
Carnegie Mellon

1

Parallelization

18-613: Foundations of Computer Systems
8th Lecture, April 9, 2019

Instructor:
Franz Franchetti

Carnegie Mellon

2

Outline

 Example: Solving a Linear System of Equations

 Parallel machine models

 Algorithmic approaches

 Amdahl, strong and weak scaling

 CUDA

 MPI, OpenMP, OpenACC

Carnegie Mellon

3

Solving a Linear System of Equations

 Problem specification

 Textbook approach: Gauss Elimination
 Augmented matrix
 Elementary row operations
 Reach echelon form

Do you see any issues here?

Carnegie Mellon

4

Gauss-Seidel and Jacobi Iterations

 Gauss Seidel: in-place updates

 Jacobi Iteration

 Special case: tri-diagonal matrix

for (t=0; t<T; t++) {
for (i=1; i<N-1; i++) {

B[i] = 0.33*(A[i-1] + A[i] + A[i+1]);
for (i=1; i<N-1; i++)

A[i] = B[i];
}

for (t=0; t<T; t++) {
for (i=1; i<N-1; i++) {

A[i] = 0.33*(A[i-1] +
A[i] + A[i+1]);

}

Carnegie Mellon

5

Blocking: Locality and Parallelism

 Representation of iteration

 Trapezoidal blocking

x

Time iteration

x

Time iteration

Overhead: recomputation, data reloading/communicating

Carnegie Mellon

6

Better Parallelization
Prologue

Steady state

Epilogue
Data transfer between cores
requires a memory fence

Core 1 Core 2

Carnegie Mellon

7

Outline

 Example: Solving a Linear System of Equations

 Parallel machine models

 Algorithmic approaches

 Amdahl, strong and weak scaling

 CUDA

 MPI, OpenMP, OpenACC

Carnegie Mellon

8

Distributed Memory: Clusters and MPP

 Topology: memory distributed, may have central storage

 Programming
 Programming model: Bulk synchronous parallel
 Classical/cluster: message passing (MPI)
 Modern/big data: MapReduce/Hadoop
 Disks can be central or local (file system can hide that)

CPU

memory

CPU

memory

CPU

memory
…

Carnegie Mellon

9

Shared Memory: SMP, NUMA, SIMT

 Topology: memory is globally addressable (may be
physically partitioned)

 Programming
 Programming model: PRAM
 OpenMP, pthreads
 Cilk, TBB
 CUDA, OpenCL

CPU

memory

CPU CPU…

Carnegie Mellon

10

Pipelining: Systolic Arrays, Workflow

 Topology: Data is pipelined from unit to unit

 Programming
 Programming model: data flow
 TensorFlow
 Simulink, Labview, StreamIt
 Graphical tools

CPU
memory

CPU
memory

CPU
memory

…CPU
memory

Carnegie Mellon

11

Outline

 Example: Solving a Linear System of Equations

 Parallel machine models

 Algorithmic approaches

 Amdahl, strong and weak scaling

 CUDA

 MPI, OpenMP, OpenACC

Carnegie Mellon

12

Data Parallelism vs. Task Parallelism

 Data parallelism: same operation performed on all data
 Data is distributed across computing node
 Parallelism is proportional to problem size
 Often available in large scale scientific/engineering computations
 Automatic parallelization well-studied/well-understood

 Task parallelism: different operation performed across data
 More irregular problems
 Limited parallelism
 Large scale Parallelism often comes from solving many problems
 Web servers, data bases
 Often data parallelism now augmented by task parallelism support

Carnegie Mellon

13

Loop Parallelization

 Idea: distribute iterations across processors

 Core approach for data parallelism across parallel architectures
 Shared memory: OpenMP
 GPUs: CUDA, OpenCL, OpenACC
 Distributed memory: MPI
 Loop pipelining

// sequential program
for (i=0; i<N; i++) {

y[2*i] = x[2*i] + x[2*i+1]
y[2*i+1] = x[2*i] - x[2*i+1]

}

// run in parallel on processor i, N/2 processors
void iteration(double *x, double *y, int i) {

y[2*i] = x[2*i] + x[2*i+1]
y[2*i+1] = x[2*i] - x[2*i+1]

