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Technology 

Improves
Transistors get smaller, clock speeds go up, power stays

roughly constant.  Party!
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Performance

Scaling Hit a 

Wall!

Transistors still doubling, performance tapers off.

Architects need to be creative!



•Willamette core

•180 nm process

•217 mm² die size

•42,000,000 transistors

https://en.wikichip.org/w/index.php?title=intel/cores/willamette&action=edit&redlink=1
https://en.wikichip.org/wiki/180_nm_process


•14 nm process

•11 metal layers

•~1,750,000,000 

transistors

•~9.19 mm x ~11.08 mm

•~101.83 mm² die size

•4 CPU cores + 24 GPU 

EUs

https://en.wikichip.org/wiki/14_nm_process


•14 nm process

•11 metal layers

•~1,750,000,000 

transistors

•~9.19 mm x ~11.08 mm

•~101.83 mm² die size

•4 CPU cores + 24 GPU 

EUs

Shared memory multi-threading

https://en.wikichip.org/wiki/14_nm_process


•14 nm process

•682.6 mm² die size

•76 CPU cores

•7,100,000,000 transistors

https://en.wikichip.org/wiki/14_nm_process


Amdahl’s Law
1/( (1-p) + p/s )



Amdahl’s Corollary:
Speedup is limited by fraction of

the program that is 
parallelizable



•14 nm process

•11 metal layers

•~1,750,000,000 

transistors

•~9.19 mm x ~11.08 mm

•~101.83 mm² die size

•4 CPU cores + 24 GPU 

EUs

https://en.wikichip.org/wiki/14_nm_process


“Coherence seeks to make the caches of
a shared-memory system as functionally 
invisible as the caches in a single-core 
system. Correct
coherence ensures that a programmer 
cannot determine whether and where a 
system has caches by
analyzing the results of loads and stores.”

Excerpt from “Primer on Memory Consistency and Cache 
Coherence”
Mark Hill, 2011



Cache Coherence



CPU 1 CPU 2 CPU 3

Wr X=1

$ $ $

Wr X=2 Rd X=?

What is the behavior of this parallel program? 
(X initially 0)



CPU 1 CPU 2 CPU 3

Wr X=1

$ $ $

Wr X=2 Rd X=?

Wr X=1
Wr X=2 Rd X=2

Wr X=1
Wr X=2

Rd X=1

Wr X=1 Wr X=2
Rd X=0



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?

What about this example? 
(X initially 0)

X++



CPU 1 CPU 2 CPU 3

X++

$ $ $

X++ Rd X=?

X++
X++ Rd X=2

X++
X++

Rd X=2

X++

X++
Rd X=1

(and the symmetric case)



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?

What assumptions are we making about the system
to produce the results 0, 1, and 2?

X++



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?

We assume the updates see one anothers’ results!
(Why wouldn’t they?)

X++



CPU 1 CPU 2 CPU 3

X=0 X=0 $

X++ Rd X=?X++

X++
X++ Rd X=?

$[X]=1

$[X]=1
Memory: X=0

So what the heck do we do now?

CPU1: X=1
CPU2: X=1
Reality: X=2 (?!)



CPU 1 CPU 2 CPU 3

X=0 X=0 $

X++ Rd X=?X++

X++
X++ Rd X=?

$[X]=1

$[X]=1
Memory: X=0

Never let this happen.  Caches should be coherent.

CPU1: X=1
CPU2: X=1
Reality: X=2 (?!)

“coherence ensures that a programmer cannot determine whether and 
where a system has caches by analyzing the results of loads and stores”



Informally Defining 
Coherence

“Coherence serializes all reads with all updates to the same 
location by different CPUs/caches, so that each read sees 

the result of the most recent update by any other”

“Single Writer/Multiple Reader (SWMR) Invariant
+

Data-Value Invariant”



Epoch Model

X++

X++

Rd X=?

$[X]=1

$[X]=2

Read/Write
Epoch for CPU1

Read/Write
Epoch for CPU2

Read-only 
Epoch  for all

Rd X=?

$[X]=1

$[X]=2 $[X]=2

$[X]=0

$[X]=2 $[X]=2
Yay!  Corresponds to reality!



Epoch Model

X++

X++

Rd X=?

$[X]=1

$[X]=2

Read/Write
Epoch for CPU1

Read/Write
Epoch for CPU2

Read-only 
Epoch  for all

Rd X=?

$[X]=1

$[X]=2 $[X]=2

$[X]=0

$[X]=2 $[X]=2
Yay!  Corresponds to reality!

R/W vs. R-O Epochs directly enforce SWMR

Epoch transitions assume data-value invariant



What do we need to 
implement the Epoch Model?

