
Carnegie Mellon

1Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

High Performance CPU Cores

18-613: Foundations of Computer Systems
5th Lecture, Feb 26, 2019

Instructor:
Franz Franchetti

Parts based on “15-740 Computer Architecture” by Nathan Beckmann

Carnegie Mellon

2Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Midterm Exam: Mechanics
Pittsburgh (Sections A, B, and C)
 Part of 1x-x13 exam setup

WEH Cluster, desktop computer, together with all others

 Time slot: March 5, 12pm EST
we sign you up

 If you have a conflict you can start a bit earlier/later
e-mail me ASAP

Silicon Valley (Section SA)
 Separate exam on your own laptop

SV B23 118, bring charger for your laptop

 Time Slot (tentative)
March 5, 4:30pm EST – 7:30pm EST (max)

Sunday, March 3: Midterm Review (PIT and SV)

Carnegie Mellon

3Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Midterm Exam: 613 Extra Question
One extra question
 Equally weighted with other 213 questions

12.5% of exam score

Three sub-questions
 State of the art in computing

Covers main ideas from Lecture 2 (Multiple choice)
 C Language

Tests your knowledge of C (Understand provided C code)
 Intel SIMD Extensions

Fill holes in Intel SSE/AVX program (Instruction semantics provided)

Practice/example exam will be provided as PDF in Canvas

Carnegie Mellon

4Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

From 213 Lecture 10: Superscalar Processor

 Definition: A superscalar processor can issue and execute
multiple instructions in one cycle. The instructions are
retrieved from a sequential instruction stream and are
usually scheduled dynamically.

 Benefit: without programming effort, superscalar
processor can take advantage of the instruction level
parallelism that most programs have

 Most modern CPUs are superscalar.
 Intel: since Pentium (1993)

Carnegie Mellon

5Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Modern CPU Design

Execution

Functional
Units

Instruction Control

Branch Arith Arith Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction OK?

DataData

Addr. Addr.

Arith

Operation Results

Retirement
Unit

Register
File

Register Updates

Carnegie Mellon

6Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Intel Haswell CPU
 8 Total Functional Units

 Multiple instructions can execute in parallel
2 load, with address computation
1 store, with address computation
4 integer
2 FP multiply
1 FP add
1 FP divide

 Some instructions take > 1 cycle, but can be pipelined
Instruction Latency Cycles/Issue
Load / Store 4 1
Integer Multiply 3 1
Integer/Long Divide 3-30 3-30
Single/Double FP Multiply 5 1
Single/Double FP Add 3 1
Single/Double FP Divide 3-15 3-15

Carnegie Mellon

7Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Advanced Topics

 Instruction encoding

 RISC vs. CISC

 Pipelining

 Out of order execution

 Intel Microarchitecture

 Latencies/Throughput, IACA tool

Carnegie Mellon

8Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Disassembled

213 Lecture 5: Disassembling Object Code

 Disassembler
objdump –d sum

 Useful tool for examining object code
 Analyzes bit pattern of series of instructions
 Produces approximate rendition of assembly code
 Can be run on either a.out (complete executable) or .o file

0000000000400595 <sumstore>:
400595: 53 push %rbx
400596: 48 89 d3 mov %rdx,%rbx
400599: e8 f2 ff ff ff callq 400590 <plus>
40059e: 48 89 03 mov %rax,(%rbx)
4005a1: 5b pop %rbx
4005a2: c3 retq

Carnegie Mellon

9Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

x86 ISA Evolution In Practice

1978/1979
8086/8088, 4.77/8 MHz
8087 non-IEEE FPU
x86-16

2011
Sandy Bridge, 3.6 GHz
2-8 cores, HD3000 GPU
x86-64 + AVX

2004
Pentium 4F, 3.6 GHz
Execution disable
x86-64 + SSE3

2019
Xeon Platinum 8176F
28 cores, 3.8 GHz
x86-64 + AVX-512

40 years of x86 binary compatible, but 500x parallelism

x86 is the abstraction, backwards-compatible ISA extensions necessary

1996
Pentium MMX
166 MHz
x86-32 + MMX

1985
80386, 12 MHz
80387 IEEE FPU
x86-32

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiT4OTGgNPXAhWB0hoKHXG6AlcQjRwIBw&url=https://www.notebookcheck.net/Intel-s-latest-server-grade-Xeon-Platinum-8180-CPU-has-a-ridiculous-price-tag.234260.0.html&psig=AOvVaw1kw8XtT8WNzQS-eYf_Xwpk&ust=1511468354028346