}

Carnegie Mellon

14

Domain Decomposition

 Break problem domain into pieces, distribute across processors

 Needed for scalable parallelization
 Originally: array-based data structures
 Applies to general data sets
 MUST for distributed memory, BUT needed everywhere for performance
 Most systems require locality
 Advanced: ghost cells, asynchronous updates
 Distribution: cyclic, block-cyclic,…

Carnegie Mellon

15

Speculation and Transactions

 How to parallelize sequential problems: try, allow to fail

 Often can predict outcome with high probability of success
 In hardware: Branch predictions
 Tree traversals: don’t know which way to go—pick one (or all)
 Must be able to roll back data structure if guess was wrong
 Transactions: atomic operations that either succeed or fail
 Important for parallelizing state machines, discrete simulations, etc.

Parse string (state machine):
Find if string contains “AGCTACGTTAGC”

In parallel:
1) Find if string contains “AGCTAC”
2) Find if string contains “GTTAGC”
Then: see if locations are consecutive

Carnegie Mellon

16

Asynchronous Approaches

 What if we can tolerate some stale (older) data?

 Algorithms are often stable w.r.t. old data
 Algorithms often converge (maybe slower)
 PDEs, message passing algorithms
 Machine learning algorithms: batching of vectors
 Often trade-off cost of iteration vs. cost of communication/update
 Some algorithms absolutely cannot tolerate stale data

Newton method with fixed gradient

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=0ahUKEwjDw-eo6_DVAhWK6oMKHUBCBlYQjRwIBw&url=http://www.it.uu.se/edu/course/homepage/bervet1/xvt06/ickelinear.html&psig=AFQjCNHc7xwxNYqRDnQKB_H3mXwYNMHX4Q&ust=1503697358908134

Carnegie Mellon

17

Outline

 Example: Solving a Linear System of Equations

 Parallel machine models

 Algorithmic approaches

 Amdahl, strong and weak scaling

 CUDA

 MPI, OpenMP, OpenACC

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Characterizing Parallel Program Performance
 p processor cores, Tk is the running time using k cores
 Def. Speedup: Sp = T1 / Tp
 Sp is relative speedup if T1 is running time of parallel version of the code

running on 1 core
 Sp is absolute speedup if T1 is running time of sequential version of code

running on 1 core
 Absolute speedup is a much truer measure of the benefits of parallelism

 Def. Efficiency: Ep = Sp /p = T1 /(pTp)
 Reported as a percentage in the range (0, 100]
 Measures the overhead due to parallelization

 Is super-linear speed-up (Sp > p, Ep > 100%) possible?
 Yes: Due to hyperthreading and cache effects

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Amdahl’s Law
 Gene Amdahl (Nov. 16, 1922 – Nov. 10, 2015)

 Captures the difficulty of using parallelism to speed things up.
 Overall problem
 T Total sequential time required
 p Fraction of total that can be sped up (0 ≤ p ≤ 1)
 k Speedup factor

 Resulting Performance
 Tk = pT/k + (1-p)T

 Portion which can be sped up runs k times faster
 Portion which cannot be sped up stays the same

 Least possible running time:
 k = ∞
 T∞ = (1-p)T

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Amdahl’s Law Example
 Overall problem
 T = 10 Total time required
 p = 0.9 Fraction of total which can be sped up
 k = 9 Speedup factor

 Resulting Performance
 T9 = 0.9 * 10/9 + 0.1 * 10 = 1.0 + 1.0 = 2.0
 Least possible running time:

 T∞ = 0.1 * 10.0 = 1.0

 Limit on strong scaling: fixed problem size, increasing cores
 Not on weak scaling: problem size scales with increasing cores

Carnegie Mellon

21

Outline

 Example: Solving a Linear System of Equations

 Parallel machine models

 Algorithmic approaches

 Amdahl, strong and weak scaling

 CUDA

 MPI, OpenMP, OpenACC

Based on “15-418/15-618: Parallel Computer Architecture and
Programming” by Randy Bryant and Nathan Beckmann