Need to add concept of R/W epoch vs. R-O epoch

Need to add gadget that correctly moves data 
between epochs



Cache Coherence Protocol

Add state to each cache line saying whether it is R-O or R/W

Add protocol actions to move lines from state to state 
based on (1)local memory operations; and (2)other CPUs’ 

memory operations

Add support to get data from (1)local cache; (2)a remote 
cache; or (3)main memory, depending on line’s protocol 

state 



High-level sketch of 
protocol in action

X++

X++

Rd X=?

$[X]=1

$[X]=2

Read/Write
Epoch for CPU1

Read/Write
Epoch for CPU2

Read-only 
Epoch  for all

Rd X=?

$[X]=1

$[X]=2 $[X]=2

$[X]=0

$[X]=2 $[X]=2

CPU1 says “I am is writing X”
Others relinquish cached copies of X
and reply “OK go for it” <enter R/W epoch>

(ditto (1) for CPU2)

CPU1 replies “I have X. Use my
copy or get it from memory after I
write it back”

(1)

(2)

(3)
(ditto (3) for CPU 2)

CPU3 says “I want to read only”
Others reply “OK, we all agree
not to write without saying so”

(4)

(5)

<enter R-O epoch>



Cache Coherence Protocol

Per-line coherence states

M S

I



Cache Coherence Protocol

Modified (R/W) Shared (R-O)

Invalid (inaccessible)



Cache Coherence Protocol
Local operations perspective

M S

I

Locally perform a read
[send requests to share to other CPUs]

Locally perform a write
[send invalidations to other CPUs]

Locally perform a write
[send invalidations to other CPUs]

Locally perform a read
Locally perform a
read or write



Cache Coherence Protocol
Remote operations perspective

M S

I

Incoming Invalidation
[reply with invalidation acknowledgement]

Incoming request to share
[reply with data or write back]

Incoming Invalidation
[reply with invalidation acknowledgement]



Can we design another state?

M S

I?

What should we optimize?



Can we design another state?

M S

IExclusive Read-only

(Benefit: no invalidation required
to transition from E->M, like from S->M)



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

Snoopy Coherence

Shared bus for coherence messages



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

Invalidate

X++



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

X++

Ack Ack



CPU 1 CPU 2 CPU 3

X=1 $ $

X++ Rd X=?X++

Implementing the Protocol

X++

(M)
Entering CPU1’s
write epoch



CPU 1 CPU 2 CPU 3

X=1 $ $

X++ Rd X=?X++

Implementing the Protocol

X++ Rd X=?

(M)

RdReq



CPU 1 CPU 2 CPU 3

X=1 $ $

X++ Rd X=?X++

Implementing the Protocol

X++ Rd X=?

(M)

Don’t have itGot it: X=1



CPU 1 CPU 2 CPU 3

X=1 $ X=1

X++ Rd X=?X++

Implementing the Protocol

X++ Rd X=?

(S) (S)
Entering R-O
epoch



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

What sucks about Snoopy?

Implementing the Protocol



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Bus limits scalability due to congestion and 
complex message arbitration

Implementing the Protocol

Shared bus



Sandybridge: bi-directional rings

Skylake Xeon 2017 2D mesh

Knight’s Landing 2017 2D mesh



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

Directory-based

Sharers of X(Effectively) Point to Point Links



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

Directory-based

Sharers of X



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

Directory-based

Sharers of X

X++

Who has X?



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

Directory-based

Sharers of X

X++

No one does!
Proceed!



CPU 1 CPU 2 CPU 3

$ X=1 X=1

X++ Rd X=?X++

Implementing the Protocol

Directory-based

Sharers of X

X++

CPUs 2 and 3 do.
Send them Invalidates!

X++
Rd X=?



CPU 1 CPU 2 CPU 3

X=1 $ $

X++ Rd X=?X++

Implementing the Protocol

Benefit: No broadcast on shared bus

Sharers of X



CPU 1 CPU 2 CPU 3

X=1 $ $

X++ Rd X=?X++

Implementing the Protocol

Drawbacks?

Sharers of X

X++



CPU 1 CPU 2 CPU 3

X=1 $ $

X++ Rd X=?X++

Implementing the Protocol

Centralized directory won’t scale
(In Practice: Distribute Directory)

Sharers of XSharers of Y



CPU 1 CPU 2 CPU 3

$ X X

Rd X Rd XPF X

Optimization: Non-binding Prefetch

Prefetch instruction preemptively 
changes coherence state

Sharers of X

CPU 2
CPU 3



CPU 1 CPU 2 CPU 3

X=1 $ $

Rd X Rd X
PF X

Optimization: Non-binding Prefetch

Benefit?

