or semantics. A custom
device supports only built-in functions, and cannot be programmed via a kernel language.

AN device tvphee ennnnort the Onen(C'l evecuition model the OnenC' T memorv model and the A Pl< nu<ed in OnenC'l to

Carnegie Mellon

OpenACC

General Syntax
C/C++

#pragma acc directive [clause [[.] clause]...] new-line

FORTRAN
I1Sacc directive [clause [[] clause]...]

An OpenACC construct is an OpenACC directive and, if
applicable, the immediately following statement, loop or
structured block.Compute Construct

A compute construct is a parallel, kernels, Or serial
construct.

Parallel Construct

A parallel construct launches a number of gangs executing
in parallel, where each gang may support multiple workers, each
with vector or SIMD operations.

C/C++
#pragma ace parallel [clause[[]clause]...] new-line
{ structured block }

FORTRAN

!Sace parallel [clause[[]clause]...]
structured block

!Sace end parallel

https://www.openacc.org

(y Electrical & Computer
€Y ENGINEERING

Kernels Construct

A kernels construct surrounds loops to be executed on the
device, typically as a sequence of kernel operations.

C/C++
#pragma ace kernels [clause[[]clause]...] new-line
{ structured block }

FORTRAN

!Sace kernels [clause[[]clause]...]
structured block

!Sace end kernels

CLAUSES

if(condition)
default(none)
default(present)
device_ type Or dtype([*|device-type-list])
async [(expression)]

wait [(expression-list)]
num_gangs (expression)
num_workexs (expression)
vector_length(expression)

See Compute Construct Clauses.

copy (list)
copyin(list)
copyout (list)
create([ist)
no_create(list)
present (list)
deviceptr(list)
attach(list)

EDITED BY
SUNITA CHANDRASEKARAN
GUIDO JUCKELAND

40

https://www.openacc.org/

Carnegie Mellon

(() Electrical & Computer
ENGINEERING

OpenACC Example

#pragma data copy(A) create(Anew)
while (error » tol && iter < iter max) {
error
#pragma kernels {
#pragma loop independent collapse(
for (in] = 1; 3 < n-1; J++)
for (int 1 =1; 1 < m-1; i++) {
Anew [3] [1] = ©.25 * (A [j] [i+1] + A [J] [i-1] +
A [3-1] [i] + A [3+1] [i]);
error = max (error, fabs (Anew [j] [1i] - A [3] [1i]));

Carnegie Mellon

Thread Building Blocks
@ Developer Zone i

EIectrlcaI&Com uter
A ENGINEERRG

Search our content library... 0\
Development > Tools » Resources »

Sl % Intel® Threading Building Blocks Developer
Intel® Threading Building Blocks REfe rence

iy o 4 e Ll e Mg Jersdn’ue

Documentation

Parent topic: Intel® Threading Building Blocks
Home » General Conventions
= Environment

Legal Information = Algorithms

Containers Overview

Getting Help and Support Flow Graph
» Thread Local Storage
Introducing the Intel® Threading

Building Blocks (Intel® TBB)

Memory Allocation

Synchronization

= Timing

Threading
* Task Scheduler BLIII‘LIII-]_U' -L%lf }{_'k"“l

* Exceptions

Intel TBB Benefits » Task Groups

Notational Conventions

* Threads
2 Intel® Threading Building Blocks CYREILLY" drm Favatet

» Appendices P P —
(Intel®TBB) Developer Guide

“ Intel® Threading Building Blocks o Wrcat Next o
Task Isolation General Conventions

Developer Reference

) For more complete information about compiler optimizations, see our Optimization Notice. 1

https://covers.oreillystatic.com/images/9780596514808/lrg.jpg

MPI

AMPI

Mg Passing Interface Standard

Application Library Tool
Programmers Writers Developers

r.:sn1 wul ; /

fh

Machine-independent Message Passing Interface

Public: V;gdﬁr; 1
MPICH MPI-FM -
Chimp MPIAP Tuned MPI Implementation IBM-MPIF
LAM-MPI SGI-MPI

