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Microprocessor Transistor Counts 1971-2011 & Moore’s Law
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TeC h n O ‘ Ogy Transistors get smaller, clock speeds go up, power stays
roughly constant. Party!
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Performance
Transistors still doubling, performance tapers off.

SCa | | ﬂg H |t a Architects need to be creative!
Walll



) O

it . & oy A i Y A IR
1 FEETHe s ' > = L oW 5
vt p d ' ! y IS
0 5 1 - 2 Hldk 4 r Ul
1 paaris O o ! i W “l-llul....
_ , 15 0 = o
| 1! A L el ™
1§ . BEN| el tene T
e e IR :
AR T 7 g L I ey g
,..,.\ .‘.....,..\.n: .\:,. e b

N ~ 1 TN '1.
5 S AR NS **

g » za —
R < - - .
§ (S0 A —3..!? 19
$ oD LS
4 ‘ s :

Losm g gs mg o p vy

-
SRy ol ', 5
il TV ! LA
« 1 g X,
“CRA P
& ot ot L b S I
: . VLS .
o 3 TN
4 3 . N .
. - "%

cecssssssssm™ lslalanw

‘Willamette core
217 mm2 die size
*42.000,000 transistors


https://en.wikichip.org/w/index.php?title=intel/cores/willamette&action=edit&redlink=1
https://en.wikichip.org/wiki/180_nm_process

*14 nm process

11 metal layers
«~1,750,000,000
transistors

*~9.19 mMm x ~11.08 mm
*~101.83 mm2 die size
4 CPU cores + 24 GPU
EUs

T


https://en.wikichip.org/wiki/14_nm_process
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Shared memory multi-threading


https://en.wikichip.org/wiki/14_nm_process

*14 nm process

*682.6 mmz2 die size
*76 CPU cores 8L
«7,100,000,000 transistorsgstes |



https://en.wikichip.org/wiki/14_nm_process

Amdahl’s Law

1/((1-p) +p/s)



20.00

Hn.oo

200

.00

2.00 4

Amdahl's Law

1T

/f- Parallel portion
7 G112
_."’ — T3%
211
,"" A5
/.-'
_——_=__-
P
e
T 1
-
LN RN

NHumberof procesors

GEah6

Amdahl’s Corollary:

Speedup is limited by fraction of
the program that is
parallelizable



*14 nm process

11 metal layers
«~1,750,000,000
transistors

*~9.19 mMm x ~11.08 mm
*~101.83 mm2 die size
4 CPU cores + 24 GPU
EUs
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https://en.wikichip.org/wiki/14_nm_process

“Coherence seeks to make the caches of
a shared-memory system as functionally
invisible as the caches in a single-core
system. Correct

coherence ensures that a programmer

cannot determine whether and where a
system has caches by
analyzing the results of loads and stores.’

Excerpt from “Primer on Memory Consistency and Cache
Coherence”
Mark Hill, 2011
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Cache Coherence



CPU3

What is the behavior of this parallel program?
(X initially O)



Wr X=1 \

Wr X=2 —___ rd4 ¥=2

Wr X=2
Wr X=1 =




What about this example?
(X initially 0)




X++
\
A++ —— Rd X=2
X++
X++ —
X++
X++ T~ RdX-1

(and the symmetric case)



: : CPU3

What assumptions are we making about the system
to produce the results 0, 1, and 2?



: : CPU3

We assume the updates see one anothers’ results!
(Why wouldn’t they?)



X++

T

oxe1  —— Rd X=?
Memory: X=0
CPU1: X=1

CPU2: X=1
Reality: X=2 (?!)

So what the heck do we do now?



CPU3

X++
=1~y
Sl o~

Never let this happen. Caches should be coherent.

“coherence ensures that a programmer cannot determine whether and
where a system has caches by analyzing the results of loads and stores”



Informally Defining
Coherence

“Coherence serializes all reads with all updates to the same
location by different CPUs/caches, so that each read sees
the result of the most recent update by any other”

“Single Writer/Multiple Reader (SWMR) Invariant
+

Data-Value Invariant”



Epoch Model

$[X]=0
Read/Write| X++
Epoch for CPU1 >[X]=1

—

S[X]=1
Read/Write| X++

Epoch for CPU2| 5[X]=2

— S[X]=2
Read-only Rd X=?
Epoch for all siX]=2
Yay! Corresponds to reality!



Epoch Model

R/W vs. R-O Epochs directly enforce SWMR
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S[X]=1
Read/Write| X++
Epoch for CPU2| *IXI=2 " .
e —> S[X]=2
........................ Read-only Rd X=?
S e Epoch for all SXj=2
................. Yay! Corresponds to reality!



