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Midterm Exam: Mechanics 
Pittsburgh (Sections A, B, and C)
 Part of 1x-x13 exam setup

WEH Cluster, desktop computer, together with all others

 Time slot: March 5, 12pm EST
we sign you up

 If you have a conflict you can start a bit earlier/later
e-mail me ASAP

Silicon Valley (Section SA)
 Separate exam on your own laptop 

SV B23 118, bring charger for your laptop

 Time Slot (tentative)
March 5, 4:30pm EST – 7:30pm EST (max)

Sunday, March 3: Midterm Review (PIT and SV)
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Midterm Exam: 613 Extra Question
One extra question
 Equally weighted with other 213 questions

12.5% of exam score

Three sub-questions
 State of the art in computing

Covers main ideas from Lecture 2 (Multiple choice)
 C Language

Tests your knowledge of C (Understand provided C code)
 Intel SIMD Extensions

Fill holes in Intel SSE/AVX program (Instruction semantics provided)

Practice/example exam will be provided as PDF in Canvas
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From 213 Lecture 10: Superscalar Processor

 Definition: A superscalar processor can issue and execute 
multiple instructions in one cycle. The instructions are 
retrieved from a sequential instruction stream and are 
usually scheduled dynamically.

 Benefit: without programming effort, superscalar 
processor can take advantage of the instruction level 
parallelism that most programs have

 Most modern CPUs are superscalar.
 Intel: since Pentium (1993)
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Modern CPU Design
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Intel Haswell CPU
 8 Total Functional Units

 Multiple instructions can execute in parallel
2 load, with address computation
1 store, with address computation
4 integer
2 FP multiply
1 FP add
1 FP divide

 Some instructions take > 1 cycle, but can be pipelined
Instruction Latency Cycles/Issue
Load / Store 4 1
Integer Multiply 3 1
Integer/Long Divide 3-30 3-30
Single/Double FP Multiply 5 1
Single/Double FP Add 3 1
Single/Double FP Divide 3-15 3-15
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Advanced Topics

 Instruction encoding

 RISC vs. CISC

 Pipelining

 Out of order execution

 Intel Microarchitecture

 Latencies/Throughput, IACA tool
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Disassembled

213 Lecture 5: Disassembling Object Code

 Disassembler
objdump –d sum

 Useful tool for examining object code
 Analyzes bit pattern of series of instructions
 Produces approximate rendition of assembly code
 Can be run on either a.out (complete executable) or .o file

0000000000400595 <sumstore>:
400595:  53 push   %rbx
400596:  48 89 d3         mov %rdx,%rbx
400599:  e8 f2 ff ff ff callq 400590 <plus>
40059e:  48 89 03         mov %rax,(%rbx)
4005a1:  5b pop    %rbx
4005a2:  c3 retq
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x86 ISA Evolution In Practice

1978/1979
8086/8088, 4.77/8 MHz
8087 non-IEEE FPU
x86-16

2011
Sandy Bridge, 3.6 GHz
2-8 cores, HD3000 GPU
x86-64 + AVX

2004
Pentium 4F, 3.6 GHz
Execution disable
x86-64 + SSE3

2019
Xeon Platinum 8176F
28 cores, 3.8 GHz
x86-64 + AVX-512

40 years of x86 binary compatible, but 500x parallelism

x86 is the abstraction, backwards-compatible ISA extensions necessary

1996
Pentium MMX
166 MHz
x86-32 + MMX

1985
80386, 12 MHz
80387 IEEE FPU
x86-32

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiT4OTGgNPXAhWB0hoKHXG6AlcQjRwIBw&url=https://www.notebookcheck.net/Intel-s-latest-server-grade-Xeon-Platinum-8180-CPU-has-a-ridiculous-price-tag.234260.0.html&psig=AOvVaw1kw8XtT8WNzQS-eYf_Xwpk&ust=1511468354028346
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x86 Instruction Format
 Translation of byte-string to assembly instruction

 Instruction decoder needs to interpret the bytes

 A single instruction can be up to 15 bytes (longer -> core dump)
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Instruction Format: Prefix