Sun0S/Solaris AlX

Unicos Operating System IRIX

SGI Cray T3D/T3E

Intel Paragon Hardware IBM SP2

Workstation Clusters Fujitsu

Point-to-point Communication Collective Communication

/;‘_—\ T BvﬂTIEIE
// :'\:._jl m "\\ &

' | 1o i
f I'/é\l /"\ \5 ‘:'
I / ¢
N~ l\hz =/ muﬂuJun (%

Cumrrklninahr T 4 Mg ¥
\ . _..-" e
|) Vs s
\\ﬂ Source Y | i el
S e

ce: MP: The Complete Reference, M. Snir, S. Otto, 5. Huss-Lederman, 0. Walker, and J. Dongarra. MIT Press, 1995.
Inttp:/ /www.netlib.org/mpi/
Ol University of Tennessee ornl Oak Ridge National Laboratory

Carnegie Mellon

(} Electrical & Computer
€Y ENGINEERING

CPU CPU CPU
| | |
memory memory memory

PSC HPC
11k cores
200 GPUs
21.35 Pflop/s

43

Carnegie Mellon
lectrical & Computer
A ERGINEERRE

#include <stdic.h>

-#include <mpi.h>

volid main {int argec, char *argv[]) {
int i, my id, numprocs;
double =, pi, step, sum = 0.0;
step = 1.0/ (double) num steps;

MPI Init(&argc, &argv);
MPI Comm Rank (MPI COMM WCRLD, &my id):
MPT_CDmm;SJEELMPI COMM WCRLD, &numprocs).

my steps = num Steps/numprocs;

for (i=my id*my steps; i<(my id+l)*my steps ; ++i) |
¥ = (i+0.5) *step;
sum += 4.0/ (1.04x*x);

h

sum *= step;
MPI Reduce (&sum, &pi, 1, MPI DOUBLE, MFI SUM, 0, MPI COMM WCRLD);
if {my_id==ﬂ] {

printf("pi = %f\n", pi):;

44

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjJk_uasK3XAhWC1IMKHUxoC3MQjRwIBw&url=https://www.slideshare.net/nivertech/migrationtomulticore&psig=AOvVaw3ojaXytYa3plKUzK6Y4T_b&ust=1510175472078802

Carnegie Mellon

(y Electrical & Computer
€Y ENGINEERING

Summary

m Example: Solving a Linear System of Equations
= Parallel machine models

m Algorithmic approaches

m Amdahl, strong and weak scaling

= CUDA

= MPI, OpenMP, OpenACC

45

Carnegie Mellon

(} EEEEEE ical & Computer
€Y ENGINEERING

18-847G
Special Topics in Computer Systems:

Computational Problem Solving
for Engineers

Franz Franchetti
Instructor

TBD
Teaching Assistants

This is Section G. Other sections (F, RW, SH) are different courses.
46

	Slide Number 1
	Outline
	Solving a Linear System of Equations
	Gauss-Seidel and Jacobi Iterations
	Blocking: Locality and Parallelism
	Better Parallelization
	Outline
	Distributed Memory: Clusters and MPP
	Shared Memory: SMP, NUMA, SIMT
	Pipelining: Systolic Arrays, Workflow
	Outline
	Data Parallelism vs. Task Parallelism
	Loop Parallelization
	Domain Decomposition
	Speculation and Transactions
	Asynchronous Approaches
	Outline
	Characterizing Parallel Program Performance
	Amdahl’s Law
	Amdahl’s Law Example
	Outline
	GPU Architecture
	NVIDIA Tesla architecture (2007)
	CUDA Programming Language
	Basic CUDA Syntax
	Clear Separation of Host and Device Code
	Number of SPMD Threads is Explicit in Program
	CUDA Memory Model
	memcpy Primitive
	CUDA device Memory Model
	CUDA Example: 1D Convolution
	1D Convolution in CUDA
	CUDA Synchronization Constructs
	CUDA Abstractions
	Outline
	PThreads
	OpenMP
	More OpenMP
	OpenCL
	OpenACC
	OpenACC Example
	Thread Building Blocks
	MPI
	MPI
	Summary
	Slide Number 46