Carnegie Mellon

22

GPU Architecture

 Multi-core chip

 SIMD execution within a single core (many execution units performing the
same instruction)

 Multi-threaded execution on a single core (multiple threads executed
concurrently by a core)

Carnegie Mellon

23

NVIDIA Tesla architecture (2007)
 (GeForce 8xxx series GPUs)

First alternative, non-graphics-specific (“compute mode”) interface to GPU
hardware

 Lets say a user wants to run a non-graphics
program on the GPU’s programmable cores…
 Application can allocate buffers in GPU memory

and copy data to/from buffers
 Application (via graphics driver) provides GPU a

single kernel program binary
 Application tells GPU to run the kernel in an

SPMD fashion (“run N instances”)
 Go! (launch(myKernel, N))

Carnegie Mellon

24

CUDA Programming Language
 Introduced in 2007 with NVIDIA Tesla architecture

 “C-like” language to express programs that run on GPUs using
the compute-mode hardware interface

 Relatively low-level: CUDA’s abstractions closely match the
capabilities/performance characteristics of modern GPUs
(design goal: maintain low abstraction distance)

 Note: OpenCL is an open standards version of CUDA
 CUDA only runs on NVIDIA GPUs
 OpenCL runs on CPUs and GPUs from many vendors
 Almost everything we say about CUDA also holds for OpenCL

Carnegie Mellon

25

Basic CUDA Syntax
 “Host” code: serial execution

Running as part of normal C/C++
application on CPU

 Bulk launch of many CUDA threads
“launch a grid of CUDA thread blocks”
Call returns when all threads have
terminated

 SPMD execution of device kernel function:

 “CUDA device” code: kernel function
(__global__ denotes a CUDA kernel
function) runs on GPU

 Each thread computes its overall grid
thread id from its position in its block
(threadIdx) and its block’s position in
the grid (blockIdx)

Carnegie Mellon

26

Clear Separation of Host and Device Code
 Separation of execution into host and device code is performed

statically by the programmer

“Host” code : serial execution on CPU

“Device” code (SPMD execution on GPU)

Carnegie Mellon

27

Number of SPMD Threads is Explicit in Program
 Number of kernel invocations is not determined by size of data collection (a

kernel launch is not map(kernel, collection) as was the case with graphics
shader programming)

Carnegie Mellon

28

CUDA Memory Model
 Distinct host and device address spaces

Carnegie Mellon

29

memcpy Primitive
 Move data between address spaces

Carnegie Mellon

30

CUDA device Memory Model
 Three distinct types of memory visible to kernels

Carnegie Mellon

31

CUDA Example: 1D Convolution

output[i] = (input[i] + input[i+1] + input[i+2]) / 3.f;

Carnegie Mellon

32

1D Convolution in CUDA
One thread per output element

Carnegie Mellon

33

CUDA Synchronization Constructs
 __syncthreads()

Barrier: wait for all threads in the block to arrive at this point

 Atomic operations
e.g., float atomicAdd(float* addr, float amount)
Atomic operations on both global memory and shared memory variables

 Host/device synchronization
Implicit barrier across all threads at return of kernel

Carnegie Mellon

34

CUDA Abstractions
 Execution: thread hierarchy
 Bulk launch of many threads
 Two-level hierarchy: threads are grouped into thread blocks

 Distributed address space
 Built-in memcpy primitives to copy between host and device address spaces
 Three different types of device address spaces
 Per thread, per block (“shared”), or per program (“global”)

 Barrier synchronization primitive for threads in thread block

 Atomic primitives for additional synchronization
shared and global variables

Carnegie Mellon

35

Outline

 Example: Solving a Linear System of Equations

 Parallel machine models

 Algorithmic approaches

 Amdahl, strong and weak scaling

 CUDA

 MPI, OpenMP, OpenACC

Carnegie Mellon

36

PThreads
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void *print_message_function(void *ptr);

main()
{
pthread_t thread1, thread2;
char *message1 = "Thread 1";
char *message2 = "Thread 2";
int iret1, iret2;

iret1 = pthread_create(&thread1, NULL, print_message_function,
(void*) message1);

iret2 = pthread_create(&thread2, NULL, print_message_function,
(void*) message2);

pthread_join(thread1, NULL);
pthread_join(thread2, NULL);

printf("Thread 1 returns: %d\n",iret1);
printf("Thread 2 returns: %d\n",iret2);
exit(0);