 Group 1: LOCK, REPNE, BND

 Group 2: segment override, branch hints

 Group 3: operand size override

 Group 4: address size override

 64-bit and SIMD: REX, VEX, EVEX
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Instruction Format: Opcode

 One, two or three bytes

 Opcode may spill 3 bit into ModR/M

 Fields in opcode can define behavior
displacement size, register encoding, condition codes, sign extension

 SIMD instructions require various escape codes
this carves out encoding space while keeping instruction length down

 GDB or disassembler decodes for us
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Instruction Format: ModR/M and SIB

 Mod: Addressing-form specifier
32 values: 8 registers and 24 addressing modes

 Reg/Opcode: used to specify either register or opcode
depends on primary Opcode field (previous slide)

 R/M: register or addressing mode
may also be used for opcode information

 SIB: scale/index/base for certain addressing modes
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Displacement and Immediate

 Some addressing modes need displacements
1, 2 or 4 byte values

 Immediate
Constant values go here: 1, 2, or 4 byte values
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What is missing so far?

 More than 8 registers
REX prefix

 64-bit immediate
Semantics change of mov instruction: immediate -> load

 3-operand AVX, AVX-512
VEX and EVEX prefix
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An Example: ADD

Complete specification: 2 full pages in the instruction manual
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Advanced Topics

 Instruction encoding

 RISC vs. CISC

 Pipelining

 Out of order execution

 Intel Microarchitecture

 Latencies/Throughput, IACA tool

Background: 
Nathan Beckmann: “15-740: Computer Architecture”
https://www.cs.cmu.edu/afs/cs/academic/class/15740-f18/www/

https://www.cs.cmu.edu/afs/cs/academic/class/15740-f18/www/
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RISC vs. CISC

 Complex Instruction Set Computing (CISC)
 variable length instructions: 1-321 bytes
 GP registers+special purpose registers+PC+SP+conditions
 Data: bytes to strings
 memory-memory instructions
 special instructions: e.g., crc, polyf, …

 Reduced Instruction Set Computing (RISC)
 fixed length instructions: 4 bytes
 GP registers + PC
 load/store with few addressing modes
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The RISC Design Tenets
 Single-cycle execution

CISC: many multicycle operations

 Hardwired (simple) control
CISC: microcode for multi-cycle operations

 Load/store architecture
CISC: register-memory and memory-memory

 Few memory addressing modes
CISC: many modes

 Fixed-length instruction format
CISC: many formats and lengths

 Reliance on compiler optimizations
CISC: hand assemble to get good performance

 Many registers (compilers can use them effectively)
CISC: few registers
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Schools of ISA Design and Performance

 Complex instruction set computer (CISC)
 Complex instructions -> lots of work per instruction -> fewer 

instructions per program
 But… more cycles per instruction & longer clock period
 Modern 𝜇𝜇arch gets around most of this!

 Reduced instruction set computer (RISC)
 Fine-grain instructions -> less work per instruction -> more 

instructions per program
 But… lower cycles per instruction & shorter clock period
 Heavy reliance on compiler to “do the right thing”

𝐶𝐶𝐶𝐶𝐶𝐶 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

×
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
×
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
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Complexity: x86 vs. RISC-V

CISC:
About 5,000 pages

RISC: 2 pages
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Intel’s x86 Trick: RISC Inside

1993: Intel wanted “out-of-order execution” in Pentium Pro
 Hard to do with a coarse grain ISA like x86

Solution? Translate x86 to RISC micro-ops internally (µops) 
push $eax → store $eax, -4($esp) 

addi $esp,$esp,-4

 Processor maintains x86 ISA externally for compatibility
 But executes RISC µISA internally for implementability
 Given translator, x86 almost as easy to implement as RISC
 Intel implemented “out-of-order” before any RISC company!
 “OoO” also helps x86 more (because ISA limits compiler)

 Different µops for different designs
 Not part of the ISA specification  Implementation flexibility
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Potential Micro-op Scheme

Most instructions are a single micro-op
 Add, xor, compare, branch, etc.
 Loads   example:    mov -4(%rax), %ebx
 Stores   example:   mov %ebx, -4(%rax)

Each memory access adds a micro-op
 addl -4(%rax), %ebx is two micro-ops (load, add)
 addl %ebx, -4(%rax) is three micro-ops (load, add, store)