What do we need to
implement the Epoch Model?

Need to add concept of R/W epoch vs. R-O epoch

Need to add gadget that correctly moves data
between epochs



Cache Coherence Protocol

Add state to each cache line saying whether it is R-O or R/W

Add protocol actions to move lines from state to state
based on (1)local memory operations; and (2)other CPUs’
memory operations

Add support to get data from (1)local cache; (2)a remote
cache; or (3)main memory, depending on line’s protocol
state



High-level sketch of
protocol in action

(1) CPU1 says “l am is writing X”
Others relinquish cached copies of X

and reply “OK go for it” <enter R/W epoch>
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.

. (ditto (1) for cPU2) (2)
Read/Write| X++
Epoch for CPU1 >[X]=1

CPU3 says “l want to read only”
(4) Others reply “OK, we all agree

not to write without saying so”

= —

“
o*
3

S[Xj=1 *
Read/Write| X++

""""""""" Epoch for CPU2| >[XI=2 <enter R-O epoch>
"""""" — % SIX]=2
CPU1 replies "I have X. Use my " Read-only Rd X=?
copy or get it from memory after | " Epoch foral 5[X]=2

write it back”
(3)

(ditto (3) for CPU 2) (5)



Cache Coherence Protocol

) O,

Per-line coherence states

o



Cache Coherence Protocol

@ (inaccessible)



Cache Coherence Protocol

Local operations perspective

Locally perform a
Locally perform a write
[send invalidations to other CPUs]

read or write (" /l_ocally perform a read

® 1
Locally perform a write Locally perform a read
[send invalidations to other CPUs] [send requests to share to other CPUs]

=y
[



Cache Coherence Protocol

Remote operations perspective

Incoming request to share
[reply with data or write back]

Incoming Invalidation Incoming Invalidation
[reply with invalidation acknowledgement] [reply with invalidation acknowledgement]

=y
[

b




Can we design another state?

What should we optimize?



Can we design another state?

@ | -
@ive Read-only

(Benefit: no invalidation required
to transition from E->M, like from S->M)




Implementing the Protocol

. : CPU3

Shared bus for coherence messages

% Snoopy Coherence



Implementmg the Protocol

CPU 3

Invalidate

X++




Implementing the Protocol

. : CPU3

X++



Implementmg the Protocol

CPU 3
‘l

(M)

Entering CPU1’s
write epoch

X++



Implementmg the Protocol

CPU 3
‘l

X++



Implementlng the Protocol
CPU 3

Got it x=1 Don‘t-have-it

X++




Implementmg the Protocol
CPU 3

Entering R-O

X++



Implementing the Protocol

> > CPU3
&l VN

What sucks about Snoopy?



Implementing the Protocol

: : CPU3

Shared bus

Bus limits scalability due to congestion and
complex message arbitration



Figure 1-1. Uncore Sub-system Block Diagram of Intel Xeon Processor E5-2600 Family Figure 1-2. Intel® Xeon® Processor E5 v3-1600/2600/4600 Family -12C Block Diagram
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Implementing the Protocol
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(Effectively) Point to Point Links Sharers of X

Directory-based



Implementmg the Protocol

- CPU 3

Sharers of X

Directory-based



Implementing the Protocol
: : CPU 3

Whohas X?
Sharers of X

Directory-based




Implementing the Protocol
: : CPU 3

Na_.one does!

Sharers of X

ProceecH
)(4-4- ““““\

Directory-based




Implementmg the Protocol

CPU 3
‘\

X++

PHs 2 and 3 do. Sharers of X

Send them Invalidates!
X++ l

Directory-based




Implementmg the Protocol

: CPU 3
X=1 ‘l

Sharers of X

Benefit: No broadcast on shared bus




Implementing the Protocol
: : CPU 3

X=1 ‘l
Sharers of X
X++ l

Drawbacks?




Implementing the Protocol

= - CPU 3
Sharers of Y h"="fers of X

Centralized directory won’t scale
(In Practice: Distribute Directory)




Optlmlzatlon Non-binding Prefetch

- CPU 3

Prefetch instruction preemptively
changes coherence state




Optlmlzatlon Non-binding Prefetch

> CPU 3
X=1 ‘l

Owner of X

e
CPU 1

Benefit?



Owner of X

Optlmlzatlon Speculation
CPLLY.

: CPU 3
3P: taken
pecuatve M

Speculative operations that squash
behave like non-binding pre-fetch




“computers execute operations in a
different order than is specified by the
program. A correct execution is achieved
if the results produced are the same as
would be produced by executing the
program steps in order. For a
multiprocessor computer, such a correct
execution by each processor does not
guarantee the correct execution of the
entire program.”