}

void *print_message_function(void *ptr)
{
char *message;
message = (char *) ptr;
printf("%s \n", message);

}

http://node1.yo-linux.com/cgi-bin/man2html?cgi_command=pthread_create
http://node1.yo-linux.com/cgi-bin/man2html?cgi_command=pthread_join

Carnegie Mellon

37

OpenMP

void conv_openmp(int n, float *a, float *b) {
int i;

#pragma omp parallel for
for (i=1; i<n-1; i++) /* i is private by default */
b[i] = (a[i-1] + a[i] + a[i+1]) / 3.0;

}

Carnegie Mellon

38

More OpenMP
#include <stdio.h>
#include <omp.h>

int main() {
int x;
x = 2;

#pragma omp parallel num_threads(2) shared(x)
{

if (omp_get_thread_num() == 0) {
x = 5;

} else {
/* Print 1: the following read of x has a race */
printf("1: Thread# %d: x = %d\n", omp_get_thread_num(),x);

}
#pragma omp barrier

if (omp_get_thread_num() == 0) {
/* Print 2 */
printf("2: Thread# %d: x = %d\n", omp_get_thread_num(),x);

} else {
/* Print 3 */
printf("3: Thread# %d: x = %d\n", omp_get_thread_num(),x);

}
}
return 0;

}

Carnegie Mellon

39

OpenCL

Carnegie Mellon

40

OpenACC

https://www.openacc.org

https://www.openacc.org/

Carnegie Mellon

41

OpenACC Example

Carnegie Mellon

42

Thread Building Blocks

https://covers.oreillystatic.com/images/9780596514808/lrg.jpg

Carnegie Mellon

43

MPI

CPU

memory

CPU

memory

CPU

memory
…

PSC HPC
11k cores
200 GPUs
21.35 Pflop/s

Carnegie Mellon

44

MPI

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjJk_uasK3XAhWC1IMKHUxoC3MQjRwIBw&url=https://www.slideshare.net/nivertech/migrationtomulticore&psig=AOvVaw3ojaXytYa3plKUzK6Y4T_b&ust=1510175472078802

Carnegie Mellon

45

Summary

 Example: Solving a Linear System of Equations

 Parallel machine models

 Algorithmic approaches

 Amdahl, strong and weak scaling

 CUDA

 MPI, OpenMP, OpenACC

Carnegie Mellon

46

18-847G
Special Topics in Computer Systems:

Computational Problem Solving
for Engineers
Franz Franchetti
Instructor

TBD
Teaching Assistants

This is Section G. Other sections (F, RW, SH) are different courses.

	Slide Number 1
	Outline
	Solving a Linear System of Equations
	Gauss-Seidel and Jacobi Iterations
	Blocking: Locality and Parallelism
	Better Parallelization
	Outline
	Distributed Memory: Clusters and MPP
	Shared Memory: SMP, NUMA, SIMT
	Pipelining: Systolic Arrays, Workflow
	Outline
	Data Parallelism vs. Task Parallelism
	Loop Parallelization
	Domain Decomposition
	Speculation and Transactions
	Asynchronous Approaches
	Outline
	Characterizing Parallel Program Performance
	Amdahl’s Law
	Amdahl’s Law Example
	Outline
	GPU Architecture
	NVIDIA Tesla architecture (2007)
	CUDA Programming Language
	Basic CUDA Syntax
	Clear Separation of Host and Device Code
	Number of SPMD Threads is Explicit in Program
	CUDA Memory Model
	memcpy Primitive
	CUDA device Memory Model
	CUDA Example: 1D Convolution
	1D Convolution in CUDA
	CUDA Synchronization Constructs
	CUDA Abstractions
	Outline
	PThreads
	OpenMP
	More OpenMP
	OpenCL
	OpenACC
	OpenACC Example
	Thread Building Blocks
	MPI
	MPI
	Summary
	Slide Number 46

