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Parallelization

18-613: Foundations of Computer Systems
8th Lecture, April 9, 2019

Instructor:
Franz Franchetti
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 Example: Solving a Linear System of Equations

 Parallel machine models

 Algorithmic approaches

 Amdahl, strong and weak scaling

 CUDA

 MPI, OpenMP, OpenACC
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Solving a Linear System of Equations

 Problem specification

 Textbook approach: Gauss Elimination
 Augmented matrix
 Elementary row operations
 Reach echelon form

Do you see any issues here?
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Gauss-Seidel and Jacobi Iterations

 Gauss Seidel: in-place updates

 Jacobi Iteration

 Special case: tri-diagonal matrix

for (t=0; t<T; t++) {
for (i=1; i<N-1; i++) {

B[i] = 0.33*(A[i-1] + A[i] + A[i+1]);
for (i=1; i<N-1; i++)

A[i] = B[i];
}

for (t=0; t<T; t++) {
for (i=1; i<N-1; i++) {

A[i] = 0.33*(A[i-1] + 
A[i] + A[i+1]);

}
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Blocking: Locality and Parallelism

 Representation of iteration

 Trapezoidal blocking

x

Time iteration

x

Time iteration

Overhead: recomputation, data reloading/communicating
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Better Parallelization
Prologue

Steady state

Epilogue
Data transfer between cores
requires a memory fence

Core 1 Core 2
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Distributed Memory: Clusters and MPP

 Topology: memory distributed, may have central storage

 Programming 
 Programming model: Bulk synchronous parallel
 Classical/cluster: message passing (MPI)
 Modern/big data: MapReduce/Hadoop
 Disks can be central or local (file system can hide that)

CPU

memory

CPU

memory

CPU

memory
…
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Shared Memory: SMP, NUMA, SIMT

 Topology: memory is globally addressable (may be 
physically partitioned)

 Programming 
 Programming model: PRAM
 OpenMP, pthreads
 Cilk, TBB
 CUDA, OpenCL

CPU

memory

CPU CPU…
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Pipelining: Systolic Arrays, Workflow

 Topology: Data is pipelined from unit to unit

 Programming 
 Programming model: data flow
 TensorFlow
 Simulink, Labview, StreamIt
 Graphical tools

CPU
memory

CPU
memory

CPU
memory

…CPU
memory
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Data Parallelism vs. Task Parallelism

 Data parallelism: same operation performed on all data
 Data is distributed across computing node
 Parallelism is proportional to problem size
 Often available in large scale scientific/engineering computations
 Automatic parallelization well-studied/well-understood

 Task parallelism: different operation performed across data 
 More irregular problems
 Limited parallelism
 Large scale Parallelism often comes from solving many problems
 Web servers, data bases
 Often data parallelism now augmented by task parallelism support
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Loop Parallelization

 Idea: distribute iterations across processors

 Core approach for data parallelism across parallel architectures
 Shared memory: OpenMP
 GPUs: CUDA, OpenCL, OpenACC
 Distributed memory: MPI
 Loop pipelining

// sequential program
for (i=0; i<N; i++) {

y[2*i]   = x[2*i] + x[2*i+1]
y[2*i+1] = x[2*i] - x[2*i+1]

}

// run in parallel on processor i, N/2 processors
void iteration(double *x, double *y, int i) {   

y[2*i]   = x[2*i] + x[2*i+1]
y[2*i+1] = x[2*i] - x[2*i+1]

}
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Domain Decomposition

 Break problem domain into pieces, distribute across processors

 Needed for scalable parallelization 
 Originally: array-based data structures
 Applies to general data sets
 MUST for distributed memory, BUT needed everywhere for performance
 Most systems require locality
 Advanced: ghost cells, asynchronous updates
 Distribution: cyclic, block-cyclic,…
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Speculation and Transactions

 How to parallelize sequential problems: try, allow to fail

 Often can predict outcome with high probability of success 
 In hardware: Branch predictions
 Tree traversals: don’t know which way to go—pick one (or all)
 Must be able to roll back data structure if guess was wrong
 Transactions: atomic operations that either succeed or fail
 Important for parallelizing state machines, discrete simulations, etc.