Carnegie Mellon

10Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

x86 Instruction Format
 Translation of byte-string to assembly instruction

 Instruction decoder needs to interpret the bytes

 A single instruction can be up to 15 bytes (longer -> core dump)

Carnegie Mellon

11Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Instruction Format: Prefix

 Group 1: LOCK, REPNE, BND

 Group 2: segment override, branch hints

 Group 3: operand size override

 Group 4: address size override

 64-bit and SIMD: REX, VEX, EVEX

Carnegie Mellon

12Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Instruction Format: Opcode

 One, two or three bytes

 Opcode may spill 3 bit into ModR/M

 Fields in opcode can define behavior
displacement size, register encoding, condition codes, sign extension

 SIMD instructions require various escape codes
this carves out encoding space while keeping instruction length down

 GDB or disassembler decodes for us

Carnegie Mellon

13Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Instruction Format: ModR/M and SIB

 Mod: Addressing-form specifier
32 values: 8 registers and 24 addressing modes

 Reg/Opcode: used to specify either register or opcode
depends on primary Opcode field (previous slide)

 R/M: register or addressing mode
may also be used for opcode information

 SIB: scale/index/base for certain addressing modes

Carnegie Mellon

14Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Displacement and Immediate

 Some addressing modes need displacements
1, 2 or 4 byte values

 Immediate
Constant values go here: 1, 2, or 4 byte values

Carnegie Mellon

15Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

What is missing so far?

 More than 8 registers
REX prefix

 64-bit immediate
Semantics change of mov instruction: immediate -> load

 3-operand AVX, AVX-512
VEX and EVEX prefix

Carnegie Mellon

16Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

An Example: ADD

Complete specification: 2 full pages in the instruction manual

Carnegie Mellon

17Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Advanced Topics

 Instruction encoding

 RISC vs. CISC

 Pipelining

 Out of order execution

 Intel Microarchitecture

 Latencies/Throughput, IACA tool

Background:
Nathan Beckmann: “15-740: Computer Architecture”
https://www.cs.cmu.edu/afs/cs/academic/class/15740-f18/www/

https://www.cs.cmu.edu/afs/cs/academic/class/15740-f18/www/

Carnegie Mellon

18Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

RISC vs. CISC

 Complex Instruction Set Computing (CISC)
 variable length instructions: 1-321 bytes
 GP registers+special purpose registers+PC+SP+conditions
 Data: bytes to strings
 memory-memory instructions
 special instructions: e.g., crc, polyf, …

 Reduced Instruction Set Computing (RISC)
 fixed length instructions: 4 bytes
 GP registers + PC
 load/store with few addressing modes

Carnegie Mellon

19Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

The RISC Design Tenets
 Single-cycle execution

CISC: many multicycle operations

 Hardwired (simple) control
CISC: microcode for multi-cycle operations

 Load/store architecture
CISC: register-memory and memory-memory

 Few memory addressing modes
CISC: many modes

 Fixed-length instruction format
CISC: many formats and lengths

 Reliance on compiler optimizations
CISC: hand assemble to get good performance

 Many registers (compilers can use them effectively)
CISC: few registers

Carnegie Mellon

20Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Schools of ISA Design and Performance

 Complex instruction set computer (CISC)
 Complex instructions -> lots of work per instruction -> fewer

instructions per program
 But… more cycles per instruction & longer clock period
 Modern 𝜇𝜇arch gets around most of this!

 Reduced instruction set computer (RISC)
 Fine-grain instructions -> less work per instruction -> more

instructions per program
 But… lower cycles per instruction & shorter clock period
 Heavy reliance on compiler to “do the right thing”

𝐶𝐶𝐶𝐶𝐶𝐶 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

×
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
×
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

Carnegie Mellon

21Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Complexity: x86 vs. RISC-V

CISC:
About 5,000 pages

RISC: 2 pages

Carnegie Mellon

22Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Intel’s x86 Trick: RISC Inside

1993: Intel wanted “out-of-order execution” in Pentium Pro
 Hard to do with a coarse grain ISA like x86