Owner of X

CPU 2
CPU 3

X=1

CPU 1

…



CPU 1 CPU 2 CPU 3

X $ $

Rd X Rd X
if(C)

Optimization: Speculation

Speculative operations that squash
behave like non-binding pre-fetch

BP: taken

X=1speculative

Owner of X

CPU 2
CPU 3
CPU 1

s



“computers execute operations in a 
different order than is specified by the 
program. A correct execution is achieved 
if the results produced are the same as 
would be produced by executing the 
program steps in order.  For a 
multiprocessor computer, such a correct 
execution by each processor does not 
guarantee the correct execution of the 
entire program.”

Excerpt from “How to Make a Multiprocessor Computer That 
Correctly Executes Multiprocess Program”
LESLIE LAMPORT, 1979



Memory Consistency



Memory Consistency
Model

“Defines the value a read operation may read
at each point during the execution”

“Defines the set of legal observable orders of memory
operations during an execution”

“Defines which reorderings of memory operations
are permitted”

Informal Definition:



Review: Coherence

Wr X

Wr X

2 Invariants:

1) “One Writer or
One or More Readers”

2) “Reading X gets the value 
of the last write to X”Rd X



Review: Coherence

2 Invariants:

1) “One Writer or
One or More Readers”

2) “Reading X gets the value 
of the last write to X”

Wr X

Wr X

Rd X

I wrote X last

Blue wrote X last



Without Coherence

Wr X Wr X

Rd X

Which 
X?!

Cache XCache X

(The coherence invariants prevent this from happening)

Processors can’t decide who wrote last.  
Green is hosed.



Coherence is Ordering

Wr X

Wr X

Coherence defines the set of legal orders of 
accesses to a single memory location

Wr X

Wr X
OR



Consistency is Ordering

Wr X

Wr Y

Consistency defines the set of legal orders of 
accesses to multiple memory locations

Wr X

Wr Y
OR



Sequential Consistency (SC)
The simplest, most intuitive memory consistency model

Two Invariants to SC:

Instructions are
executed in program

order

All processors agree
on a total order of

executed instructions



The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution



The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X



The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y



The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y
Wr Y



The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y
Wr Y
Rd X



The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y
Wr Y
Rd X
Rd X



Why is SC Important?
Who cares?.... You care!

Intuitive (SC)
Wr X
Rd Y
Wr Y
Rd X
Rd X

Weird (not SC)

Wr X
Rd Y

Wr Y
Rd X
Rd X

Wr X

Rd Y

Wr Y

Rd X

Rd X

SC prohibits all reordering of instructions (Invariant 1)

SC is the most complex model that we can ask 
programmers to think about.



Why are Instructions Reordered?
And when does it matter?



Why are Instructions Reordered?

Optimization.
Elsewhere?



Reordering #1: Write Buffers

M M

CPU can read its write 
buffer, but not others’

Buffered writes eventually end up in coherent 
shared memory

Coherent

CPU CPU

Write BufferWrite Buffer



Reordering #1: Write Buffers

X=1

r1=Y

Y=1

r2=X

M M

Program

Is r1==r2==0
a valid result?

Initially X == Y == 0



Reordering #1: Write Buffers

X=1

r1=Y

Y=1

r2=X

M M

Program

Is r1==r2==0
a valid result?

Initially X == Y == 0

r1 == r2 == 0 is not SC, but it can happen with write buffers



Reordering #1: Write Buffers

Execution

r1=Y

Y=1

r2=X

M M

Program

Initially X == Y == 0
X=1



Reordering #1: Write Buffers

Execution

r1=Y r2=X

M M

Program

Initially X == Y == 0

X=1

Y=1



Reordering #1: Write Buffers

Execution

r1=Y r2=X

M M

Program

Initially X == Y == 0

X=1 Y=1



Reordering #1: Write Buffers

Execution

r2=X

M M

Program

Initially X == Y == 0

X=1 Y=1

r1=Y



Reordering #1: Write Buffers

ExecutionM M

Program

Initially X == Y == 0

X=1 Y=1

r1=Y r2=X



Reordering #1: Write Buffers

ExecutionM M

Program

Initially X == Y == 0

X=1 Y=1

r1=Y [r1 <- 0]

r2=X



Reordering #1: Write Buffers

ExecutionM M

Program

Initially X == Y == 0

X=1 Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]



Reordering #1: Write Buffers

ExecutionM M

Program

Initially X == Y == 0

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

WBs let reads finish 
before older writes (Not SC!)



