Carnegie Mellon

Recitation 14: Final Exam Review

Instructor: TA(s)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Outline

Exam Details

Thread Synchronization
Signals

Processes

Virtual Memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Final Exam Details

B Signups Coming
B Full review session coming Sunday May 7
B Fight problems

" Nominal Time is 90-120 minutes, but you get six hours
" Problems cover the entire semester, focus on second half

B Report to the room
" TA will verify your notes and ID

" TAs will give you your exam server password

" Login via Andrew, then navigate to exam server and use special
exam password

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Thread Synchronization

B Three types of locks
" Mutex

" Semaphore
" Reader-Writer lock

B When would you want to use one over the others?

B Rule of thumb: protect shared variables and 10 to the
same file descriptor

B Avoid deadlocks: acquire locks in the same order in each
thread

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Threads Questions

B What is a scenario where a reader-writer lock would be a
more appropriate choice than a mutex?

B What happens when you join on a detached thread?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Threads Questions

B How many characters does “hello.txt” contain after this

example?
void *work(void *data)
{
write(*(int *) data, “a”, 1),
return NULL;

int main(void)
{
int i, fd = open(“hello.txt”, O_RDWR);
pthread_t tids[NTHREADS];
for (1 = 0; 1 < NTHREADS; ++i) {
pthread_t tid;
pthread_create(&tid, NULL, work, &fd);
pthread_detach(tid);

}

Bryant }1d O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Signals and Handling Reminders

B Signals can happen at any time
" Control when through blocking signals

B Signals also communicate that events have occurred
" What event(s) correspond to each signal?

B Write separate routines for receiving (i.e., signals)
" What can you do / not do in a signal handler?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Signal Blocking
B We need to block and unblock signals. Which sequence?

pid_t pid; sigset_t mysigs, prev;
sigemptyset (&mysigs);

sigaddset (&mysigs, SIGCHLD);

sigaddset (&mysigs, SIGINT);

// need to block signals. what to use?

// sigprocmask(SIG_BLOCK, &mysigs, &prev);
// B. sigprocmask(SIG_SETMASK, &mysigs, &prev);

if ((pid = fork()) == 0) {
// need to unblock signals. what to use?
/* A. sigprocmask(SIG_BLOCK, &mysigs, &prev);
* B. sigprocmask(SIG_UNBLOCK, &mysigs, &prev);
*@ sigprocmask(SIG_SETMASK, &prev, NULL);
* D. sigprocmask(SIG_BLOCK, &prev, NULL);
* E. sigprocmask(SIG_SETMASK, &mysigs, &prev);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Signal Delivery

Child calls kill(parent, SIGUSR{1,2}) between 2-4 times.
What sequence of kills may only print 1?
Can you guarantee printing 2?

B What is the range of values printed?

int counter = 0;
void handler (int sig) {
counter++;
}
int main(int argc, char** argv) {
signal(SIGUSR1, handler);
signal (SIGUSR2, handler);
int parent = getpid(); int child = fork();
if (child == 0) {
/* insert code here */
exit(0);
}
sleep(1); waitpid(child, NULL, 0);
printf("Received %d USR{1,2} signals\n", counter);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition See http://www.cs.cmu.edu/~213/oldexams/final-s07.pdf 9

Carnegie Mellon

Processes

Parent and child run in parallel as different processes
No data in memory is shared between the two
fork(): call once return twice

execve(): never retuns (except in error)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Processes Question

B What is printed to the terminal?

const char *msg = “hello there”;

pid_t cpid;

int fd = open(“hello.txt”, O_RDWR);

char contents[12];

ssize_t nbytes;

if ((cpid = fork()) == 0) {
write(fd, msg, strlen(msg));
close(fd);
exit(0);

}

waitpid(cpid, NULL, 0);

nbytes = read(fd, contents, strlen(msg));

contents[nbytes] = ‘\0’;

close(fd);

printf(“%s\n”, contents);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Virtual Memory

Virtual to physical address conversion (TLB lookup)
TLB miss

Page fault, page loaded from disk

TLB updated, check permissions

L1 Cache miss (and L2 ... and)

Request sent to memory

Memory sends data to processor

Cache updated

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Virtual Memory Example

B Translate 0x15213, given the contents of the TLB and the first 32
entries of the page table below.

B 1MB Virtual Memory VPN PPN Valid VPN PPN Valid
B 256KB Physical Memory 0 b 1z 0
01 28 1 1 17 0
B 4KB page size 02 14 1 12 OE 1
03 0B 0 13 10 1
Index Tag PPN Valid 04 26 0 14 13 1
0 05 13 1 05 13 0 15 18 1
06 OF 1 16 31 1
sF 15 1 07 10 1 17 12 0
1 10 OF 0 08 1C O 18 23 1
05 18 1 09 25 1 19 04 0
2 1F 01 1 OA 31 0 1A oC 1
1 1F 0 0B 16 1 1B 2B 0
oc o1 0 1C 1E 0
3 03 2B 1 oD 15 0 1D 3E 1
1D 23 0 OE 0C 0 1E 27 1
OF 2B 1 1F 15 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