Parse string (state machine):
Find if string contains “AGCTACGTTAGC”

In parallel:
1) Find if string contains “AGCTAC”
2) Find if string contains “GTTAGC”
Then: see if locations are consecutive
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Asynchronous Approaches

 What if we can tolerate some stale (older) data?

 Algorithms are often stable w.r.t. old data 
 Algorithms often converge (maybe slower) 
 PDEs, message passing algorithms
 Machine learning algorithms: batching of vectors
 Often trade-off cost of iteration vs. cost of communication/update
 Some algorithms absolutely cannot tolerate stale data

Newton method with fixed gradient

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=0ahUKEwjDw-eo6_DVAhWK6oMKHUBCBlYQjRwIBw&url=http://www.it.uu.se/edu/course/homepage/bervet1/xvt06/ickelinear.html&psig=AFQjCNHc7xwxNYqRDnQKB_H3mXwYNMHX4Q&ust=1503697358908134
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Characterizing Parallel Program Performance
 p processor cores, Tk is the running time using k cores
 Def. Speedup:  Sp = T1 / Tp
 Sp is  relative speedup if T1 is running time of parallel version of the code 

running on 1 core
 Sp is  absolute speedup  if T1 is running time of sequential version of code 

running on 1 core
 Absolute speedup is a much truer measure of the benefits of parallelism 

 Def.  Efficiency: Ep = Sp /p = T1 /(pTp)
 Reported as a percentage in the range (0, 100]
 Measures the overhead due to parallelization

 Is super-linear speed-up (Sp > p, Ep > 100%) possible?
 Yes: Due to hyperthreading and cache effects
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Amdahl’s Law
 Gene Amdahl (Nov. 16, 1922 – Nov. 10, 2015)

 Captures the difficulty of using parallelism to speed things up.
 Overall problem
 T Total sequential time required
 p Fraction of total that can be sped up (0 ≤ p  ≤ 1)
 k Speedup factor

 Resulting Performance
 Tk = pT/k + (1-p)T

 Portion which can be sped up runs k times faster
 Portion which cannot be sped up stays the same

 Least possible running time:
 k = ∞
 T∞ = (1-p)T
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Amdahl’s Law Example
 Overall problem
 T = 10 Total time required
 p = 0.9 Fraction of total which can be sped up
 k = 9 Speedup factor

 Resulting Performance
 T9 = 0.9 * 10/9 + 0.1 * 10 = 1.0 + 1.0 = 2.0
 Least possible running time:

 T∞ = 0.1 * 10.0 = 1.0

 Limit on strong scaling: fixed problem size, increasing cores
 Not on weak scaling: problem size scales with increasing cores 
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Based on “15-418/15-618: Parallel Computer Architecture and 
Programming” by Randy Bryant and Nathan Beckmann



Carnegie Mellon

22

GPU Architecture

 Multi-core chip

 SIMD execution within a single core (many execution units performing the 
same instruction)

 Multi-threaded execution on a single core (multiple threads executed 
concurrently by a core)
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NVIDIA Tesla architecture (2007)
 (GeForce 8xxx series GPUs)

First alternative, non-graphics-specific (“compute mode”) interface to GPU 
hardware

 Lets say a user wants to run a non-graphics
program on the GPU’s programmable cores…
 Application can allocate buffers in GPU memory

and copy data to/from buffers
 Application (via graphics driver) provides GPU a

single kernel program binary
 Application tells GPU to run the kernel in an

SPMD fashion (“run N instances”)
 Go! (launch(myKernel, N))
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CUDA Programming Language
 Introduced in 2007 with NVIDIA Tesla architecture

 “C-like” language to express programs that run on GPUs using
the compute-mode hardware interface

 Relatively low-level: CUDA’s abstractions closely match the
capabilities/performance characteristics of modern GPUs
(design goal: maintain low abstraction distance)

 Note: OpenCL is an open standards version of CUDA
 CUDA only runs on NVIDIA GPUs
 OpenCL runs on CPUs and GPUs from many vendors
 Almost everything we say about CUDA also holds for OpenCL
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Basic CUDA Syntax
 “Host” code: serial execution

Running as part of normal C/C++
application on CPU

 Bulk launch of many CUDA threads
“launch a grid of CUDA thread blocks”
Call returns when all threads have 
terminated

 SPMD execution of device kernel function:

 “CUDA device” code: kernel function 
(__global__ denotes a CUDA kernel 
function) runs on GPU