Excerpt from “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Program”
LESLIE LAMPORT, 1979




Memory Consistency



Memory Consistency
Model

Informal Definition:

“Defines the value a read operation may read
at each point during the execution”

“Defines the set of legal observable orders of memory
operations during an execution”

“Defines which reorderings of memory operations
are permitted”



Review: Coherence

WFX\

Wr X

AN

2 Invariants:

1) “One Writer or
One or More Readers”

2) “Reading X gets the value
of the last write to X”



Review: Coherence

TN
Wr X

.

2 Invariants:

1) “One Writer or
One or More Readers”

2) “Reading X gets the value
of the last write to X”



Without Coherence

(The coherence invariants prevent this from happening)

)
\\

Processors can’t decide who wrote last.
Green is hosed.



Coherence is Ordering

Wr X Wr X
\ OR /
Wr X Wr X

Coherence defines the set of legal orders of
accesses to a single memory location



Consistency is Ordering

Wr X WrY
\ OR /
WrY Wr X

Consistency defines the set of legal orders of
accesses to multiple memory locations



Sequential Consistency (SC)

The simplest, most intuitive memory consistency model

Two Invariants to SC:

Instructions are All processors agree
executed in program on a total order of
order executed instructions



The SC “Switch”

Wr X Wr Y
RAY Rd X
N

Executio




The SC “Switch”

Wr X Wr Y

RAY Rd X

Execution
Wr X




The SC “Switch”

Wr X Wr Y
RAY Rd X
Execution

Wr X
RAY




The SC “Switch”

Wr X Wr Y
RAY Rd X
Execution

Wr X

RAY
WrY




The SC “Switch”

Wr X Wr Y
RAY Rd X
Execution

Wr X

RAY
WrY




The SC “Switch”

Wr X Wr Y
RAY Rd X
Execution

Wr X

RAY
WrY

Rd X



Why is SC Important?

Who cares?.... You care!

SC is the most complex model that we can ask
programmers to think about.

Intuitive (SC) Weird (not SC)

Wr X RAY
Wr Xt wry Rd Y Wr X

Wr Y Rd X
RAY | Rd X

Rd X Wr Y

SC prohibits all reordering of instructions (Invariant 1)



Why are Instructions Reordered?

And when does it matter?



Why are Instructions Reordered?

Optimization.

Elsewhere?



Reordering #1: Write Buffers

oL CPU can read its write
tPU buffer, but not others’

Write Buffer Write Buffer

“‘Coherent”

Buffered writes eventually end up in coherent
shared memory




Reordering #1:

Write Buffers

Program
Initially X ==Y ==0

X=1 Y=1
ri=Y r2=X

Is r1==r2==0
a valid result?



Reordering #1: Write Buffers

Program
Initially X ==Y ==
X=1 Y=1
ri=y r2=X

[ M e s rl==r2==0

a valid result?

rl ==r2==0is not SC, but it can happen with write buffers



Reordering #1: Write Buffers

] L

Program
Initially X ==Y ==0
Y=1
ri=y r2=X
Execution



Reordering #1: Write Buffers

E[Qgram

Initially X ==Y ==0
Y=1




Reordering #1: Write Buffers

E[Qgram

|:| |:| Initially X == Y == 0




Reordering #1: Write Buffers

E[Qgram

Initially X ==Y ==0
rl=Y




Reordering #1: Write Buffers

Program
Initially X ==Y ==0
rl=Y r2=X
= =1




Reordering #1: Write Buffers

Program
Initially X ==Y ==0
r2=X
=1 =
W [ - ecution

r1=Y [rl <- 0]



Reordering #1: Write Buffers

EIQgram
|:| |:| Initially X == Y == 0
= =
T - ecution
r1=Y [rl <- O]

r2=X[r2 <- 0]



Reordering #1: Write Buffers

WBs let reads finish
before older writes

E[Qgram

Initially

X==VY==(

Execution

ri=yY
r2=X

rl <-0]
r2<-0

X=1
v_1 (NotSC!)