Function call (CALL) – 4 uops
 Get program counter, store program counter to stack, 

adjust stack pointer, unconditional jump to function start 

Return from function (RET) – 3 uops
 Adjust stack pointer, load return address from stack, jump register

Again, just a basic idea, micro-ops are specific to each chip
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Advanced Topics

 Instruction encoding

 RISC vs. CISC

 Pipelining

 Out of order execution

 Intel Microarchitecture

 Latencies/Throughput, IACA tool

Background: 
Nathan Beckmann: “15-740: Computer Architecture”
https://www.cs.cmu.edu/afs/cs/academic/class/15740-f18/www/

https://www.cs.cmu.edu/afs/cs/academic/class/15740-f18/www/


Carnegie Mellon

25Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

From 213 Lecture 10: Pipelining
Stage 1

Stage 2

Stage 3

long mult_eg(long a, long b, long c) {
long p1 = a*b;
long p2 = a*c;
long p3 = p1 * p2;
return p3;

}

 Divide computation into stages
 Pass partial computations from stage to stage
 Stage i can start on new computation once values passed to i+1
 E.g., complete 3 multiplications in 7 cycles, even though each 

requires 3 cycles

Time

1 2 3 4 5 6 7

Stage 1 a*b a*c p1*p2

Stage 2 a*b a*c p1*p2

Stage 3 a*b a*c p1*p2
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Pipelining: A Closer Look
Unpipelined System
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Limitation: Sequential Dependences

◦ Op4 gets result from Op3!
◦ Pipeline Hazard  Extra delay

Clock
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Intel Pipelines

https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures
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Advanced Topics

 Instruction encoding

 RISC vs. CISC

 Pipelining

 Out of order execution

 Intel Microarchitecture

 Latencies/Throughput, IACA tool

Background: 
Nathan Beckmann: “15-740: Computer Architecture”
https://www.cs.cmu.edu/afs/cs/academic/class/15740-f18/www/

https://www.cs.cmu.edu/afs/cs/academic/class/15740-f18/www/
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Out-of-Order Execution
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Problem: Dependencies
 Data Dependencies
 RAW: Read after write.  (true dependence)
 WAR: write after read (false dependence)
 WAW: write after write (false dependence)

loop:ld r1, (r2+r9*8)
ld r3, (r4+r9*8)
mult r5, r3, r1
mult r3, r9, 2
add r5, r5, r3
st r5, (r6+r9*8)
add r9, r9, 1
cmp r9, r10
bnz loop

Out-of-order execution: execute as soon as RAW allows

Alpha ASM Syntax:
inst dst, src
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Register Renaming
 “Architected” vs “Physical” registers – level of indirection
 Names: r1,r2,r3
 Locations: p1,p2,p3,p4,p5,p6,p7
 Original mapping: r1→p1, r2→p2, r3→p3, p4–p7 are “available”

 Renaming – conceptually write each register once 
+ Removes false dependences
+ Leaves true dependences intact!

 When to reuse a physical register? After overwriting is done

Register renaming: resolves false dependencies

MapTable FreeList Original insns Renamed insns
r1 r2 r3
p1 p2 p3 p4,p5,p6,p7 add r2,r3➜r1 add p2,p3➜p4
p4 p2 p3 p5,p6,p7 sub r2,r1➜r3 sub p2,p4➜p5
p4 p2 p5 p6,p7 mul r2,r3➜r3 mul p2,p5➜p6
p4 p2 p6 p7 div r1,4➜r1 div p4,4➜p7
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Out Of Order: Dynamic Scheduling

Dynamic Scheduling: instruction level parallelism and throughput

add p2,p3➜p4
sub p2,p4➜p5
mul p2,p5➜p6
div p4,4➜p7

Ready Table
P2 P3 P4 P5 P6 P7
Yes Yes
Yes Yes Yes
Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes

div p4,4➜p7
mul p2,p5➜p6
sub p2,p4➜p5
add p2,p3➜p4

and

 Instructions fetch/decoded/renamed into re-order buffer (ROB)

 Check which instructions are ready and execute earliest ready instruction

Ti
m

e
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Branch Prediction
When encounter conditional branch, cannot determine where to continue 

fetching
 Branch Taken: Transfer control to branch target
 Branch Not-Taken: Continue with next instruction in sequence

 Cannot resolve until outcome determined by branch/integer unit

Branch Taken

Branch Not-Taken

404663:  mov $0x0,%eax
404668:  cmp (%rdi),%rsi
40466b:  jge 404685
40466d:  mov 0x8(%rdi),%rax

. . .