Solution? Translate x86 to RISC micro-ops internally (µops)
push $eax → store $eax, -4($esp)

addi $esp,$esp,-4

 Processor maintains x86 ISA externally for compatibility
 But executes RISC µISA internally for implementability
 Given translator, x86 almost as easy to implement as RISC
 Intel implemented “out-of-order” before any RISC company!
 “OoO” also helps x86 more (because ISA limits compiler)

 Different µops for different designs
 Not part of the ISA specification  Implementation flexibility

Carnegie Mellon

23Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Potential Micro-op Scheme

Most instructions are a single micro-op
 Add, xor, compare, branch, etc.
 Loads example: mov -4(%rax), %ebx
 Stores example: mov %ebx, -4(%rax)

Each memory access adds a micro-op
 addl -4(%rax), %ebx is two micro-ops (load, add)
 addl %ebx, -4(%rax) is three micro-ops (load, add, store)

Function call (CALL) – 4 uops
 Get program counter, store program counter to stack,

adjust stack pointer, unconditional jump to function start

Return from function (RET) – 3 uops
 Adjust stack pointer, load return address from stack, jump register

Again, just a basic idea, micro-ops are specific to each chip

Carnegie Mellon

24Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Advanced Topics

 Instruction encoding

 RISC vs. CISC

 Pipelining

 Out of order execution

 Intel Microarchitecture

 Latencies/Throughput, IACA tool

Background:
Nathan Beckmann: “15-740: Computer Architecture”
https://www.cs.cmu.edu/afs/cs/academic/class/15740-f18/www/

https://www.cs.cmu.edu/afs/cs/academic/class/15740-f18/www/

Carnegie Mellon

25Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

From 213 Lecture 10: Pipelining
Stage 1

Stage 2

Stage 3

long mult_eg(long a, long b, long c) {
long p1 = a*b;
long p2 = a*c;
long p3 = p1 * p2;
return p3;

}

 Divide computation into stages
 Pass partial computations from stage to stage
 Stage i can start on new computation once values passed to i+1
 E.g., complete 3 multiplications in 7 cycles, even though each

requires 3 cycles

Time

1 2 3 4 5 6 7

Stage 1 a*b a*c p1*p2

Stage 2 a*b a*c p1*p2

Stage 3 a*b a*c p1*p2

Carnegie Mellon

26Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Pipelining: A Closer Look
Unpipelined System

3-Stage Pipeline

Deep Pipeline

Combinational
Logic

Re
gi

st
er

1.2ns 0.1ns

Clock

Delay = 1.3 ns
Throughput = 0.77 GHz

Re
gi

st
er

Clock

Comb.
Logic

Re
gi

st
erComb.

Logic

Re
gi

st
erComb.

Logic

0.4ns 0.1ns 0.4ns 0.1ns 0.4ns 0.1ns

Delay = 1.5 ns
Throughput = 2.0 GHz

Delay = 1.8ns
Throughput = 3.33GHz

Clock

Re
gi

st
erCom.

Log.

0.2ns 0.1ns

Com.
Log.

0.2ns 0.1ns

Com.
Log.

0.2ns 0.1ns

Com.
Log.

0.2ns 0.1ns

Com.
Log.

0.2ns 0.1ns

Com.
Log.

0.2ns 0.1ns

Re
gi

st
er

Re
gi

st
er

Re
gi

st
er

Re
gi

st
er

Re
gi

st
er

Carnegie Mellon

27Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Limitation: Sequential Dependences

◦ Op4 gets result from Op3!
◦ Pipeline Hazard  Extra delay

Clock

Comb.
Logic

Comb.
Logic

Comb.
Logic

Op 1

• • •

Op 2

Op 3

Op 4

Re
gi

st
er

Re
gi

st
er

Re
gi

st
er

Carnegie Mellon

28Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Intel Pipelines

https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures

Carnegie Mellon

29Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Advanced Topics

 Instruction encoding

 RISC vs. CISC

 Pipelining

 Out of order execution

 Intel Microarchitecture

 Latencies/Throughput, IACA tool

Background:
Nathan Beckmann: “15-740: Computer Architecture”
https://www.cs.cmu.edu/afs/cs/academic/class/15740-f18/www/