Reordering #2: Write Combining

Coalescing Write Buff ~Logram
-0dle>Cing VIite bUTEr X,Zin same S line
X=1
Y=1

/=1

4 word cache line



Reordering #2: Write Combining

Coalescing Write Buff ~rogram
oalescing Write er _ .
x=1 P X,Z in same S line
X=1
Y=1

/=1




Reordering #2: Write Combining

Coalescing Write Buff ~rogram
oalescing Write Buffer _ .
=1 - X,Z in same S line
Y=1 X=1
Y=1

/=1




Reordering #2: Write Combining

Coalescing Write Buff ~rogram
oalescing Write Buffer _ .
=1 - X,Z in same S line
Y=1 X=1
Y=1

/=1 /=1




Reordering #2: Write Combining

Coalescing Write Buffer Coalescing Write Buffer
X=1 X=1| z=1
Y=1 Y=1

/=1

Combining the write to X & Z saves bandwidth,
but reorders 7=1 and Y=1



Reordering #3: Interconnect

__Program
r2=Y r4=X
x=1l lv=1
_Y= Execution
(N X=1
—XA=1 5 Y=1 |
Variable time cost traversing r1=X _r]_ <- 1
routed on-chip network r2=Y rz <- O
r3=Y [r3<-1
r4=X [r4 <- O]




Reordering #4: Compilers

for (1 ..100) X=1
print X

for (1 .. 100) X
print X
The compiler hoists the write out of the loop,
permitting new (non-SC) results (e.g., “1000000...”)

0



When is Reordering a Problem?

When Executions Aren’t SC



When is an Execution Not SC?

When a memory operation happens before itself

—Execution Happens-Before Graph
rl=Y [r1<-0
r2=X [r2 <- 0] X=1 Y=1

X=1

v=1 ri=Y r2=X



When is an Execution Not SC?

When a memory operation happens before itself

__Execution_ Happens- o
r1=Y [r1<-0] » ens-Before G

1 122X [r2<-0] ™, =1 e
...... Y=1 ri=yY r2=X

:Program Order HB Edge



When is an Execution Not SC?

When a memory operation happens before itself

—Execution Happens-Before Graph
rl=Y I"1 <- O d
L r2=X[r2 <- 0] \ " X=1 ><Y=;1
/ ....... X=1 .............. .. r]_sz rz;X
—3Y=1

:Program Order HB Edge
J Causal Order HB Edge



When is an Execution Not SC?

When a memory operation happens before itself

—Execution Happens-Before Graph
rl=Y I"1 <- O d
L r2=X[r2 <- 0] \ " X=1 ><Y=;1
/ ....... X=1 .............. .. r]_sz rz;X
—3Y=1

If there is a cycle in the happens-before graph, the
execution is not SC



When is an Execution Not SC?

When a memory operation happens before itself

Exx_lll\ Happens-Before Graph
Y_=1 ~7 /3(\8 Y
@( rl <-1
r2=Y [r2<-0 \
r3=Y [r3<-1 / r2 ! r4 X
r4=X [r4 <- 0]

If there is a cycle in the happens-before graph, the
execution is not SC



So... are Computers Wrong?!

SC is how programmers think.

SC prohibits all reordering of instructions

WBs let reads finish before older writes

Combining writes saves bandwidth but reorders writes



Relaxed Memory Consistency

Relaxed Memory Models permit reorderings, unlike SC



X86‘TSO (intel x865)

“The Write Buffer Memory Model”

rl=Y
/' Relaxes W->R
X=1
\ order
rl=Y

Total Store Order - loads may complete before older
stores to different locations complete.



PSO(SPARC)

“The Write Combining Memory Model”

Relaxes W->W
order

) I | I | .
=

N < N X

Partial Store Order - loads and stores may complete
before older stores to different locations complete.



In General

ri=yY
<r2 =X <r2 =X
R->R

DD
=R

'R‘
—

W->R W->W

Starting with PSO and relaxing R->R and R->W vyields
Weak Ordering or Release Consistency (alpha)

Depending on the implementation



SC and Relaxed Consistency

SC is required for correctness and programmer sanity
+

Reordering is required™ for performance

Goal: Ensure SC executions while permitting
Relaxed Consistency reorderings

*Usually; the MIPS memory model is SC (surprising!)



How to ensure SC, but permit
reordering?



Synchronization Prevents
Reordering

Memory fences are another type of synchronization

rl=Y

Reordering prevented, =1
< - Memory Fence

N 1=y

Fence implementation depends on reordering implementation

TSO: Stall reads until write buffer is empty



Synchronization For Real
Programmers

Memory fences are wrapped up in locks, etc.

rl=Y

Reordering prevented ~ X=1

_Unlock
~rl=Y

Direct use of fences possible, but inadvisable.
USE A LIBRARY.



Data Races

Synchronization imposes happens-before on otherwise
unordered operations

Y=1
Unlock ———\HE Order: Data race prevented
rl=Y

Data Race: Unordered operations to the same memory
location, at least one a write



Memory Models across the
System Stack

Language Compiler Architecture

Usually very weak for
max optimization
(lots of reordering)

Conservative
with reordering
when d-r-f can’t

be proved

Java/C++: SC
for data-race-
free programs

Note: fences from
“above” ensure SC