Reordering #2: Write Combining

Coalescing Write Buffer

X=1

Program

X,Z in same $ line

Y=1
Z=1

4 word cache line



Reordering #2: Write Combining

Coalescing Write Buffer

X=1

Program

X,Z in same $ line

Y=1
Z=1

X=1



Reordering #2: Write Combining

Coalescing Write Buffer

X=1

Program

X,Z in same $ line

Y=1
Z=1

X=1

Y=1



Reordering #2: Write Combining

Coalescing Write Buffer

X=1

Program

X,Z in same $ line

Y=1
Z=1

X=1

Y=1

Z=1



Reordering #2: Write Combining

Coalescing Write Buffer
X=1

Y=1

Z=1

Coalescing Write Buffer
X=1

Y=1

Z=1

Coalesce

Combining the write to X & Z saves bandwidth,
but reorders Z=1 and Y=1



Reordering #3: Interconnect

Execution

Program

X=1
Y=1

r3=Y [r3 <- 1]

r1=X [r1 <- 1]

X=1 Y=1r1=X

r2=Y

r3=Y

r4=X

r2=Y [r2 <- 0]

r4=X [r4 <- 0]

X=1 Y=1

Y=1

X=1
Variable time cost traversing 

routed on-chip network



Reordering #4: Compilers

for (1 .. 100)

X = 1 X = 0
print X

X = 0

Compiler for (1 .. 100)
X = 1

X = 0
print X

Hoisted!

The compiler hoists the write out of the loop, 
permitting new (non-SC) results (e.g., “1 0 0 0 0 0 0...”)



When is Reordering a Problem?

When Executions Aren’t SC



When is an Execution Not SC? 

Execution

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

When a memory operation happens before itself



When is an Execution Not SC? 

Execution

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

Program Order HB Edge

When a memory operation happens before itself



When is an Execution Not SC? 

Execution

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

Program Order HB Edge

Causal Order HB Edge

When a memory operation happens before itself



When is an Execution Not SC? 

Execution

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

If there is a cycle in the happens-before graph, the 
execution is not SC

When a memory operation happens before itself



When is an Execution Not SC? 

Execution

X=1 Y=1

Happens-Before Graph

If there is a cycle in the happens-before graph, the 
execution is not SC

When a memory operation happens before itself

X=1
Y=1

r3=Y [r3 <- 1]

r1=X [r1 <- 1]
r2=Y [r2 <- 0]

r4=X [r4 <- 0]

r3=Yr1=X

r2=Y r4=X



So... are Computers Wrong?!

SC is how programmers think.

SC prohibits all reordering of instructions

WBs let reads finish before older writes

Combining writes saves bandwidth but reorders writes



Relaxed Memory Consistency

Relaxed Memory Models permit reorderings, unlike SC



x86-TSO (intel x86s)

“The Write Buffer Memory Model”

X=1

r1=Y

r1=Y

Total Store Order - loads may complete before older 
stores to different locations complete.

Relaxes W->R 
order



PSO(SPARC)

“The Write Combining Memory Model”

X=1

Partial Store Order - loads and stores may complete 
before older stores to different locations complete.

Y=1
Z=1

Z=1 Relaxes W->W 
order



In General

X=1

Y=1
Z=1

Z=1
X=1

r1=Y

r1=Y

r2=X

r1=Y

r1=Y

W->W

r2=X

Y=1

Y=1

R->R R->WW->R

Starting with PSO and relaxing R->R and R->W yields 
Weak Ordering or Release Consistency (alpha)

Depending on the implementation



SC and Relaxed Consistency

SC is required for correctness and programmer sanity

Reordering is required* for performance

Goal: Ensure SC executions while permitting 
Relaxed Consistency reorderings

+

*Usually; the MIPS memory model is SC (surprising!)



How to ensure SC, but permit
reordering?



Synchronization Prevents 
Reordering

X=1

r1=Y

r1=Y

Memory Fence

Fence implementation depends on reordering implementation

Memory fences are another type of synchronization

Reordering prevented

TSO: Stall reads until write buffer is empty



Synchronization For Real 
Programmers

X=1

r1=Y

r1=Y

Unlock

Memory fences are wrapped up in locks, etc.

Reordering prevented

Direct use of fences possible, but inadvisable.
USE A LIBRARY.

Lock



Data Races

Y=1
Unlock

Synchronization imposes happens-before on otherwise 
unordered operations

Data Race: Unordered operations to the same memory 
location, at least one a write

Lock

r1=Y
Unlock

Lock
HB Order: Data race prevented



Memory Models across the 
System Stack

Language Compiler Architecture

Java/C++: SC 
for data-race-
free programs

Conservative 
with reordering 
when d-r-f can’t 

be proved

Usually very weak for 
max optimization 

(lots of reordering)

Note: fences from 
“above” ensure SC