https://www.cs.cmu.edu/afs/cs/academic/class/15740-f18/www/

Carnegie Mellon

30Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Out-of-Order Execution

Fe
tc

h

De
co

de

Re
na

m
e

Di
sp

at
ch

Co
m

m
it

Buffer of instructions
Is

su
e

Re
g-

re
ad

Ex
ec

ut
e

W
rit

eb
ac

k

In-order front end
Out-of-order execution

In-order commit

Fe
tc

h

De
co

de

Re
g-

re
ad

Ex
ec

ut
e

W
rit

eb
ac

k

In-order pipeline

Out-of-order pipeline

Carnegie Mellon

31Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Problem: Dependencies
 Data Dependencies
 RAW: Read after write. (true dependence)
 WAR: write after read (false dependence)
 WAW: write after write (false dependence)

loop:ld r1, (r2+r9*8)
ld r3, (r4+r9*8)
mult r5, r3, r1
mult r3, r9, 2
add r5, r5, r3
st r5, (r6+r9*8)
add r9, r9, 1
cmp r9, r10
bnz loop

Out-of-order execution: execute as soon as RAW allows

Alpha ASM Syntax:
inst dst, src

Carnegie Mellon

32Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Register Renaming
 “Architected” vs “Physical” registers – level of indirection
 Names: r1,r2,r3
 Locations: p1,p2,p3,p4,p5,p6,p7
 Original mapping: r1→p1, r2→p2, r3→p3, p4–p7 are “available”

 Renaming – conceptually write each register once
+ Removes false dependences
+ Leaves true dependences intact!

 When to reuse a physical register? After overwriting is done

Register renaming: resolves false dependencies

MapTable FreeList Original insns Renamed insns
r1 r2 r3
p1 p2 p3 p4,p5,p6,p7 add r2,r3➜r1 add p2,p3➜p4
p4 p2 p3 p5,p6,p7 sub r2,r1➜r3 sub p2,p4➜p5
p4 p2 p5 p6,p7 mul r2,r3➜r3 mul p2,p5➜p6
p4 p2 p6 p7 div r1,4➜r1 div p4,4➜p7

Carnegie Mellon

33Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Out Of Order: Dynamic Scheduling

Dynamic Scheduling: instruction level parallelism and throughput

add p2,p3➜p4
sub p2,p4➜p5
mul p2,p5➜p6
div p4,4➜p7

Ready Table
P2 P3 P4 P5 P6 P7
Yes Yes
Yes Yes Yes
Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes

div p4,4➜p7
mul p2,p5➜p6
sub p2,p4➜p5
add p2,p3➜p4

and

 Instructions fetch/decoded/renamed into re-order buffer (ROB)

 Check which instructions are ready and execute earliest ready instruction

Ti
m

e

Carnegie Mellon

34Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Branch Prediction
When encounter conditional branch, cannot determine where to continue

fetching
 Branch Taken: Transfer control to branch target
 Branch Not-Taken: Continue with next instruction in sequence

 Cannot resolve until outcome determined by branch/integer unit

Branch Taken

Branch Not-Taken

404663: mov $0x0,%eax
404668: cmp (%rdi),%rsi
40466b: jge 404685
40466d: mov 0x8(%rdi),%rax

. . .

404685: repz retq

Carnegie Mellon

35Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

401029: vmulsd (%rdx),%xmm0,%xmm0
40102d: add $0x8,%rdx
401031: cmp %rax,%rdx
401034: jne 401029

401029: vmulsd (%rdx),%xmm0,%xmm0
40102d: add $0x8,%rdx
401031: cmp %rax,%rdx
401034: jne 401029

401029: vmulsd (%rdx),%xmm0,%xmm0
40102d: add $0x8,%rdx
401031: cmp %rax,%rdx
401034: jne 401029

401029: vmulsd (%rdx),%xmm0,%xmm0
40102d: add $0x8,%rdx
401031: cmp %rax,%rdx
401034: jne 401029 i = 98

i = 99

i = 100

Predict Taken (OK)

Predict Taken
(Oops)

i = 101

Assume
vector length = 100

Branch Misprediction Invalidation

Invalidate

Carnegie Mellon

36Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Branch Predictor

Input

Truth/Feedback

Prediction
Predictor

Operations

• Predict
Prediction as a feedback control process • Update

Carnegie Mellon

37Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Advanced Topics

 Instruction encoding

 RISC vs. CISC

 Pipelining

 Out of order execution

 Intel Microarchitecture

 Latencies/Throughput, IACA tool

Carnegie Mellon

38Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Intel Skylake

Carnegie Mellon

39Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Intel Skylake Server: AVX-512