 Each thread computes its overall grid 
thread id from its position in its block 
(threadIdx) and its block’s position in 
the grid (blockIdx)
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Clear Separation of Host and Device Code
 Separation of execution into host and device code is performed 

statically by the programmer

“Host” code : serial execution on CPU

“Device” code (SPMD execution on GPU)
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Number of SPMD Threads is Explicit in Program
 Number of kernel invocations is not determined by size of data collection (a 

kernel launch is not map(kernel, collection) as was the case with graphics 
shader programming)
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CUDA Memory Model
 Distinct host and device address spaces
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memcpy Primitive
 Move data between address spaces
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CUDA device Memory Model
 Three distinct types of memory visible to kernels
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CUDA Example: 1D Convolution

output[i] = (input[i] + input[i+1] + input[i+2]) / 3.f;
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1D Convolution in CUDA
One thread per output element
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CUDA Synchronization Constructs
 __syncthreads()

Barrier: wait for all threads in the block to arrive at this point

 Atomic operations
e.g., float atomicAdd(float* addr, float amount)
Atomic operations on both global memory and shared memory variables

 Host/device synchronization
Implicit barrier across all threads at return of kernel
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CUDA Abstractions
 Execution: thread hierarchy
 Bulk launch of many threads
 Two-level hierarchy: threads are grouped into thread blocks

 Distributed address space
 Built-in memcpy primitives to copy between host and device address spaces
 Three different types of device address spaces
 Per thread, per block (“shared”), or per program (“global”)

 Barrier synchronization primitive for threads in thread block

 Atomic primitives for additional synchronization 
shared and global variables
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PThreads
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void *print_message_function( void *ptr );

main()
{
pthread_t thread1, thread2;
char *message1 = "Thread 1";
char *message2 = "Thread 2";
int iret1, iret2;

iret1 = pthread_create(&thread1, NULL, print_message_function, 
(void*) message1);

iret2 = pthread_create( &thread2, NULL, print_message_function, 
(void*) message2);

pthread_join( thread1, NULL);
pthread_join( thread2, NULL); 

printf("Thread 1 returns: %d\n",iret1);
printf("Thread 2 returns: %d\n",iret2);
exit(0);

}

void *print_message_function( void *ptr )
{
char *message;
message = (char *) ptr;
printf("%s \n", message);

}

http://node1.yo-linux.com/cgi-bin/man2html?cgi_command=pthread_create
http://node1.yo-linux.com/cgi-bin/man2html?cgi_command=pthread_join
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OpenMP

void conv_openmp(int n, float *a, float *b) {
int i;

#pragma omp parallel for
for (i=1; i<n-1; i++) /* i is private by default */
b[i] = (a[i-1] + a[i] + a[i+1]) / 3.0;

}
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More OpenMP
#include <stdio.h>
#include <omp.h>

int main() {
int x;
x = 2;

#pragma omp parallel num_threads(2) shared(x) 
{

if (omp_get_thread_num() == 0) {
x = 5;

} else {
/* Print 1: the following read of x has a race */
printf("1: Thread# %d: x = %d\n", omp_get_thread_num(),x );

}
#pragma omp barrier

if (omp_get_thread_num() == 0) {
/* Print 2 */
printf("2: Thread# %d: x = %d\n", omp_get_thread_num(),x );

} else {
/* Print 3 */
printf("3: Thread# %d: x = %d\n", omp_get_thread_num(),x );

}
}
return 0;

}
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OpenCL
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OpenACC

https://www.openacc.org

https://www.openacc.org/
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OpenACC Example
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Thread Building Blocks

https://covers.oreillystatic.com/images/9780596514808/lrg.jpg
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MPI

CPU

memory

CPU

memory

CPU

memory
…

PSC HPC
11k cores
200 GPUs 
21.35 Pflop/s
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MPI

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjJk_uasK3XAhWC1IMKHUxoC3MQjRwIBw&url=https://www.slideshare.net/nivertech/migrationtomulticore&psig=AOvVaw3ojaXytYa3plKUzK6Y4T_b&ust=1510175472078802
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18-847G
Special Topics in Computer Systems: 

Computational Problem Solving 
for Engineers
Franz Franchetti
Instructor

TBD 
Teaching Assistants

This is Section G. Other sections (F, RW, SH) are different courses. 
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