404685:  repz retq
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401029:  vmulsd (%rdx),%xmm0,%xmm0
40102d:  add $0x8,%rdx
401031:  cmp %rax,%rdx
401034:  jne 401029

401029:  vmulsd (%rdx),%xmm0,%xmm0
40102d:  add $0x8,%rdx
401031:  cmp %rax,%rdx
401034:  jne 401029

401029:  vmulsd (%rdx),%xmm0,%xmm0
40102d:  add $0x8,%rdx
401031:  cmp %rax,%rdx
401034:  jne 401029

401029:  vmulsd (%rdx),%xmm0,%xmm0
40102d:  add $0x8,%rdx
401031:  cmp %rax,%rdx
401034:  jne 401029 i = 98

i = 99

i = 100

Predict Taken (OK)

Predict Taken
(Oops)

i = 101

Assume 
vector length = 100

Branch Misprediction Invalidation

Invalidate
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Branch Predictor

Input

Truth/Feedback

Prediction
Predictor

Operations

• Predict
Prediction as a feedback control process • Update
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Advanced Topics

 Instruction encoding

 RISC vs. CISC

 Pipelining

 Out of order execution

 Intel Microarchitecture

 Latencies/Throughput, IACA tool
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Intel Skylake
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Intel Skylake Server: AVX-512
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Intel Pipeline Example
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Intel Microarchitectural Features
 Superscalar out of order engine

8 functional units (port 0—7)

 Hyperthreading
2 threads per core, 2 register files but only one set of functional units

 Zero idioms, move elimination
recognize and optimize common simple operations

 Decoded Icache
Store decoded micro-ops

 Store-to-load forwarding
Data reused before stored to cache

 Loop stream detector
detect loops post-decode (around 28 uops, 8 branches)

 Instruction ROM
microcode (uop sequences) for less frequent instructions

 Micro-fusion, macro-fusion and uop unlamination
combine or split micro-ops for efficiency and throughput



Carnegie Mellon

42Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Skylake Desktop CPU Die Shot

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
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Skylake By The Numbers
 Decoder/Frontend

5 uop/cycle decoder
1.5k uop cache (6uop/cycle)

 OOO execution engine
224 entry reorder buffer,
about 350 uop
97 entry scheduler
48 entry branch order buffer

 Physical register file
180 integer register
168 vector registers 

 Buffers
store buffer: 56 entries
load buffer: 72 entries
Line fill buffer: 10 entries

 Power gating
10,000 cycles to wake up AVX2

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
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Advanced Topics

 Instruction encoding

 RISC vs. CISC

 Pipelining

 Out of order execution

 Intel Microarchitecture

 Latencies/Throughput, IACA tool
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Instruction Latency/Throughput Table
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Cache Sizes/Latencies/Throughput



Carnegie Mellon

47Franchetti: 18-613: Foundations of Computer Systems, Lecture 5

Intel Architecture Code Analyzer (IACA)
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Summary

0000000000400595 <sumstore>:
400595:  53               push   %rbx
400596:  48 89 d3         mov %rdx,%rbx
400599:  e8 f2 ff ff ff callq 400590 <plus>
40059e:  48 89 03         mov %rax,(%rbx)
4005a1:  5b               pop    %rbx
4005a2:  c3               retq

What you think is happening What really happens

Only way to know: timing of code

Instructions are executed one by one

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiT4OTGgNPXAhWB0hoKHXG6AlcQjRwIBw&url=https://www.notebookcheck.net/Intel-s-latest-server-grade-Xeon-Platinum-8180-CPU-has-a-ridiculous-price-tag.234260.0.html&psig=AOvVaw1kw8XtT8WNzQS-eYf_Xwpk&ust=1511468354028346
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