Carnegie Mellon

40Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Intel Pipeline Example

Carnegie Mellon

41Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Intel Microarchitectural Features
 Superscalar out of order engine

8 functional units (port 0—7)

 Hyperthreading
2 threads per core, 2 register files but only one set of functional units

 Zero idioms, move elimination
recognize and optimize common simple operations

 Decoded Icache
Store decoded micro-ops

 Store-to-load forwarding
Data reused before stored to cache

 Loop stream detector
detect loops post-decode (around 28 uops, 8 branches)

 Instruction ROM
microcode (uop sequences) for less frequent instructions

 Micro-fusion, macro-fusion and uop unlamination
combine or split micro-ops for efficiency and throughput

Carnegie Mellon

42Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Skylake Desktop CPU Die Shot

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)

Carnegie Mellon

43Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Skylake By The Numbers
 Decoder/Frontend

5 uop/cycle decoder
1.5k uop cache (6uop/cycle)

 OOO execution engine
224 entry reorder buffer,
about 350 uop
97 entry scheduler
48 entry branch order buffer

 Physical register file
180 integer register
168 vector registers

 Buffers
store buffer: 56 entries
load buffer: 72 entries
Line fill buffer: 10 entries

 Power gating
10,000 cycles to wake up AVX2

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)

Carnegie Mellon

44Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Advanced Topics

 Instruction encoding

 RISC vs. CISC

 Pipelining

 Out of order execution

 Intel Microarchitecture

 Latencies/Throughput, IACA tool

Carnegie Mellon

45Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Instruction Latency/Throughput Table

Carnegie Mellon

46Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Cache Sizes/Latencies/Throughput

Carnegie Mellon

47Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Intel Architecture Code Analyzer (IACA)

Carnegie Mellon

48Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Summary

0000000000400595 <sumstore>:
400595: 53 push %rbx
400596: 48 89 d3 mov %rdx,%rbx
400599: e8 f2 ff ff ff callq 400590 <plus>
40059e: 48 89 03 mov %rax,(%rbx)
4005a1: 5b pop %rbx
4005a2: c3 retq

What you think is happening What really happens

Only way to know: timing of code

Instructions are executed one by one

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiT4OTGgNPXAhWB0hoKHXG6AlcQjRwIBw&url=https://www.notebookcheck.net/Intel-s-latest-server-grade-Xeon-Platinum-8180-CPU-has-a-ridiculous-price-tag.234260.0.html&psig=AOvVaw1kw8XtT8WNzQS-eYf_Xwpk&ust=1511468354028346

	Slide Number 1
	Midterm Exam: Mechanics
	Midterm Exam: 613 Extra Question
	From 213 Lecture 10: Superscalar Processor
	Modern CPU Design
	Intel Haswell CPU
	Advanced Topics
	213 Lecture 5: Disassembling Object Code
	x86 ISA Evolution In Practice
	x86 Instruction Format
	Instruction Format: Prefix
	Instruction Format: Opcode
	Instruction Format: ModR/M and SIB
	Displacement and Immediate
	What is missing so far?
	An Example: ADD
	Advanced Topics
	RISC vs. CISC
	The RISC Design Tenets
	Schools of ISA Design and Performance
	Complexity: x86 vs. RISC-V
	Intel’s x86 Trick: RISC Inside
	Potential Micro-op Scheme
	Advanced Topics
	From 213 Lecture 10: Pipelining
	Pipelining: A Closer Look
	Limitation: Sequential Dependences
	Intel Pipelines
	Advanced Topics
	Out-of-Order Execution
	Problem: Dependencies
	Register Renaming
	Out Of Order: Dynamic Scheduling
	Branch Prediction
	Branch Misprediction Invalidation
	Branch Predictor
	Advanced Topics
	Intel Skylake
	Intel Skylake Server: AVX-512
	Intel Pipeline Example
	Intel Microarchitectural Features
	Skylake Desktop CPU Die Shot
	Skylake By The Numbers
	Advanced Topics
	Instruction Latency/Throughput Table
	Cache Sizes/Latencies/Throughput
	Intel Architecture Code Analyzer (IACA)
	Summary

